Disjunct Populations of a Locally Common North American Orchid Exhibit High Genetic Variation and Restricted Gene Flow
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus. -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
NOPES Newsletter 5 20
Newsletter of the Native Orchid Preservation and Education Society nativeorchidpreservationeducationsociety.com May 2020 Letter from the President Hello everyone, We were finally able to have an orchid hike. Ten of us met at Shawnee Backpacking Trail. Maintaining social distancing and wearing our masks, we were able to find Cypripedium acaule, the Pink Lady's-Slipper, Galearis spectabilis, the Showy Orchis blooming and Cypripedium parviflorum var. pubescens the Large Yellow Lady's-Slipper in bud. We will be organizing other hikes in the future and Jeanne is working on Zoom meetings for us. Check website for updates. Hope to see everyone soon! Galearis spectabilis, Teresa Huesman Showy Orchis, Shawnee State Forest In Bloom in May and June in Ohio and Kentucky Corallorhiza wisteriana Galearis spectabilis Cypripedium acaule Cypripedium kentuckiense Aplectrum hyemale Putty Cleistes bifaria Wister's Coral-Root Showy Orchid Pink Lady’s-Slipper Southern Lady’s Slipper Root Spreading Pogonia Cypripedium candidum Platanthera leucophaea Isotria verticillata Large Cypripedium parviflorum Pogonia ophioglossoides Neottia cordata Heart- Small White Lady’s- Eastern Prairie Fringed Whorled Pogonia var. pubescens Large Rose Pogonia Leaved Twayblade Slipper Orchid Yellow Lady’s-Slipper Liparis loeselii Platanthera lacera Liparis liliifolia Cypripedium reginae Spiranthes lucida Shining Calopogon tuberosus Loesel's Twayblade Ragged Fringed Orchid Large Twayblade Showy Lady’s-Slipper Ladies'-Tresses Grass Pink 1 Shawnee State Park Field Trip – May 2, 2020 - Jan Yates The more I’ve hiked Shawnee State Forest, the more it seems like we orchid enthusiasts have a code that would baffle many people. Mention to a colleague that you’re hiking Shawnee and they’ll ask ‘3 and 6?’ or ‘1 and 2?’ For other friends who are regular hikers/outdoors people/gardeners, I find myself explaining that these are the forest roads so rich in native orchids that you can virtually step out of the car and find them on the roadside. -
Small-Whorled Pogonia (Isotria Medeoloides)
Small-whorled Pogonia (Isotria medeoloides) Pennsylvania Endangered Plant Species State Rank: S1 (critically imperiled), Global Rank: G2 (imperiled) Identification The small whorled pogonia is a delicate orchid with a stout, upright stem eight to 10 inches high, topped with a whorl of four to six (usually five) leaves. Single or paired yellowish-green flowers, 1-inch long, arise from the center of the leaf whorl. This species is most clearly distinguished from the more common l. verticillata (large whorled pogonia) by the shape of the sepals. Sepals in the small whorled pogonia are greenish, not spreading, and are less than an inch long. The large whorled pogonia has widely spreading, purplish sepals, 1 1/4 to 2 1/2 inches long. Biology-Natural History The small whorled pogonia is a member of the Orchid Family (Orchidaceae). Both Isotria species are perennials found only in the Eastern United States. l. medeoloides is very sparsely distributed from southern Ontario, Canada and Maine, south to Georgia and west to Illinois. Within this region, only 12 of the 17 states which have historically recorded plant sites, are known to still have them. This species is noted Photo Credit: Paul Wiegman, Western Pennsylvania Conservancy for long periods of dormancy, such that colonies often fluctuate in apparent size from year to year. Plants bloom in May and June. North American State/Province Conservation Status Habitat Map by NatureServe (August 2007) Nearly all small whorled pogonia populations occur in second growth or relatively mature forests. Pennsylvania populations seem to be most abundant on State/Province Status Ranks dry east or southeast facing hillsides in mixed oak forests. -
May 2014. Orchid Specialist Group Newsletter
