WO 2019/071054 Al 11 April 2019 (11.04.2019) W 1P O PCT

Total Page:16

File Type:pdf, Size:1020Kb

WO 2019/071054 Al 11 April 2019 (11.04.2019) W 1P O PCT (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/071054 Al 11 April 2019 (11.04.2019) W 1P O PCT (51) International Patent Classification: man [US/US]; C/o One Baylor Plaza, Houston, Texas C12N 15/09 (2006.01) C12Q 1/68 (2018.01) 77030 (US). HUANG, Su-Chen [US/US]; C/o One Baylor C12N 15/113 (2010.01) G06F 19/18 (201 1.01) Plaza, Houston, Texas 77030 (US). (21) International Application Number: (72) Inventor: LANDER, Eric S.; c/o 415 Main Street, Cam¬ PCT/US20 18/054476 bridge, Massachusetts 02142 (US). (22) International Filing Date: (74) Agent: SCHER, Michael B. et al.; Johnson, Marcou & 04 October 2018 (04. 10.2018) Isaacs, LLC, P.O. Box 691, Hoschton, Georgia 30548 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 62/568,306 04 October 2017 (04. 10.2017) U S DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (71) Applicants: THE BROAD INSTITUTE, INC. [US/US]; KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 415 Main Street, Cambridge, Massachusetts 02142 (US). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, BAYLOR COLLEGE OF MEDICINE [US/US]; One OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, Baylor Plaza, Houston, Texas 77030 (US). SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (72) Inventors; and TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicants: RAO, Suhas S.P. [US/US]; C/o One Baylor (84) Designated States (unless otherwise indicated, for every Plaza, Houston, Texas 77030 (US). AIDEN, Erez Lieber- kind of regional protection available): ARIPO (BW, GH, (54) Title: METHODS AND COMPOSITIONS FOR ALTERING FUNCTION AND STRUCTURE OF CHROMATIN LOOPS AND/ OR DOMAINS VS1 (57) Abstract: Chromatin 3D stucture modulating agents in the context of the present invention are intended to interfere or manipulate the function of loop anchor motifs, such as CTCF motifs. In certain example embodiments, the present invention may block formation of all or essentially all loop anchor or chromatin domains or block formation of a loop anchor or chromatin domain at a targeted genomic location. For instance, the chromatin 3D structure modulating agent may bind a target region and mask a loop anchor motif, thereby preventing a loop anchor or chromatin domain from forming. The chromatin 3D structure modulating agent may bind a target region and cause a loop anchor of chromatin domain to form. [Continued on nextpage] W O 2019/071054 A l Illlll II lllll lllll lllll llll III III lllll lllll lllll lllll lllll llll llll llll llll GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: — with international search report (Art. 21(3)) — with sequence listing part of description (Rule 5.2(a)) METHODS AND COMPOSITIONS FOR ALTERING FUNCTION AND STRUCTURE OF CHROMATIN LOOPS AND/OR DOMAINS CROSS-REFERENCE TO RELATED APPLICTIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/568,306, filed October 4, 2017. The entire contents of the above-identified application are hereby fully incorporated herein by reference. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH [0002] This invention was made with government support under Grant Nos. PHY-1427654 granted by the National Science Foundation, OD008540, HG006193, HL130010 andHG009375 granted by the National Institutes of Health. The government has certain rights in the invention. REFERENCE TO AN ELECTRONIC SEQUENCE LISTING [0003] The contents of the electronic sequence listing (BROD_2910WP_ST25.txt"; Size is 4 Kilobytes and it was created on September 27, 2018) is herein incorporated by reference in its entirety. TECHNICAL FIELD [0004] The present invention is in the field of genetic engineering and medicine. The present invention provides methods and tools for altering chromatin four-dimensional (4D) structure in a cell, in particular chromatin loop formation and structure over time. The present invention allows the altering the transcriptional activity of chromatin domains or genomic loci, including such domains and loci associated with a disease, such as cancer or a genetic disease, through use of such methods and tools. The present invention provides methods of treatment comprising altering chromatin 3D structure or gene expression within a chromatin domain. The present invention further provides methods of modulating chromatin loop formation to thereby interfere with higher-order chromatin structure, and ultimately control gene expression. BACKGROUND [0005] It has been suggested that the three-dimensional structure of nucleic acids in a cell may be involved in complex biological regulation, for example