Actin Cytoskeleton of Spread Fibroblasts Appears to Assemble at the Cell Edges

Total Page:16

File Type:pdf, Size:1020Kb

Actin Cytoskeleton of Spread Fibroblasts Appears to Assemble at the Cell Edges J. Cell Sd. 82, 235-248 (1986) 235 Printed in Great Britain © The Company of Biologists Limited 1986 ACTIN CYTOSKELETON OF SPREAD FIBROBLASTS APPEARS TO ASSEMBLE AT THE CELL EDGES TATJANA M. SVITKINA, ALEXANDER A. NEYFAKH, JR Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State University, Moscow 119899, USSR AND ALEXANDER D. BERSHADSKY All-Union Cancer Research Center, Academy of Medical Sciences, Moscow 115478, USSR SUMMARY The action of metabolic inhibitors on actin cytoskeleton of cultured quail embryo fibroblasts has been studied using electron microscopy of platinum replicas and immunofluorescence microscopy. Sodium azide as well as other inhibitors (oligomycin and dinitrophenol) caused the disassembly of all types of actin structures: actin meshwork at the cell active edges, microfilament sheath underlying the cell surface, and microfilament bundles. Studying the time- and dose-dependence of the destruction process we have found that the active edge meshwork and microfilament sheath are much more labile than microfilament bundles. After the removal of metabolic inhibitors actin cytoskeleton restoration begins at the cell edges. The first sign of this process is the formation of actin meshwork along the whole cell perimeter (l-10min of recovery). Sometimes fragments of this meshwork bend upwards forming ruffles. Later (10-20 min of recovery) the microfilament sheath appears at the cell periphery as a narrow band. The sheath seems to be formed from the edge meshwork, since ruffles in the process of transformation to sheath could be seen. During the following restoration the microfilament sheath gradually expands towards the cell centre. The last step of actin cytoskeleton restoration (60—120 min of recovery) is the formation of bundles. We suggest that the actin in spread fibroblasts .polymerizes predominantly at the cell edges and then moves centripetally, forming the microfilament sheath and bundles. INTRODUCTION The actin cytoskeleton of non-muscle cells is a highly dynamic and complex system. In cultured fibroblasts actin microfilaments form several morphologically and biochemically different structures of which microfilament bundles are the most obvious and well characterized (see review by Byers et al. 1984). In addition, actin forms a fine meshwork at the cell's leading edges (Small et al. 1978). The third type of actin structure is the microfilament sheath underlying the upper surface of spread fibroblasts. The sheath is clearly seen in detergent-extracted cells by electron microscopy of platinum replicas (Svitkina et al. 1984). The mechanism of formation of these three cytoskeletal structures and their relationships are unclear. Since actin structures are highly dynamic, the promising approach for studying these problems is the investigation of the processes of destruction and the following restoration of the actin cytoskeleton in living cell. Cytochalasins are well-known agents causing actin destruction (Weber et al. 1976; Key words: actin cytoskeleton, fibroblasts, metabolic inhibitors, platinum replicas. 236 T. M. Svitkina, A. A. Neyfakh, jfr and A. D. Bershadsky Schliwa, 1982). However, cytochalasin-induced actin depolymerization is accom- panied by a dramatic change in cell shape (Sanger & Holtzer, 1972). In this study we used metabolic inhibitors, particularly NaN3, for the dis- integration of actin cytoskeleton. We have shown that metabolic inhibitors destroy microfilament bundles, while the cell morphology changes very slightly (Bershadsky etal. 1980). Here we show that all actin-containing structures of cultured quail embryo fibroblasts are sensitive to metabolic inhibitors. The restoration of actin cytoskeleton after the removal of inhibitors begins at the cell periphery. In a few minutes the actin edge meshwork is formed. Then the microfilament sheath appears near the cell edge and gradually covers the central parts of the cytoplasm. We suppose that under normal conditions actin polymerization occurs also at the cell edges and then this polymerized actin moves centripetally, forming the microfilament sheath and possibly