The F4 and E6 Families Have a Finite Number of Points
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orthogonal Symmetric Affine Kac-Moody Algebras
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 10, October 2015, Pages 7133–7159 http://dx.doi.org/10.1090/tran/6257 Article electronically published on April 20, 2015 ORTHOGONAL SYMMETRIC AFFINE KAC-MOODY ALGEBRAS WALTER FREYN Abstract. Riemannian symmetric spaces are fundamental objects in finite dimensional differential geometry. An important problem is the construction of symmetric spaces for generalizations of simple Lie groups, especially their closest infinite dimensional analogues, known as affine Kac-Moody groups. We solve this problem and construct affine Kac-Moody symmetric spaces in a series of several papers. This paper focuses on the algebraic side; more precisely, we introduce OSAKAs, the algebraic structures used to describe the connection between affine Kac-Moody symmetric spaces and affine Kac-Moody algebras and describe their classification. 1. Introduction Riemannian symmetric spaces are fundamental objects in finite dimensional dif- ferential geometry displaying numerous connections with Lie theory, physics, and analysis. The search for infinite dimensional symmetric spaces associated to affine Kac-Moody algebras has been an open question for 20 years, since it was first asked by C.-L. Terng in [Ter95]. We present a complete solution to this problem in a series of several papers, dealing successively with the functional analytic, the algebraic and the geometric aspects. In this paper, building on work of E. Heintze and C. Groß in [HG12], we introduce and classify orthogonal symmetric affine Kac- Moody algebras (OSAKAs). OSAKAs are the central objects in the classification of affine Kac-Moody symmetric spaces as they provide the crucial link between the geometric and the algebraic side of the theory. -
S-Duality, the 4D Superconformal Index and 2D Topological QFT
Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N S-duality, the 4d Superconformal Index and 2d Topological QFT Leonardo Rastelli with A. Gadde, E. Pomoni, S. Razamat and W. Yan arXiv:0910.2225,arXiv:1003.4244, and in progress Yang Institute for Theoretical Physics, Stony Brook Rutgers, November 9 2010 Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N A new paradigm for 4d =2 susy gauge theories N (Gaiotto, . ) Compactification of the (2, 0) 6d theory on a 2d surface Σ, with punctures. = =2 superconformal⇒ theories in four dimensions. N Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N A new paradigm for 4d =2 susy gauge theories N (Gaiotto, . ) Compactification of the (2, 0) 6d theory on a 2d surface Σ, with punctures. = =2 superconformal⇒ theories in four dimensions. N Space of complex structures Σ = parameter space of the 4d • theory. Moore-Seiberg groupoid of Σ = (generalized) 4d S-duality • Vast generalization of “ =4 S-duality as modular group of T 2”. N Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N A new paradigm for 4d =2 susy gauge theories N (Gaiotto, . ) Compactification of the (2, 0) 6d theory on a 2d surface Σ, with punctures. = =2 superconformal⇒ theories in four dimensions. N Space of complex structures Σ = parameter space of the 4d • theory. -
Arxiv:Hep-Th/0006117V1 16 Jun 2000 Oadmarolf Donald VERSION HYPER - Style
Preprint typeset in JHEP style. - HYPER VERSION SUGP-00/6-1 hep-th/0006117 Chern-Simons terms and the Three Notions of Charge Donald Marolf Physics Department, Syracuse University, Syracuse, New York 13244 Abstract: In theories with Chern-Simons terms or modified Bianchi identities, it is useful to define three notions of either electric or magnetic charge associated with a given gauge field. A language for discussing these charges is introduced and the proper- ties of each charge are described. ‘Brane source charge’ is gauge invariant and localized but not conserved or quantized, ‘Maxwell charge’ is gauge invariant and conserved