ORCHID CONSERVATION NEWS The Newsletter of the Orchid Specialist Group of the IUCN Species Survival Commission Issue 1 May 2014 The Value of Long Term Studies Editorial Endangered Hawaiian endemic, Peristylus holochila, initiates anthesis in vitro and ex vitro Long term agricultural field experiments at Lawrence W. Zettler Rothamstead, England, are notable because when they Shanna E. David began in 1843, the founders could not possibly have predicted what might be discovered over the following Orchid Recovery Program, Department of Biology 160 years. The conservation value of long term studies Illinois College, 1101 West College Avenue of orchids was discussed in 1990 by the late Carl Olof Jacksonville, IL 62650 USA Tamm, Uppsala, Sweden, when he presented his observations of individual plant behaviour at the ([email protected]) International Orchid Symposium. His conclusion after some 40 years of observation was simple: long term Only three orchid species are native to the Hawaiian observations are essential to conservation and that archipelago: Anoectochilus sandvicensis (Hawaiian individual plant tracking of selected orchid taxa was Jeweled Orchid, ke kino o kanaloa), Liparis hawaiensis recommended. (Hawaii Widelip Orchid, awapuhiakanaloa) and Peristylus (Platanthera) holochila (Hawaiian Bog Two papers have recently been published that Orchid, puahala a kane). Of these three, by far the rarest demonstrate the conservation potential of decades-long is P. holochila (Fig. 1) consisting of 33 known plants studies. Joyce and Allan Reddoch summarized what scattered amongst three islands as of 2011 (Kauai, has been learned from some four decades of monitoring Maui, Molokai). 22 species in Gatineau Park, QC, Canada (Reddoch & Reddoch, 2014). -
Orchid Historical Biogeography, Diversification, Antarctica and The
Journal of Biogeography (J. Biogeogr.) (2016) ORIGINAL Orchid historical biogeography, ARTICLE diversification, Antarctica and the paradox of orchid dispersal Thomas J. Givnish1*, Daniel Spalink1, Mercedes Ames1, Stephanie P. Lyon1, Steven J. Hunter1, Alejandro Zuluaga1,2, Alfonso Doucette1, Giovanny Giraldo Caro1, James McDaniel1, Mark A. Clements3, Mary T. K. Arroyo4, Lorena Endara5, Ricardo Kriebel1, Norris H. Williams5 and Kenneth M. Cameron1 1Department of Botany, University of ABSTRACT Wisconsin-Madison, Madison, WI 53706, Aim Orchidaceae is the most species-rich angiosperm family and has one of USA, 2Departamento de Biologıa, the broadest distributions. Until now, the lack of a well-resolved phylogeny has Universidad del Valle, Cali, Colombia, 3Centre for Australian National Biodiversity prevented analyses of orchid historical biogeography. In this study, we use such Research, Canberra, ACT 2601, Australia, a phylogeny to estimate the geographical spread of orchids, evaluate the impor- 4Institute of Ecology and Biodiversity, tance of different regions in their diversification and assess the role of long-dis- Facultad de Ciencias, Universidad de Chile, tance dispersal (LDD) in generating orchid diversity. 5 Santiago, Chile, Department of Biology, Location Global. University of Florida, Gainesville, FL 32611, USA Methods Analyses use a phylogeny including species representing all five orchid subfamilies and almost all tribes and subtribes, calibrated against 17 angiosperm fossils. We estimated historical biogeography and assessed the -
Phylogeny, Character Evolution and the Systematics of Psilochilus (Triphoreae)
THE PRIMITIVE EPIDENDROIDEAE (ORCHIDACEAE): PHYLOGENY, CHARACTER EVOLUTION AND THE SYSTEMATICS OF PSILOCHILUS (TRIPHOREAE) A Dissertation Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Erik Paul Rothacker, M.Sc. ***** The Ohio State University 2007 Doctoral Dissertation Committee: Approved by Dr. John V. Freudenstein, Adviser Dr. John Wenzel ________________________________ Dr. Andrea Wolfe Adviser Evolution, Ecology and Organismal Biology Graduate Program COPYRIGHT ERIK PAUL ROTHACKER 2007 ABSTRACT Considering the significance of the basal Epidendroideae in understanding patterns of morphological evolution within the subfamily, it is surprising that no fully resolved hypothesis of historical relationships has been presented for these orchids. This is the first study to improve both taxon and character sampling. The phylogenetic study of the basal Epidendroideae consisted of two components, molecular and morphological. A molecular phylogeny using three loci representing each of the plant genomes including gap characters is presented for the basal Epidendroideae. Here we find Neottieae sister to Palmorchis at the base of the Epidendroideae, followed by Triphoreae. Tropidieae and Sobralieae form a clade, however the relationship between these, Nervilieae and the advanced Epidendroids has not been resolved. A morphological matrix of 40 taxa and 30 characters was constructed and a phylogenetic analysis was performed. The results support many of the traditional views of tribal composition, but do not fully resolve relationships among many of the tribes. A robust hypothesis of relationships is presented based on the results of a total evidence analysis using three molecular loci, gap characters and morphology. Palmorchis is placed at the base of the tree, sister to Neottieae, followed successively by Triphoreae sister to Epipogium, then Sobralieae. -