microfilament bundles. MATERIALS AND METHODS Cells Quail embryo fibroblast culture was obtained by trypsinization of 11- to 13-day-old embryos. Cells were cultivated in 199 medium containing 0-25 % lactalbumin hydrolysate, 5 % tryptose phosphate broth and 5% bovine serum. Secondary cultures were seeded onto 5mmX5mm coverslips at low density and incubated for 48-72h at 37°C. After washing with phosphate- buffered saline (PBS), cells were treated with sodium azide (Sigma), oligomycin (Serva) or dinitrophenol (Sigma) in Dulbecco's salt solution at 37°C. Before fixation, control and drug-treated cell cultures were extracted with 1 % Triton X-100 in buffer M (50mM-imidazole, 50mM-KCl, 0-5mM-MgCl2, OlmM-EDTA, 1 mM-EGTA, 1 mM-2-mercaptoethanol, pH6-8) containing 4% polyethyleneglycol (Mr 40 000) for 5 min at room temperature. Immunofluorescence Triton-extracted cells were rinsed with buffer M and fixed with 4% formaldehyde in PBS for 20 min or more. Actin antibody and the procedure for cell staining have been described (Bershadsky et al. 1980). For myosin staining monospecific rabbit antibody to calf spleen myosin was used. Its specificity was tested by Western blotting. The isolation and purification of myosin, as well as affinity chromatography of immune serum, were performed by Dr F. K. Gioeva. Electron microscopy Details of the platinum-replica technique have been described (Svitkina etal. 1984). Briefly, Triton-extracted cells were rinsed with buffer M and fixed with 2% glutaraldehyde in 0-1M- sodium cacodylate buffer (pH 7-2-7-4) for 20 min or more. Then specimens were dehydrated in graded acetones, treated with 0-1 % uranyl acetate in acetone for 20 min, washed in two changes of pure acetone and critical point dried in a Balzers device. Dried cytoskeletons were rotary shadowed with Pt-C in a BAE 080 T apparatus (Balzers) at an angle of 45 °. The thickness of the platinum layer as determined by the method of Heuser (1983) was 2nm. The replicas were strengthened with carbon shadowing at an angle of 90°. Coverslips were removed with HF. Cell residues were dissolved with 30% aqueous C1O3. Replicas were examined in a Jeol 100C or Philips EM400 electron microscope at 80 kV. Negatives were photographically reversed before printing. ATP measurement Subconfluent cultures of fibroblasts on 35 mm Petri dishes (3X105 cells/dish) were treated as described in Fig. 9, washed with Dulbecco's salt solution and extracted with ice-cold 3 % tri- chloroacetic acid for 3 min. Samples of the extract were diluted 500-fold with 0-1 M-Tris—acetate Assembly ofactin cytoskeleton 237 buffer (pH7-7S) containing 2mM-EDTA, and frozen. ATP measurement was performed by the luciferin-luciferase assay using ATP Monitoring Reagent (LKB) and PICO ATP Luminometer (Jobin Yvon, France). RESULTS The actin cytoskeleton of control cells In order to study the actin cytoskeleton structure of quail embryo fibroblasts we have exploited two techniques: electron microscopy of platinum replicas of detergent-extracted cells, and immunofluorescence microscopy of the cells stained with actin and myosin antibodies. Previously we used the platinum replica technique for the study of the cytoskeleton of mouse embryo fibroblasts (Svitkina et al. 1984). The structure of the cytoskeleton of quail fibroblasts is principally the same. The central part of a quail cell is covered with a dense planar sheath of microfilaments (Fig. 1). Local parallel orientation of microfilaments is a characteristic feature of the sheath (Fig. 2). The peripheral lamellar parts of the cells are not covered by the sheath and distal parts of microfilament bundles terminating in adhesion plaques can be seen there (Fig. 1). These sheath-free lamellar regions are narrow in comparison with similar regions of mouse fibroblasts cytoskeleton. At the active edges of lamellae dense planar meshworks of microfilaments are visible (Fig. 1). Immunofluorescence with actin antibody revealed three types of actin-containing structures (Fig. 3). Numerous bright straight lines crossing the cell clearly cor- respond to microfilament bundles. Bright fluorescence at the active cell edges corresponds to an active edge actin meshwork. Diffuse fluorescence all over the cell most probably represents the cortical microfilament sheath. Myosin antibody intensively