but not localized or quantized, while ‘Page charge’ conserved, localized, and quantized but not gauge invariant. This provides a further perspective on the issue of charge quanti- zation recently raised by Bachas, Douglas, and Schweigert. For the Proceedings of the E.S. Fradkin Memorial Conference. Keywords: Supergravity, p–branes, D-branes. arXiv:hep-th/0006117v1 16 Jun 2000 Contents 1. Introduction 1 2. Brane Source Charge and Brane-ending effects 3 3. Maxwell Charge and Asymptotic Conditions 6 4. Page Charge and Kaluza-Klein reduction 7 5. Discussion 9 1. Introduction One of the intriguing properties of supergravity theories is the presence of Abelian Chern-Simons terms and their duals, the modified Bianchi identities, in the dynamics of the gauge fields. Such cases have the unusual feature that the equations of motion for the gauge field are non-linear in the gauge fields even though the associated gauge groups are Abelian. For example, massless type IIA supergravity contains a relation of the form dF˜4 + F2 H3 =0, (1.1) ∧ where F˜4, F2,H3 are gauge invariant field strengths of rank 4, 2, 3 respectively. -
Lattices and Vertex Operator Algebras
My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List Lattices and Vertex Operator Algebras Gerald H¨ohn Kansas State University Vertex Operator Algebras, Number Theory, and Related Topics A conference in Honor of Geoffrey Mason Sacramento, June 2018 Gerald H¨ohn Kansas State University Lattices and Vertex Operator Algebras My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List How all began From gerald Mon Apr 24 18:49:10 1995 To: [email protected] Subject: Santa Cruz / Babymonster twisted sector Dear Prof. Mason, Thank you for your detailed letter from Thursday. It is probably the best choice for me to come to Santa Cruz in the year 95-96. I see some projects which I can do in connection with my thesis. The main project is the classification of all self-dual SVOA`s with rank smaller than 24. The method to do this is developed in my thesis, but not all theorems are proven. So I think it is really a good idea to stay at a place where I can discuss the problems with other people. [...] I must probably first finish my thesis to make an application [to the DFG] and then they need around 4 months to decide the application, so in principle I can come September or October. [...] I have not all of this proven, but probably the methods you have developed are enough. I hope that I have at least really constructed my Babymonster SVOA of rank 23 1/2. (edited for spelling and grammar) Gerald H¨ohn Kansas State University Lattices and Vertex Operator Algebras My collaboration with Geoffrey Schellekens List Three Descriptions of Schellekens List Theorem (H. -
N = 2 Dualities and 2D TQFT Space of Complex Structures Σ = Parameter Space of the 4D Theory
Short review of superconformal index 2d TQFT and orthogonal polynomials Results and Applications = 2 Dualities and 2d TQFT N Abhijit Gadde with L. Rastelli, S. Razamat and W. Yan arXiv:0910.2225 arXiv:1003.4244 arXiv:1104.3850 arXiv:1110:3740 ... California Institute of Technology Indian Israeli String Meeting 2012 Abhijit Gadde N = 2 Dualities and 2d TQFT Space of complex structures Σ = parameter space of the 4d theory. Mapping class group of Σ = (generalized) 4d S-duality Punctures: SU(2) ! SU(N) = Flavor symmetry: Commutant We will focus on "maximal" puncture: with SU(N) flavor symmetry Sphere with 3 punctures = Theories without parameters Free hypermultiplets Strongly coupled fixed points Vast generalization of “N = 4 S-duality as modular group of T 2”. 6=4+2: beautiful and unexpected 4d/2d connections. For ex., Correlators of Liouville/Toda on Σ compute the 4d partition functions (on S4) Short review of superconformal index 2d TQFT and orthogonal polynomials Results and Applications A new paradigm for 4d = 2 SCFTs [Gaiotto, . ] N Compactify of the 6d (2; 0) AN−1 theory on a 2d surface Σ, with punctures. =)N = 2 superconformal theories in four dimensions. Abhijit Gadde N = 2 Dualities and 2d TQFT We will focus on "maximal" puncture: with SU(N) flavor symmetry Sphere with 3 punctures = Theories without parameters Free hypermultiplets Strongly coupled fixed points Vast generalization of “N = 4 S-duality as modular group of T 2”. 6=4+2: beautiful and unexpected 4d/2d connections. For ex., Correlators of Liouville/Toda on Σ compute the 4d partition functions (on S4) Short review of superconformal index 2d TQFT and orthogonal polynomials Results and Applications A new paradigm for 4d = 2 SCFTs [Gaiotto, . -