Phylogeny of South American Pogonieae (Orchidaceae
ARTICLE IN PRESS Organisms, Diversity & Evolution 8 (2008) 171–181 www.elsevier.de/ode Phylogeny of South American Pogonieae (Orchidaceae, Vanilloideae) based on sequences of nuclear ribosomal (ITS) and chloroplast ( psaB, rbcL, rps16, and trnL-F ) DNA, with emphasis on Cleistes and discussion of biogeographic implications Emerson R. Pansarina,Ã, Antonio Salatinob, Maria L.F. Salatinob aDepartamento de Botaˆnica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6109, 13083-970 Campinas, SP, Brazil bDepartamento de Botaˆnica, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo (USP), Rua do Mata˜o, 277, Caixa Postal 11461, 05422-970 Sa˜o Paulo, SP, Brazil Received 1 June 2007; accepted 12 September 2007 Abstract Tribe Pogonieae (Orchidaceae), as currently known, comprises five genera distributed from South to North America and Eastern Asia. Phylogenetic inferences within Cleistes and among genera of tribe Pogonieae were made based on nrDNA (ITS) and cpDNA (trnL-F, rps16, rbcL,andpsaB) sequence data and maximum parsimony. Eighteen species of Cleistes, members of all other genera of Pogonieae, and outgroups were sampled. Analyses based on individual DNA regions provided similar topologies. All evidence indicates that Cleistes is paraphyletic. The North American C. divaricata and C. bifaria are more closely related to the temperate genera Isotria and Pogonia than to their Central and South American congeners, the latter constituting a monophyletic group characterized by the production of nectar as reward, tuberous roots, and their distribution in Central and South America. The Amazonian Duckeella is sister to the remainder of Pogonieae. Taxonomic and biogeographic implications are discussed, and morphological synapomorphies are given for clades obtained in the inferred molecular phylogeny. -
Reproductive Development and Genetic Structure of the Mycoheterotrophic Orchid Pogoniopsis Schenckii Cogn
Alves et al. BMC Plant Biol (2021) 21:332 https://doi.org/10.1186/s12870-021-03118-y RESEARCH Open Access Reproductive development and genetic structure of the mycoheterotrophic orchid Pogoniopsis schenckii Cogn. Mariana Ferreira Alves1*, Fabio Pinheiro1, Carlos Eduardo Pereira Nunes1, Francisco Prosdocimi2, Deise Schroder Sarzi2, Carolina Furtado3 and Juliana Lischka Sampaio Mayer1 Abstract Background: Pogoniopsis schenckii Cogn. is a mycoheterotrophic orchid that can be used as a model to understand the infuence of mycoheterotrophy at diferent stages of the reproductive cycle. We aimed to verify the presence of endophytic and epiphytic fungi at each stage of the reproductive process and investigated how the breeding system may relate to genetic structure and diversity of populations. In this study we performed anatomical and ultrastruc- tural analyses of the reproductive organs, feld tests to confrm the breeding system, and molecular analysis to assess genetic diversity and structure of populations. Results: During the development of the pollen grain, embryo sac and embryogenesis, no fungal infestation was observed. The presence of endophytic fungal hyphae was observed just within foral stems and indehiscent fruit. Beyond assuring the presence of fungus that promote seed germination, specifc fungi hyphae in the fruit may afect other process, such as fruit ripening. As other mycoheterotrophic orchids, P. schenckii is autogamous, which may explain the low genetic diversity and high genetic structure in populations. Conclusions: We discuss an interesting interaction: fungal hyphae in the indehiscent fruit. These fungal hyphae seem to play diferent roles inside fruit tissues, such as acting in the fruit maturation process and increasing the prox- imity between fungi and plant seeds even before dispersion occurs. -
Small Whorled Pogonia