compartmentalizing the nucleus and bringing widely separated functional elements into close spatial proximity. Understanding how nucleic acids interact, and perhaps more importantly how this interaction, or lack thereof, regulates cellular processes, presents a new frontier of exploration. For example, understanding chromosomal folding and the patterns therein can provide insight into the complex relationships between chromatin structure, gene activity, and the functional state of the cell. Adding ribonucleic acids (RNAs) into the mix adds a further complexity. [0006] Typically, deoxyribonucleic acid (DNA) is viewed as a linear molecule, with little attention paid to the three-dimensional organization. However, chromosomes are not rigid, and while the linear distance between two genomic loci need may be vast, when folded, the special distance may be small. For example, while regions of chromosomal DNA may be separated by many megabases, they can also can be immediately adjacent in 3-dimensional space. Much the same way a protein can fold to bring sequence elements together to form an active site, from the standpoint of gene regulation, long-range interactions between genomic loci may for the same sort of active centers. For example, gene enhancers, silencers, and insulator elements might function across vast genomic distances. [0007] The existence of long-range interactions complicates efforts to understand the pathways that regulate cellular processes, because the interacting regulatory elements could lie at a great genomic distance from a target gene, even on another chromosome. In the case of oncogenes and other disease-associated genes, identification of long-range genetic regulators would be of great use in identifying the genomic variants responsible for the disease state and the process by which the disease state is brought about. [0008] The roughly two meters of DNA in the human genome is intricately packaged to form the chromatin and chromosomes in each cell nucleus. In addition to its structural role, this organization has critical regulatory functions. In particular, the formation of loops in the human genome plays an essential role in regulating genes. Applicants herein demonstrate the ability to create reliable maps of these loops, using an in situ Hi-C method for three-dimensional genome sequencing, and to control the formation of such loops, thereby altering gene expression. Hi-C characterizes the three-dimensional configuration of the genome by determining the frequency of physical contact between all pairs of loci, genome-wide. [0009] In order to control the regulatory function of chromatin folding, it would be required to provide methods for altering chromatin three dimensional (3D) structure in a cell, to remove or otherwise modify existing chromatin loop structures, or to introduce new chromatin loop structures where their presence is required or beneficial, for instance, in the context of treatment of disease conditions, such as cancer or genetic disease. However, to date, no such methods exist. The present invention aims to provide essential methods and tools for altering chromatin three dimensional (3D) structure. [0010] In order to associate the dynamics of chromatin loop structure to cellular processes in health and disease, the chromatin three dimensional (3D) structure from a large number of cells in different stages of development, from diseased and healthy subjects, and from a wide variety of cellular lineages and biological species need to be analysed and their genomes sequenced. Such studies are hampered by costs. There is therefore a need for further improvements in methods for de novo assembly of whole genomes and genomic fragments. The present invention aims to provide such improved methods. [0011] Further, while existing methods for assessing chromatin three dimensional (3D) structure are very suitable for indicating that two loci are spatially co-localized in the nucleus, it may be expected that there are multiple loci spatially co-localized in a living cell. Yet, methods that can indicate simultaneous co-localization of more than 2, such as up to 10 or more different loci are not available. The present invention aims to provide such methods. [0012] Many studies have shown that the insulator protein CTCF and the ring-shaped cohesin complex colocalize on chromatin (Wendt et al., 2008) and lie at the anchors of loops (Rao et al., 2014; Splinter et al., 2006) and the boundaries of contact domains (also called "topologically constrained domains", "topologically associated domains", or "physical domains") (Dixon et al., 2012; Lieberman-Aiden et al., 2009; Nora et al., 2012; Rao et al., 2014).