Introduction to Quantum Q-Langlands Correspondence
Introduction to Quantum q-Langlands Correspondence Ming Zhang∗ May 16{19, 2017 Abstract Quantum q-Langlands Correspondence was introduced by Aganagic, Frenkel and Okounkov in their recent work [AFO17]. Roughly speaking, it is a correspondence between q-deformed conformal blocks of the quantum affine algebra and the deformed W-algebra. In this mini-course, I will define these objects and discuss some results in quantum K-theory of the Nakajima quiver varieties which is the key ingredient in the proof of the correspondence (in the simply-laced case). It will be helpful to know the basic concepts in the theory of Lie algebras (roots, weights, etc.). Contents 1 Introduction 2 1.1 The geometric Langlands correspondence.............................2 1.2 A representation-theoretic statement and its generalization in [AFO17].............2 2 Lie algebras 2 2.1 Root systems.............................................3 2.2 The Langlands dual.........................................4 3 Affine Kac{Moody algebras4 3.1 Via generators and relations.....................................5 3.2 Via extensions............................................6 4 Representations of affine Kac{Moody algebras7 4.1 The extended algebra........................................7 4.2 Representations of finite-dimensional Lie algebras.........................8 4.2.1 Weights............................................8 4.2.2 Verma modules........................................8 4.3 Representations of affine Kac{Moody algebras...........................9 4.3.1 The category of representations.............................9 4.3.2 Verma modulesO........................................ 10 4.3.3 The evaluation representation................................ 11 4.3.4 Level.............................................. 11 ∗Notes were taken by Takumi Murayama, who is responsible for any and all errors. Please e-mail [email protected] with any more corrections. Compiled on May 21, 2017. 1 1 Introduction We will follow Aganagic, Frenkel, and Okounkov's paper [AFO17], which came out in January of this year. -
Stringy Instantons, Deformed Geometry and Axions
Stringy instantons, deformed geometry and axions. Eduardo Garc´ıa-Valdecasas Tenreiro Instituto de F´ısica Teorica´ UAM/CSIC, Madrid Based on 1605.08092 by E.G. & A. Uranga and ongoing work Iberian Strings 2017, Lisbon, 16th January 2017 Axions and 3-Forms Backreacting Instantons Flavor Branes at the conifold Motivation & Outline Motivation Axions have very flat potentials ) Good for Inflation. Axions developing a potential, i.e. through instantons, can always be described as a 3-Form eating up the 2-Form dual to the axion. There is no candidate 3-Form for stringy instantons. We will look for it in the geometry deformed by the instanton. The instanton triggers a geometric transition. Outline 1 Axions and 3-Forms. 2 Backreacting Instantons. 3 Flavor branes at the conifold. Eduardo Garc´ıa-Valdecasas Tenreiro Stringy instantons, deformed geometry and axions. 2 / 22 2 / 22 Axions and 3-Forms Backreacting Instantons Flavor Branes at the conifold Axions and 3-Forms Eduardo Garc´ıa-Valdecasas Tenreiro Stringy instantons, deformed geometry and axions. 