Small whorled pogonia Isotria medeoloides (Green five-leaved orchid, small-whorled crest-lip) Threatened (November 7, 1994; originally Endangered, September 10, 1982) Description: This orchid is a slender, perennial herb, 4-10 successional growth). Typically grows in open, dry deciduous inches (9.5-25 cm) tall, with a greenish-tinged (rarely woods and areas along streams with acid soil. Also grows in purplish) single hollow stem. The roots, slender, fibrous, and rich, mesic woods in association with white pine (Pinus hairy, radiate from a crown or rootstock. At the apex of the strobus) and rhododendron (Rhododendron spp.). Prefers leaf stem is a whorl of five or six pale, dusty green leaves with litter and decaying material but may be found on dry, rocky, parallel veins. Leaves droop, are 0.8-3.3 inch (2-8.5 cm) wooded slopes, moist slopes or slope bases near long and 0.4-1.6 inches (1-4 cm) wide, and may be coated vernal streams. with a whitish bloom (powdery layer). Growing above the leaves are one or two irregularly-shaped flowers, yellow- Distribution: Scattered from mountains to ish-green in color. The sepals are long and thin; western coastal plain in Burke, Cherokee, petals are more rounded, up to 0.7 inch Cumberland*, Harnett*, Haywood, (1.7 cm) long and pale green. The lip Henderson, Jackson, Macon, Orange*, (bottom petal) of the flower is greenish Surry*, and Transylvania counties. white, veined with green, and is three- lobed. The fruit is a dry, erect, dehiscent Threats: Habitat destruction and collec- ellipsoid capsule, 0.7-1.2 inches (1.7-3 tion are main threats. -
Conservation Assessment for White Adder's Mouth Orchid (Malaxis B Brachypoda)
Conservation Assessment for White Adder’s Mouth Orchid (Malaxis B Brachypoda) (A. Gray) Fernald Photo: Kenneth J. Sytsma USDA Forest Service, Eastern Region April 2003 Jan Schultz 2727 N Lincoln Road Escanaba, MI 49829 906-786-4062 This Conservation Assessment was prepared to compile the published and unpublished information on Malaxis brachypoda (A. Gray) Fernald. This is an administrative study only and does not represent a management decision or direction by the U.S. Forest Service. Though the best scientific information available was gathered and reported in preparation for this document and subsequently reviewed by subject experts, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if the reader has information that will assist in conserving the subject taxon, please contact: Eastern Region, USDA Forest Service, Threatened and Endangered Species Program, 310 Wisconsin Avenue, Milwaukee, Wisconsin 53203. Conservation Assessment for White Adder’s Mouth Orchid (Malaxis Brachypoda) (A. Gray) Fernald 2 TABLE OF CONTENTS TABLE OF CONTENTS .................................................................................................................1 ACKNOWLEDGEMENTS..............................................................................................................2 EXECUTIVE SUMMARY ..............................................................................................................3 INTRODUCTION/OBJECTIVES ...................................................................................................3 -
Toward a New Conservation Vision for the Great Lakes Region: a Second Iteration
Toward a New Conservation Vision for the Great Lakes Region: A Second Iteration (Revised September 2000) Prepared by The Nature Conservancy Great Lakes Program 8 South Michigan Avenue Suite 2301 Chicago, IL 60603 (312) 759-8017 Copyright 2000 Toward a New Conservation Vision for the Great Lakes Toward A New Conservation Vision for the Great Lakes In 1996, The Nature Conservancy’s Great Lakes Program launched a collaborative initiative to identify high priority biodiversity conservation sites in the Great Lakes region. This initiative was precipitated by the Conservancy broadening its focus beyond just rare and endangered species and natural communities. The Conservancy recognized that to effectively protect the full range of biodiversity, conservation efforts must include those species and natural communities that are more common and representative as well as those that are declining or vulnerable. Taking an Ecoregional Perspective To address this shift in focus, the Conservancy oriented its work based on ecoregions—large areas defined by the influences of shared climate and geology, the main factors that determine the broad-scale distribution of plants and animals.1 The Great Lakes ecoregion—which includes major portions of Canada and the United States—is one of 64 ecologically distinct regions of the continental United States. For each of these ecoregions, the Conservancy is developing a detailed plan that identifies the places that need to be protected to conserve native biodiversity for the long term. At many of these places, local communities, private landowners and an array of public and private entities are already leading important conservation efforts. The Great Lakes ecoregional planning initiative is a systematic approach that identifies all native species, natural communities and aquatic systems characteristic of the Great Lakes region and then determines how many of and where these elements of biodiversity need to be protected over the long term.