stained microfilament bundles and the microfilament sheath, while active edges were unstained (Fig. 4), confirming the previous data (Hegeness et al. 1977). Destruction of actin cytoskeleton by metabolic inhibitors The actin cytoskeleton of quail fibroblasts was dramatically destroyed after treatment of cells for 1 h with metabolic inhibitors in buffered saline without an energy source (Dulbecco's solution). Metabolic inhibitors acting by different mech- anisms, such as the cytochrome oxidase inhibitor sodium azide (10—20 mM), the H+- ATPase inhibitor oligomycin (1/iM) and the oxidative phosphorylation uncoupler 2,4-dinitrophenol (0-3 mM) had similar effects. Staining of the active edge and microfilament sheath with actin antibody completely disappeared. Microfilament bundles became fragmented and their remnants became randomly distributed in the cytoplasm (Fig. 5). Myosin antibody also stained only the remnants of the bundles in drug-treated cells (Fig. 6). Electron microscopy shows the absence of active edge actin meshwork and microfilament sheath. The fragments of the microfilament bundles are interspersed with
Recommended publications
  • HTS-Tubulin Polymerization Assay Biochem Kit™
    The Protein Manual Experts Cytoskeleton, Inc. V 8.0 HTS-Tubulin Polymerization Assay Biochem Kit™ (>97% pure tubulin, Porcine Tubulin) Cat. # BK004P Phone: (303) 322.2254 Fax: (303) 322.2257 Customer Service: [email protected] cytoskeleton.com Technical Support: [email protected] cytoskeleton.com Page 2 Manual Contents Section I: Introduction About Tubulin -------------------------------------------------------------------------- 5 About the BK004P polymerization Assay -------------------------------------- 6-7 Comparison of Polymerization Assays ----------------------------------------- 8-9 Section II: Purchaser Notification ------------------------------------------------------------ 10 Section III: Kit Contents ------------------------------------------------------------------------- 11-12 Section V: Reconstitution and Storage of Components ----------------------------- 13 Section IV: Important Technical Notes Notes on Updated version --------------------------------------------------------- 14 Spectrophotometer settings ------------------------------------------------------- 14 Spectrophotometer pathlength---------------------------------------------------- 15 Temperature & time dependence of polymerization ------------------------ 15 Recommended pipetting technique --------------------------------------------- 15-16 Tubulin protein stability ------------------------------------------------------------- 16 Test compound or protein preparation ------------------------------------------ 16-17 Section VI: Assay Protocol
    [Show full text]
  • Neurofilaments: Neurobiological Foundations for Biomarker Applications
    Neurofilaments: neurobiological foundations for biomarker applications Arie R. Gafson1, Nicolas R. Barthelmy2*, Pascale Bomont3*, Roxana O. Carare4*, Heather D. Durham5*, Jean-Pierre Julien6,7*, Jens Kuhle8*, David Leppert8*, Ralph A. Nixon9,10,11,12*, Roy Weller4*, Henrik Zetterberg13,14,15,16*, Paul M. Matthews1,17 1 Department of Brain Sciences, Imperial College, London, UK 2 Department of Neurology, Washington University School of Medicine, St Louis, MO, USA 3 a ATIP-Avenir team, INM, INSERM , Montpellier university , Montpellier , France. 4 Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom 5 Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada 6 Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada. 7 CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada 8 Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland. 9 Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA. 10Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, 11 Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA. 12Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA 13 University College London Queen Square Institute of Neurology, London, UK 14 UK Dementia Research Institute at University College London 15 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden 16 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden 17 UK Dementia Research Institute at Imperial College, London * Co-authors ordered alphabetically Address for correspondence: Prof.