3 / 22 3 / 22 Axions and 3-Forms Backreacting Instantons Flavor Branes at the conifold Axions Axions are periodic scalar fields. This shift symmetry can be broken to a discrete shift symmetry by non-perturbative effects ! Very flat potential, good for inflation. However, discrete shift symmetry is not enough to keep the corrections to the potential small. There is a dual description where the naturalness of the flatness is more manifest. For example, a quadratic potential with monodromy can be described by a Kaloper-Sorbo lagrangian (Kaloper & Sorbo, 2009), 2 2 j dφj + nφF4 + jF4j (1) The potential is recovered using E.O.M, 2 V0 ∼ (nφ − q) ; q 2 Z (2) Eduardo Garc´ıa-ValdecasasSo there Tenreiro is a discreteStringy instantons, shift deformed symmetry, geometry and axions. -
Classification of Holomorphic Framed Vertex Operator Algebras of Central Charge 24
Classification of holomorphic framed vertex operator algebras of central charge 24 Ching Hung Lam, Hiroki Shimakura American Journal of Mathematics, Volume 137, Number 1, February 2015, pp. 111-137 (Article) Published by Johns Hopkins University Press DOI: https://doi.org/10.1353/ajm.2015.0001 For additional information about this article https://muse.jhu.edu/article/570114/summary Access provided by Tsinghua University Library (22 Nov 2018 10:39 GMT) CLASSIFICATION OF HOLOMORPHIC FRAMED VERTEX OPERATOR ALGEBRAS OF CENTRAL CHARGE 24 By CHING HUNG LAM and HIROKI SHIMAKURA Abstract. This article is a continuation of our work on the classification of holomorphic framed vertex operator algebras of central charge 24. We show that a holomorphic framed VOA of central charge 24 is uniquely determined by the Lie algebra structure of its weight one subspace. As a consequence, we completely classify all holomorphic framed vertex operator algebras of central charge 24 and show that there exist exactly 56 such vertex operator algebras, up to isomorphism. 1. Introduction. The classification of holomorphic vertex operator alge- bras (VOAs) of central charge 24 is one of the fundamental problems in vertex operator algebras and mathematical physics. In 1993 Schellekens [Sc93] obtained a partial classification by determining possible Lie algebra structures for the weight one subspaces of holomorphic VOAs of central charge 24. There are 71 cases in his list but only 39 of the 71 cases were known explicitly at that time. It is also an open question if the Lie algebra structure of the weight one subspace will determine the VOA structure uniquely when the central charge is 24. -
Supersymmetric Nonlinear Sigma Models
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server OU-HET 348 TIT/HET-448 hep-th/0006025 June 2000 Supersymmetric Nonlinear Sigma Models a b Kiyoshi Higashijima ∗ and Muneto Nitta † aDepartment of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan bDepartment of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan Abstract Supersymmetric nonlinear sigma models are formulated as gauge theo- ries. Auxiliary chiral superfields are introduced to impose supersymmetric constraints of F-type. Target manifolds defined by F-type constraints are al- ways non-compact. In order to obtain nonlinear sigma models on compact manifolds, we have to introduce gauge symmetry to eliminate the degrees of freedom in non-compact directions. All supersymmetric nonlinear sigma models defined on the hermitian symmetric spaces are successfully formulated as gauge theories. 1Talk given at the International Symposium on \Quantum Chromodynamics and Color Con- finement" (Confinement 2000) , 7-10 March 2000, RCNP, Osaka, Japan. ∗e-mail: [email protected]. †e-mail: [email protected] 1 Introduction Two dimensional (2D) nonlinear sigma models and four dimensional non-abelian gauge theories have several similarities. Both of them enjoy the property of the asymptotic freedom. They are both massless in the perturbation theory, whereas they acquire the mass gap or the string tension in the non-perturbative treatment. Although it is difficult to solve QCD in analytical way, 2D nonlinear sigma models can be solved by the large N expansion and helps us to understand various non- perturbative phenomena in four dimensional gauge theories. -