Recommended publications
  • BCL7A As a Novel Prognostic Biomarker for Glioma Patients
    BCL7A as a novel prognostic biomarker for glioma patients Junhui Liu ( [email protected] ) Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Lun Gao Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Baowei Ji Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Rongxin Geng Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Jing Chen Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Xiang Tao Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Qiang Cai Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Zhibiao Chen Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Research Article Keywords: BCL7 family, glioma, prognosis, immune, Temozolomide Posted Date: April 21st, 2021 DOI: https://doi.org/10.21203/rs.3.rs-390165/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Translational Medicine on August 6th, 2021. See the published version at https://doi.org/10.1186/s12967-021-03003-0. Page 1/24 Abstract Background: Glioma is the most common primary brain tumor and represents one of the most aggressive and lethal types of human cancer. BCL7 family has been found in several cancer types and could be involved in tumor progression. While the role of BCL7 family in human glioma has remained to be elucidated. Methods: Paran-embedded tumor samples were obtained to detect BCL7 expression by performing in glioma. Data (including normalized gene expression and corresponding clinical data) were obtained from Gliovis, CGGA, GEO, cBioportal and Oncomine and were used to investigate BCL7 genes expression in glioma.
    [Show full text]
  • Taf7l Cooperates with Trf2 to Regulate Spermiogenesis
    Taf7l cooperates with Trf2 to regulate spermiogenesis Haiying Zhoua,b, Ivan Grubisicb,c, Ke Zhengd,e, Ying Heb, P. Jeremy Wangd, Tommy Kaplanf, and Robert Tjiana,b,1 aHoward Hughes Medical Institute and bDepartment of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California, Berkeley, CA 94720; cUniversity of California Berkeley–University of California San Francisco Graduate Program in Bioengineering, University of California, Berkeley, CA 94720; dDepartment of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104; eState Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People’s Republic of China; and fSchool of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel Contributed by Robert Tjian, September 11, 2013 (sent for review August 20, 2013) TATA-binding protein (TBP)-associated factor 7l (Taf7l; a paralogue (Taf4b; a homolog of Taf4) (9), TBP-related factor 2 (Trf2) (10, of Taf7) and TBP-related factor 2 (Trf2) are components of the core 11), and Taf7l (12, 13). For example, mice bearing mutant or promoter complex required for gene/tissue-specific transcription deficient CREM showed decreased postmeiotic gene expression of protein-coding genes by RNA polymerase II. Previous studies and defective spermiogenesis (14). Mice deficient in Taf4b, reported that Taf7l knockout (KO) mice exhibit structurally abnor- a testis-specific homolog of Taf4, are initially normal but undergo mal sperm, reduced sperm count, weakened motility, and compro- progressive germ-cell loss and become infertile by 3 mo of age −/Y mised fertility.
    [Show full text]
  • Integrating Genomic Alterations in Diffuse Large B-Cell Lymphoma Identifies New Relevant Pathways and Potential Therapeutic Targets