    [Show full text]
  • Cytoskeleton Cytoskeleton
    CYTOSKELETON CYTOSKELETON The cytoskeleton is composed of three principal types of protein filaments: actin filaments, intermediate filaments, and microtubules, which are held together and linked to subcellular organelles and the plasma membrane by a variety of accessory proteins Muscle Contraction • Skeletal muscles are bundles of muscle fibers • Most of the cytoplasm consists of myofibrils, which are cylindrical bundles of two types of filaments: thick filaments of myosin (about 15 run in diameter) and thin filaments of actin (about 7 nm in diameter). • Each myofibril is organized as a chain of contractile units called sarcomeres, which are responsible for the striated appearance of skeletal and cardiac muscle. Structure of muscle cells Sarcomere • The ends of each sarcomere are defined by the Z disc. • Within each sarcomere, dark bands (called A bands because they are anisotropic when viewed with polarized light) alternate with light bands (called I bands for isotropic). • The I bands contain only thin (actin) filaments, whereas the A bands contain thick (myosin) filaments. • The myosin and actin filaments overlap in peripheral regions of the A band, whereas a middle region (called the H zone) contains only myosin. Muscle contraction • The basis for understanding muscle contraction is the sliding filament model, first proposed in 1954 both by Andrew Huxley and Ralph Niedergerke and by Hugh Huxley and Jean Hanson • During muscle contraction each sarcomere shortens, bringing the Z discs closer together. • There is no change in the width of the A band, but both the I bands and the H zone almost completely disappear. • These changes are explained by the actin and myosin filaments sliding past one another so that the actin filaments move into the A band and H zone.
    [Show full text]
  • Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function
    cells Review Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function Cláudia Brito 1,2 and Sandra Sousa 1,* 1 Group of Cell Biology of Bacterial Infections, i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, 4200-135 Porto, Portugal; [email protected] 2 Programa Doutoral em Biologia Molecular e Celular (MCBiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4099-002 Porto, Portugal * Correspondence: [email protected] Received: 19 May 2020; Accepted: 29 June 2020; Published: 1 July 2020 Abstract: Non-muscle myosin 2A (NM2A) is a motor cytoskeletal enzyme with crucial importance from the early stages of development until adulthood. Due to its capacity to convert chemical energy into force, NM2A powers the contraction of the actomyosin cytoskeleton, required for proper cell division, adhesion and migration, among other cellular functions. Although NM2A has been extensively studied, new findings revealed that a lot remains to be discovered concerning its spatiotemporal regulation in the intracellular environment. In recent years, new functions were attributed to NM2A and its activity was associated to a plethora of illnesses, including neurological disorders and infectious diseases. Here, we provide a concise overview on the current knowledge regarding the structure, the function and the regulation of NM2A. In addition, we recapitulate NM2A-associated diseases and discuss its potential as a therapeutic target. Keywords: non-muscle myosin 2A (NM2A); NM2A activity regulation; NM2A filament assembly; actomyosin cytoskeleton; cell migration; cell adhesion; plasma membrane blebbing 1. Superfamily of Myosins The cell cytoskeleton is an interconnected and dynamic network of filaments essential for intracellular organization and cell shape maintenance.
    [Show full text]
  • Cytoskeleton Markers
    ptglab.com 1 CYTOSKELETON MARKERS www.ptglab.com Introduction The cytoskeleton is a three-dimensional network supporting and stabilizing the cell. All cells, even bacteria, have a type of cytoskeleton. It is responsible for the shape of the cell and its mechanical properties. Many dynamic cellular processes cooperate with the cytoskeleton, such as cell motion, cell division, intracellular transport, and cell signaling. Therefore, the cytoskeleton interacts with several cytoplasmic proteins or organelles. The cytoskeletal network is composed of three different protein structures named filaments: microtubules, microfilaments (actin), and intermediate filaments. These proteins form their own unique networks within the cell that have different interdependent functions. Main Functions of the Cytoskeleton Structural support Cell trafficking Transducer of mechanical signals Associated with several diseases Cellular signaling Cell Illustrating The Three Different Cytoskeleton Structure Proteins 2 Cytoskeleton Markers Most Popular Antibody Name Catalog Number Type Applications Cytoskeleton Markers ACTA2/alpha 5 23081-1-AP Rabbit Poly ELISA, IHC, IP, WB From Proteintech smooth muscle actin alpha Tubulin 4 11224-1-AP Rabbit Poly ELISA, FC, IF, IHC, IP, WB beta Actin 423 20536-1-AP Rabbit Poly ELISA, IF, IHC, WB beta Actin 399 60008-1-IG Mouse Mono ELISA, FC, IF, IHC, WB beta Tubulin 11 10068-1-AP Rabbit Poly ELISA, IF, IHC, IP, WB Cofilin 5 10960-1-AP Rabbit Poly ELISA, IF, IHC, WB Cytokeratin 17 specific 17516-1-AP Rabbit Poly ELISA, FC, IF, IHC, IP, WB Desmin 2 60226-1-IG Mouse Mono ELISA, IHC, WB GFAP 5 60190-1-IG Mouse Mono ELISA, IF, IHC, IP, WB Palladin 5 10853-1-AP Rabbit Poly ELISA, FC, IF, IHC, IP, WB Vimentin 54 10366-1-AP Rabbit Poly ELISA, FC, IF, IHC, WB 00 This number shows the amount of times our antibody has been cited in a publication.