A Magic Pyramid of Supergravities
Imperial/TP/2013/mjd/03 A magic pyramid of supergravities A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes and S. Nagy Theoretical Physics, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom [email protected] [email protected] [email protected] [email protected] [email protected] ABSTRACT By formulating N = 1; 2; 4; 8, D = 3, Yang-Mills with a single Lagrangian and single set of trans- formation rules, but with fields valued respectively in R; C; H; O, it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-Tits magic square of D = 3 supergravities. This was subsequently tied in with the more familiar R; C; H; O description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D = 3; 4; 6; 10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D = 3 is the known 4 × 4 magic square, while the higher levels are comprised of a 3 × 3 square in D = 4, a 2 × 2 square in D = 6 and Type II supergravity at the apex in D = 10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also construct a conformal magic pyramid by tensoring conformal supermultiplets in D = 3; 4; 6. -
Contemporary Mathematics 442
CONTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors http://dx.doi.org/10.1090/conm/442 Lie Algebras, Vertex Operator Algebras and Their Applications In honor of James Lepowsky and Robert Wilson on their sixtieth birthdays CoNTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors American Mathematical Society Providence, Rhode Island Editorial Board Dennis DeTurck, managing editor George Andrews Andreas Blass Abel Klein 2000 Mathematics Subject Classification. Primary 17810, 17837, 17850, 17865, 17867, 17868, 17869, 81T40, 82823. Photograph of James Lepowsky and Robert Wilson is courtesy of Yi-Zhi Huang. Library of Congress Cataloging-in-Publication Data Lie algebras, vertex operator algebras and their applications : an international conference in honor of James Lepowsky and Robert L. Wilson on their sixtieth birthdays, May 17-21, 2005, North Carolina State University, Raleigh, North Carolina / Yi-Zhi Huang, Kailash Misra, editors. p. em. ~(Contemporary mathematics, ISSN 0271-4132: v. 442) Includes bibliographical references. ISBN-13: 978-0-8218-3986-7 (alk. paper) ISBN-10: 0-8218-3986-1 (alk. paper) 1. Lie algebras~Congresses. 2. Vertex operator algebras. 3. Representations of algebras~ Congresses. I. Leposwky, J. (James). II. Wilson, Robert L., 1946- III. Huang, Yi-Zhi, 1959- IV. -
S-Duality-And-M5-Mit
N . More on = 2 S-dualities and M5-branes .. Yuji Tachikawa based on works in collaboration with L. F. Alday, B. Wecht, F. Benini, S. Benvenuti, D. Gaiotto November 2009 Yuji Tachikawa (IAS) November 2009 1 / 47 Contents 1. Introduction 2. S-dualities 3. A few words on TN 4. 4d CFT vs 2d CFT Yuji Tachikawa (IAS) November 2009 2 / 47 Montonen-Olive duality • N = 4 SU(N) SYM at coupling τ = θ=(2π) + (4πi)=g2 equivalent to the same theory coupling τ 0 = −1/τ • One way to ‘understand’ it: start from 6d N = (2; 0) theory, i.e. the theory on N M5-branes, put on a torus −1/τ τ 0 1 0 1 • Low energy physics depends only on the complex structure S-duality! Yuji Tachikawa (IAS) November 2009 3 / 47 S-dualities in N = 2 theories • You can wrap N M5-branes on a more general Riemann surface, possibly with punctures, to get N = 2 superconformal field theories • Different limits of the shape of the Riemann surface gives different weakly-coupled descriptions, giving S-dualities among them • Anticipated by [Witten,9703166], but not well-appreciated until [Gaiotto,0904.2715] Yuji Tachikawa (IAS) November 2009 4 / 47 Contents 1. Introduction 2. S-dualities 3. A few words on TN 4. 4d CFT vs 2d CFT Yuji Tachikawa (IAS) November 2009 5 / 47 Contents 1. Introduction 2. S-dualities 3. A few words on TN 4. 4d CFT vs 2d CFT Yuji Tachikawa (IAS) November 2009 6 / 47 S-duality in N = 2 . SU(2) with Nf = 4 .