    OPEN Leukemia (2018) 32, 675–684 www.nature.com/leu ORIGINAL ARTICLE Integrating genomic alterations in diffuse large B-cell lymphoma identifies new relevant pathways and potential therapeutic targets K Karube1,2, A Enjuanes1,3, I Dlouhy1, P Jares1,3, D Martin-Garcia1,3, F Nadeu1,3, GR Ordóñez4, J Rovira1, G Clot1,3, C Royo1, A Navarro1,3, B Gonzalez-Farre1,3, A Vaghefi1, G Castellano1, C Rubio-Perez5, D Tamborero5, J Briones6, A Salar7, JM Sancho8, S Mercadal9, E Gonzalez-Barca9, L Escoda10, H Miyoshi11, K Ohshima11, K Miyawaki12, K Kato12, K Akashi12, A Mozos13, L Colomo1,7, M Alcoceba3,14, A Valera1, A Carrió1,3, D Costa1,3, N Lopez-Bigas5,15, R Schmitz16, LM Staudt16, I Salaverria1,3, A López-Guillermo1,3 and E Campo1,3 Genome studies of diffuse large B-cell lymphoma (DLBCL) have revealed a large number of somatic mutations and structural alterations. However, the clinical significance of these alterations is still not well defined. In this study, we have integrated the analysis of targeted next-generation sequencing of 106 genes and genomic copy number alterations (CNA) in 150 DLBCL. The clinically significant findings were validated in an independent cohort of 111 patients. Germinal center B-cell and activated B-cell DLBCL had a differential profile of mutations, altered pathogenic pathways and CNA. Mutations in genes of the NOTCH pathway and tumor suppressor genes (TP53/CDKN2A), but not individual genes, conferred an unfavorable prognosis, confirmed in the independent validation cohort. A gene expression profiling analysis showed that tumors with NOTCH pathway mutations had a significant modulation of downstream target genes, emphasizing the relevance of this pathway in DLBCL.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Pathognomonic and Epistatic Genetic Alterations in B-Cell Non-Hodgkin
    bioRxiv preprint doi: https://doi.org/10.1101/674259; this version posted June 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Pathognomonic and epistatic genetic alterations in 2 B-cell non-Hodgkin lymphoma 3 4 Man Chun John Ma1¥, Saber Tadros1¥, Alyssa Bouska2, Tayla B. Heavican2, Haopeng Yang1, 5 Qing Deng1, Dalia Moore3, Ariz Akhter4, Keenan Hartert3, Neeraj Jain1, Jordan Showell1, 6 Sreejoyee Ghosh1, Lesley Street5, Marta Davidson5, Christopher Carey6, Joshua Tobin7, 7 Deepak Perumal8, Julie M. Vose9, Matthew A. Lunning9, Aliyah R. Sohani10, Benjamin J. 8 Chen11, Shannon Buckley12, Loretta J. Nastoupil1, R. Eric Davis1, Jason R. Westin1, Nathan H. 9 Fowler1, Samir Parekh8, Maher K. Gandhi7, Sattva S. Neelapu1, Douglas Stewart5, Javeed 10 Iqbal2, Timothy Greiner2, Scott J. Rodig13, Adnan Mansoor5, Michael R. Green1,14,15* 11 1Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD 12 Anderson Cancer Center, Houston, TX, USA; 2Department of Pathology and Microbiology, University of 13 Nebraska Medical Center, Omaha, NE, USA; 3Eppley Institute for Research in Cancer and Allied 14 Diseases, University of Nebraska Medical Center, Omaha, NE, USA; 4Department of Pathology and 15 Laboratory Medicine, University of Calgary, Calgary, AB, Canada; 5Section of Hematology, Department of 16 Medicine, University
    [Show full text]
  • 13809 P2X7 Receptor (E1E8T) Rabbit Mab
    Revision 1 C 0 2 - t P2X7 Receptor (E1E8T) Rabbit mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] 9 Support: 877-678-TECH (8324) 0 8 Web: [email protected] 3 www.cellsignal.com 1 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB, IP H Endogenous 78 Rabbit IgG Q99572 5027 Product Usage Information 2. Valera, S. et al. (1994) Nature 371, 516-9. 3. North, R.A. and Surprenant, A. (2000) Annu Rev Pharmacol Toxicol 40, 563-80. Application Dilution 4. Skaper, S.D. et al. (2010) FASEB J 24, 337-45. 5. Bernardino, L. et al. (2008) J Neurochem 106, 271-80. Western Blotting 1:1000 6. Volonté, C. et al. (2003) Curr Drug Targets CNS Neurol Disord 2, 403-12. Immunoprecipitation 1:50 7. Chessell, I.P. et al. (2005) Pain 114, 386-96. 8. Dell'Antonio, G. et al. (2002) Neurosci Lett 327, 87-90. 9. Barden, N. et al. (2006) Am J Med Genet B Neuropsychiatr Genet 141B, 374-82. Storage 10. Lucae, S. et al. (2006) Hum Mol Genet 15, 2438-45. Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity P2X7 Receptor (E1E8T) Rabbit mAb recognizes endogenous levels of total P2X7 receptor protein. Species Reactivity: Human Source / Purification Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Leu462 of human P2X7 receptor protein.