    [Show full text]
  • Actin Cytoskeleton and Regulation of Tgfβ Signaling: Exploring Their Links
    biomolecules Review Actin Cytoskeleton and Regulation of TGFβ Signaling: Exploring Their Links Roberta Melchionna 1,†, Paola Trono 1,2,†, Annalisa Tocci 1 and Paola Nisticò 1,* 1 Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, via Chianesi 53, 00144 Rome, Italy; [email protected] (R.M.); [email protected] (P.T.); [email protected] (A.T.) 2 Institute of Biochemistry and Cell Biology, National Research Council, via Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy * Correspondence: [email protected]; Tel.: +39-0652662539 † These authors contributed equally to this paper. Abstract: Human tissues, to maintain their architecture and function, respond to injuries by activating intricate biochemical and physical mechanisms that regulates intercellular communication crucial in maintaining tissue homeostasis. Coordination of the communication occurs through the activity of different actin cytoskeletal regulators, physically connected to extracellular matrix through integrins, generating a platform of biochemical and biomechanical signaling that is deregulated in cancer. Among the major pathways, a controller of cellular functions is the cytokine transforming growth factor β (TGFβ), which remains a complex and central signaling network still to be interpreted and explained in cancer progression. Here, we discuss the link between actin dynamics and TGFβ signaling with the aim of exploring their aberrant interaction in cancer. Keywords: actin cytoskeleton; actin-binding proteins; TGFβ; extracellular matrix; tumor microenvi- Citation: Melchionna, R.; Trono, P.; ronment Tocci, A.; Nisticò, P. Actin Cytoskeleton and Regulation of TGFβ Signaling: Exploring Their Links. Biomolecules 2021, 11, 336. 1. Introduction https://doi.org/10.3390/biom11020336 Actin dynamics critically affect different aspects of human health and disease, ranging Academic Editor: Vladimir from embryonic development to wound repair, inflammation, and cancer [1].
    [Show full text]
  • Neurofilaments and Neurofilament Proteins in Health and Disease
    Downloaded from http://cshperspectives.cshlp.org/ on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Neurofilaments and Neurofilament Proteins in Health and Disease Aidong Yuan,1,2 Mala V. Rao,1,2 Veeranna,1,2 and Ralph A. Nixon1,2,3 1Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962 2Department of Psychiatry, New York University School of Medicine, New York, New York 10016 3Cell Biology, New York University School of Medicine, New York, New York 10016 Correspondence: [email protected], [email protected] SUMMARY Neurofilaments (NFs) are unique among tissue-specific classes of intermediate filaments (IFs) in being heteropolymers composed of four subunits (NF-L [neurofilament light]; NF-M [neuro- filament middle]; NF-H [neurofilament heavy]; and a-internexin or peripherin), each having different domain structures and functions. Here, we review how NFs provide structural support for the highly asymmetric geometries of neurons and, especially, for the marked radial expan- sion of myelinated axons crucial for effective nerve conduction velocity. NFs in axons exten- sively cross-bridge and interconnect with other non-IF components of the cytoskeleton, including microtubules, actin filaments, and other fibrous cytoskeletal elements, to establish a regionallyspecialized networkthat undergoes exceptionallyslow local turnoverand serves as a docking platform to organize other organelles and proteins. We also discuss how a small pool of oligomeric and short filamentous precursors in the slow phase of axonal transport maintains this network. A complex pattern of phosphorylation and dephosphorylation events on each subunit modulates filament assembly, turnover, and organization within the axonal cytoskel- eton. Multiple factors, and especially turnover rate, determine the size of the network, which can vary substantially along the axon.
    [Show full text]
  • Role of Mitochondria-Cytoskeleton Interactions in the Regulation of Mitochondrial Structure and Function in Cancer Stem Cells
    cells Review Role of Mitochondria-Cytoskeleton Interactions in the Regulation of Mitochondrial Structure and Function in Cancer Stem Cells Jungmin Kim 1 and Jae-Ho Cheong 1,2,3,4,5,* 1 Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea; [email protected] 2 Department of Surgery, Yonsei University Health System, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea 3 Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea 4 Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Korea 5 Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul 03722, Korea * Correspondence: [email protected]; Tel.: +82-2-2228-2094; Fax: +82-2-313-8289 Received: 17 June 2020; Accepted: 11 July 2020; Published: 14 July 2020 Abstract: Despite the promise of cancer medicine, major challenges currently confronting the treatment of cancer patients include chemoresistance and recurrence. The existence of subpopulations of cancer cells, known as cancer stem cells (CSCs), contributes to the failure of cancer therapies and is associated with poor clinical outcomes. Of note, one of the recently characterized features of CSCs is augmented mitochondrial function. The cytoskeleton network is essential in regulating mitochondrial morphology and rearrangement, which are inextricably linked to its functions, such as oxidative phosphorylation (OXPHOS). The interaction between the cytoskeleton and mitochondria can enable CSCs to adapt to challenging conditions, such as a lack of energy sources, and to maintain their stemness. Cytoskeleton-mediated mitochondrial trafficking and relocating to the high energy requirement region are crucial steps in epithelial-to-mesenchymal transition (EMT).
    [Show full text]
  • Cytoskeleton and Cell Motility Thomas Risler
    Cytoskeleton and Cell Motility Thomas Risler To cite this version: Thomas Risler. Cytoskeleton and Cell Motility. Robert A. Meyers. Encyclopedia of Complexity and System Science, Springer, pp.1738-1774, 2009, 978-0-387-75888-6. 10.1007/978-0-387-30440-3_112. hal-00961037 HAL Id: hal-00961037 https://hal.archives-ouvertes.fr/hal-00961037 Submitted on 22 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cytoskeleton and Cell Motility Thomas Risler Institut Curie, Centre de Recherche, UMR 168 (UPMC Univ Paris 06, CNRS), 26 rue d'Ulm, F-75005 Paris, France Article Outline C. Macroscopic phenomenological approaches: The active gels Glossary D. Comparisons of the different approaches to de- scribing active polymer solutions I. Definition of the Subject and Its Importance VIII. Extensions and Future Directions II. Introduction Acknowledgments III. The Diversity of Cell Motility Bibliography A. Swimming B. Crawling C. Extensions of cell motility IV. The Cell Cytoskeleton A. Biopolymers B. Molecular motors C. Motor families D. Other cytoskeleton-associated proteins E. Cell anchoring and regulatory pathways F. The prokaryotic cytoskeleton V. Filament-Driven Motility A. Microtubule growth and catastrophes B.