    [Show full text]
  • BCL7A Antibody Cat
    BCL7A Antibody Cat. No.: 45-325 BCL7A Antibody 45-325 Immunofluorescence analysis of 45-325 Flow cytometric analysis of paraformaldehyde paraformaldehyde fixed U2OS cells, permeabilized with fixed Daudi cells (blue line), permeabilized with 0.5% 0.15% Triton. Primary incubation 1hr (10ug/ml) followed Triton. Primary incubation 1hr (10ug/ml) followed by Alexa by Alexa Fluor 488 secondary antibody (2ug/ml), showing Fluor 488 secondary antibody (1ug/ml). IgG control: nuclear staining. Actin filaments were stained wit Unimmunized goat IgG (black line) fo Specifications HOST SPECIES: Goat SPECIES REACTIVITY: Human HOMOLOGY: Expected Species Reactivity based on sequence homology: Mouse, Rat, Dog, Cow, Pig IMMUNOGEN: The immunogen for this antibody is: C-MKLEASQQNSEEM TESTED APPLICATIONS: ELISA, Flow, IF, WB October 2, 2021 1 https://www.prosci-inc.com/bcl7a-antibody-45-325.html Peptide ELISA: antibody detection limit dilution 1:4000.Western Blot:Approx 26kDa band observed in Human Lymph Node lysates (calculated MW of 25.0kDa according to NP_066273.1). Recommended concentration: 1-3ug/ml. Primary incubation 1 hour at APPLICATIONS: room temperature.Immunofluorescence: Strong expression of the protein seen in the nuclei of U2OS cells. Recommended concentration: 10ug/ml. Flow Cytometry: Flow cytometric analysis of Daudi cells. Recommended concentration: 10ug/ml. This antibody is expected to recognize both reported isoforms (NP_066273.1; SPECIFICITY: NP_001019979.1). POSITIVE CONTROL: 1) Cat. No. 1201 - HeLa Cell Lysate Properties Purified from goat serum by ammonium sulphate precipitation followed by antigen PURIFICATION: affinity chromatography using the immunizing peptide. CLONALITY: Polyclonal CONJUGATE: Unconjugated PHYSICAL STATE: Liquid Supplied at 0.5 mg/ml in Tris saline, 0.02% sodium azide, pH7.3 with 0.5% bovine serum BUFFER: albumin.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • Genetic Signatures of High-Altitude Adaptation and Geographic
    www.nature.com/scientificreports OPEN Genetic signatures of high‑altitude adaptation and geographic distribution in Tibetan sheep Jianbin Liu1,2*, Chao Yuan1,2, Tingting Guo1,2, Fan Wang3, Yufeng Zeng1, Xuezhi Ding1, Zengkui Lu1,2, Dingkao Renqing4, Hao Zhang5, Xilan Xu6, Yaojing Yue1,2, Xiaoping Sun1,2, Chune Niu1,2, Deqing Zhuoga7* & Bohui Yang1,2* Most sheep breeding programs designed for the tropics and sub‑tropics have to take into account the impacts of environmental adaptive traits. However, the genetic mechanism regulating the multiple biological processes driving adaptive responses remains unclear. In this study, we applied a selective sweep analysis by combing 1% top values of Fst and ZHp on both altitude and geographic subpopulations (APS) in 636 indigenous Tibetan sheep breeds. Results show that 37 genes were identifed within overlapped genomic regions regarding Fst signifcantly associated with APS. Out of the 37 genes, we found that 8, 3 and 6 genes at chromosomes (chr.) 13, 23 and 27, respectively, were identifed in the genomic regions with 1% top values of ZHp. We further analyzed the INDEL variation of 6 genes at chr.27 (X chromosome) in APS together with corresponding orthologs of 6 genes in Capra, Pantholops, and Bos Taurus. We found that an INDEL was located within 5′UTR region of HAG1 gene. This INDEL of HAG1 was strongly associated with the variation of APS, which was further confrmed by qPCR. Sheep breeds carrying “C‑INDEL” of HAG1 have signifcantly greater body weight, shear amount, corpuscular hemoglobin and globulin levels, but lower body height, than those carrying “CA‑INDEL” of HAG1.
    [Show full text]
  • A Truncation Variant of the Cation Channel P2RX5 Is Upregulated During T Cell Activation
    A Truncation Variant of the Cation Channel P2RX5 Is Upregulated during T Cell Activation . Pierre Abramowski1,2", Christoph Ogrodowczyk3", Roland Martin1,4* , Olaf Pongs3,5 1 Institute for Neuroimmunology and Clinical Multiple Sclerosis Research (inims), ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 2 Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 3 Institute for Neural Signaltransduction, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 4 Neuroimmunology and MS Research, Department of Neurology, University Hospital Zurich, Zurich, Switzerland, 5 Institute for Physiology, University Hospital Homburg, Homburg/Saar, Germany Abstract Members of the P2X family of ligand-gated cation channels (P2RX) are expressed by various cell types including neurons, smooth- and cardiac muscle cells, and leukocytes. The channels mediate signalling in response to extracellular ATP. Seven subunit isoforms (P2RX1-P2RX7) have been identified and these can assemble as homo- and heterotrimeric molecules. In humans, P2RX5 exists as a natural deletion mutant lacking amino acids 328–349 of exon 10, which are part of transmembrane (TM) 2 and pre-TM2 regions in other organisms like rat, chicken and zebrafish. We show that P2RX5 gene expression of human T lymphocytes is upregulated during activation. P2RX5 is recruited to the cell surface. P2RX5-siRNA- transfected CD4+ T cells produced twofold more IL-10 than controls. Surface and intracellular P2RX5 expression was upregulated in activated antigen-specific CD4+ T cell clones. These data indicate a functional role of the human P2RX5 splice variant in T cell activation and immunoregulation. Citation: Abramowski P, Ogrodowczyk C, Martin R, Pongs O (2014) A Truncation Variant of the Cation Channel P2RX5 Is Upregulated during T Cell Activation.
    [Show full text]
  • P2X1 (F-17): Sc-12208
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . P2X1 (F-17): sc-12208 BACKGROUND APPLICATIONS The P2X receptor family is comprised of ligand-gated ion channels that allow P2X1 (F-17) is recommended for detection of P2X1 of mouse, rat and for the increased permeability of calcium into the cell in response to extra - human origin by Western Blotting (starting dilution 1:200, dilution range cel lular ATP. The seven P2X receptors, P2X1-P2X7, form either homomeric or 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range heteromeric channels or both. They are characterized by intracellular amino- 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range and carboxy-termini. P2X receptors are expressed in a wide variety of tissues, 1:30-1:3000). including neurons, prostate, bladder, pancreas, colon, testis and ovary. The P2X1 (F-17) is also recommended for detection of P2X1 in additional species, major function of the P2X receptors is to mediate synaptic transmissions be- including equine, canine, bovine and porcine. tween neurons and to other tissues via the binding of extracellular ATP, which acts as a neurotransmitter. The P2X receptors may be involved in the onset Suitable for use as control antibody for P2X1 siRNA (h): sc-42563, P2X1 of necrosis or apoptosis after prolonged exposure to high concentrations of siRNA (m): sc-42564, P2X1 shRNA Plasmid (h): sc-42563-SH, P2X1 shRNA extracellular ATP. Plasmid (m): sc-42564-SH, P2X1 shRNA (h) Lentiviral Particles: sc-42563-V and P2X1 shRNA (m) Lentiviral Particles: sc-42564-V.
    [Show full text]
  • Prdc Cdna Insert Product Line
    rP2X5/P2RX5 VersaClone cDNA Catalog Number: RDC2061 Specifications: Description This shuttle vector contains the complete ORF for the gene of interest, Gene: rP2rx5 along with a Kozak consensus sequence for optimal translation initiation. It is inserted NotI to AscI. The gene insert is flanked with Accession: NP_542958 convenient multiple cloning sites which can be used to easily cut and transfer the gene cassette into your desired expression vector. Insert size: 1381bp Preparation and Storage Concentration: 10µg at 0.2μg/μL Formulation cDNA is provided in 10 mM Tris-Cl, pH 8.5 Shipping Ships at ambient temperature Stability 1 year from date of receipt when stored at -20°C to -80°C Storage Use a manual defrost freezer and avoid repeated rP2X5/P2RX5 cDNA freeze-thaw cycles. Plasmid P2rx5 purinergic receptor P2X 5 BstAPI EcoO109I BbeI [ Rattus norvegicus (Norway ZraI KasI BmgBI AatII NarI rat) ] SspI HpaI SfoI EcoRV BmtI Also known as: P2x5 NheI ScaI NotI EagI BtgI Summary: NcoI StyI P2RX5 belongs to the family of purinoceptors for ATP. It functions AMP BlpI NmeAIII as ligand-gated ion channel. P2RX5 BsrFI is believed to form a trimer with BsaI AhdI RDC2061 EcoNI another member of this family, P2RX1. P2RX5 mRNA expression is 4115 bps rP2RX5 (1-455) detected in a significant portion of XcmI PshAI solid tumor cell lines, including renal BsaBI cell carcinoma (RCC), melanoma, BseRI colorectal carcinoma, brain cancer COLE1 and breast cancer. Expression was AlwNI also detected in a subset of primary SexAI solid tumor specimens derived from Bsu36I BbsI Van91I AscI RCC, brain cancer and breast cancer BsmI BssHII PciI PspXI Bst1107I patients.
    [Show full text]