    [Show full text]
  • SCIENCE CHINA Spectrin: Structure, Function and Disease
    SCIENCE CHINA Life Sciences • REVIEW • December 2013 Vol.56 No.12: 1076–1085 doi: 10.1007/s11427-013-4575-0 Spectrin: Structure, function and disease ZHANG Rui1, ZHANG ChenYu1, ZHAO Qi2 & LI DongHai1* 1Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China; 2Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China Received November 21, 2012; accepted March 20, 2013 Spectrin is a large, cytoskeletal, and heterodimeric protein composed of modular structure of and subunits, it typically contains 106 contiguous amino acid sequence motifs called “spectrin repeats”. Spectrin is crucial for maintaining the stability and structure of the cell membrane and the shape of a cell. Moreover, it contributes to diverse cell functions such as cell adhe- sion, cell spreading, and the cell cycle. Mutations of spectrin lead to various human diseases such as hereditary hemolytic anemia, type 5 spinocerebellar ataxia, cancer, as well as others. This review focuses on recent advances in determining the structure and function of spectrin as well as its role in disease. erythrocyte, spectrin, cell cycle, mass spectrometry, disease Citation: Zhang R, Zhang C Y, Zhao Q, et al. Spectrin: Structure, function and disease. Sci China Life Sci, 2013, 56: 1076–1085, doi: 10.1007/s11427-013-4575-0 Spectrin is a cytoskeletal protein that was first discovered in subunits are encoded by SPTA1 and SPTAN1, respectively. erythrocytes and is important for maintaining the stability, SPTA1 is expressed in erythroid cells. In contrast to SPTA1, structure, and shape of the cell membrane.
    [Show full text]
  • (GGT---GTT; Alpha I 40 Gly---Val) and Spectrin Lyon
    Two elliptocytogenic alpha I/74 variants of the spectrin alpha I domain. Spectrin Culoz (GGT----GTT; alpha I 40 Gly----Val) and spectrin Lyon (CTT----TTT; alpha I 43 Leu---Phe). L Morlé, … , B G Forget, J Delaunay J Clin Invest. 1990;86(2):548-554. https://doi.org/10.1172/JCI114743. Research Article Spectrin alpha I/74 elliptocytosis results from abnormalities involving the "head" region of spectrin dimer. Increased susceptibility to trypsin enhances cleavage of the alpha spectrin chain, yielding an increased amount of the alpha I 74-kD fragment at the expense of the alpha I 80-kD parent fragment. Recently we showed that the mutations causing the Sp alpha I/74 abnormality may lie in the alpha- or the beta-chain, and that spectrin Culoz and spectrin Lyon were two (alpha I/74) alpha-variants, respectively. We now show that the spectrin Culoz alpha I domain undergoes prominent tryptic cleavage after Lys 42, whereas cleavage prevails after Arg 39 in spectrin Lyon. Applying the polymerase chain reaction (PCR) technique to exon 2 of the spectrin alpha I domain, we have established that the mutation responsible for spectrin Culoz is alpha I 40 Gly----Val; GGT----GTT. Applying the PCR technique to the cDNA derived from reticulocyte mRNA, we have shown that the mutation responsible for spectrin Lyon is alpha I 43 Leu----Phe; CTT----TTT. Studies of normal controls and of family members using dot blot hybridization with allele-specific oligonucleotide probes confirmed these results. Variants such as spectrin Culoz and spectrin Lyon should provide insight into a region that participates in spectrin dimer self-association and whose susceptibility to proteolysis must reflect subtle conformational changes.
    [Show full text]
  • Activation of Cytoplasmic Dynein Through Microtubule Crossbridging Manas Chakraborty, Algirdas Toleikis, Nida Siddiqui, Robert A
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.13.038950; this version posted April 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Activation of cytoplasmic dynein through microtubule crossbridging Manas Chakraborty, Algirdas Toleikis, Nida Siddiqui, Robert A. Cross and Anne Straube* Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK * correspondence: [email protected] Summary Cytoplasmic dynein is the main microtubule-minus-end-directed transporter of cellular cargo in animal cells [1, 2]. Cytoplasmic dynein also functions in the organisation and positioning of mitotic spindles [3, 4] and the formation of ordered microtubule arrays in neurons and muscle [5, 6]. Activation of the motor for cargo transport is thought to require formation of a complex with dynactin and a cargo adapter [7-10]. Here we show that recombinant human dynein can crossbridge neighbouring microtubules and can be activated by this crossbridging to slide and polarity-sort microtubule bundles. While single molecules of human dynein are predominantly static or diffusive on single microtubules, they walk processively for 1.5 μm on average along the microtubule bundles they form. Speed and force output of dynein are doubled on bundles compared to single microtubules, indicating that the crossbridging dynein steps equivalently on two microtubules. Our data are consistent with a model of autoactivation through the physical separation of dynein motor domains when crossbridging two microtubules.
    [Show full text]