Exotic Phases of Matter in Compact Stars

Total Page:16

File Type:pdf, Size:1020Kb

Exotic Phases of Matter in Compact Stars 2007:05 DOCTORAL T H E SI S Exotic Phases of Matter in Compact Stars Fredrik Sandin Luleå University of Technology Department of Applied Physics and Mechanical Engineering Division of Physics 2007:05|: 02-544|: - -- 07⁄05 -- Doctoral Thesis in Physics Exotic Phases of Matter in Compact Stars Jan Fredrik Sandin from Ostavall¨ Division of Physics Lule˚a University of Technology SE-971 87 Lule˚a Sweden To my parents, for giving me a curious character ABSTRACT This doctoral thesis in physics at Lule˚a University of Technology is devoted to the phenomenology of compact stars, and theoretical models of their interior. Particle physics has provided fundamental concepts and details needed to develop a descrip- tion of matter and the evolution of the universe. It is, however, difficult to obtain information about the properties of matter at low temperature and high density from such experiments. In this context, astrophysical observations constitute an impor- tant source of information, thanks to the high resolution of present and near-future terrestrial and space-based observatories. The density of matter in neutron stars ex- ceedsthatinatomicnuclei,andlittleisknownaboutthenatureoftheirinterior.It is clear that the interaction between the smallest observed building blocks of atomic nuclei, the quarks, becomes weaker with increasing density. Matter should therefore dissolve into a state of nearly free quarks at high densities, and models of classical superconductivity advocate that this state is a superconductor. The argument for this is simple: a low-temperature Fermi system with a weak attractive interaction is unstable with respect to formation of Cooper pairs. It is not known if this state of matter exists in neutron stars, but models suggest that it is possible. The major part of the work summarised in this thesis is the development of a model of superconduct- ing quark matter, and its consequences for the phenomenology of neutron stars and their formation in the collapse of massive stars. It is a Nambu–Jona-Lasinio model with self-consistently calculated quark masses and pairing gaps, which properly ac- counts for the β-equilibrium and/or charge neutrality constraints in compact stars and heavy-ion collisions. Phase diagrams and equations of state of superconduct- ing quark matter are presented, and the influence of different assumptions about the effective quark interaction is investigated. The effect of neutrino untrapping in hypothetical quark cores of newborn neutron stars is investigated, and phase dia- grams for quark matter with trapped neutrinos are presented. While no evidence for the presence of quark matter in neutron stars exists, it is explicitly shown that observations do not contradict this possibility. On the contrary, the presence of a quark matter core in neutron stars can overcome problems with hadronic equations of state. In contrast to the expectation from more simple model calculations, the results presented here suggest that strange quarks do not play a significant role in the physics of compact stars. While there is some room for bare strange stars, such models suffer from low maximum masses, and the presence of a hadronic shell tends to render stars with strange matter cores unstable. Regardless of the nature of mat- vi ter in neutron stars, general relativity and the standard model of particle physics limit their density to 1016 g/cm3. In the light of established theory, any object with a density exceeding this limit should be a black hole. It is suggested in this thesis that if quarks and leptons are composite objects, as suggested, e.g.,bythe three particle generations in the standard model, a yet unobserved class of compact objects with extremely high densities could exist. As the hypothetical pre-quark particles are called preons, these objects are named ‘preon stars’. The properties of preon stars are estimated, and it is shown that their maximum mass depends on the quark compositeness energy scale. In general, the mass of these objects should not exceed that of the Earth, and their maximum size is of the order of metres. Several methods to observationally detect preon stars are discussed, notably, by gravita- tional lensing of gamma-ray bursts and by measuring high-frequency gravitational waves from binary systems. To have a realistic detection rate, i.e.,tobeobservable, they must constitute a significant fraction of cold dark matter. This condition could be met if they formed in a primordial phase transition, at a temperature of the or- der of the quark compositeness energy scale. Some unexplained features observed in spectra of gamma-ray bursts are discussed, as they are similar to the signature ex- pected from a preon-star gravitational lensing event. An observation of objects with these characteristics would be a direct vindication of physics beyond the standard model. Keywords: Compact stars – Neutron stars – Quark stars – Hybrid stars – Protoneu- tron stars – Preon stars – Preons – Compositeness – Colour superconductivity. Appended Papers Paper I J. Hansson and F. Sandin, “Preon stars: a new class of cosmic compact objects”, Physics Letters B616, 1 (2005); astro-ph/0410417. Paper II F. Sandin, “Compact stars in the standard model – and beyond”, The European Physical Journal C40 S2, 15 (2005); astro-ph/0410407. Also to appear in “How and where to go beyond the standard model”, proceedings of the International School of Subnuclear Physics, Erice, ed. A. Zichichi: World Scientific (2007). Paper III D. Blaschke, S. Fredriksson, H. Grigorian, A. M. Oztas¨ ¸ and F. Sandin, “The phase diagram of three-flavor quark matter under compact star constraints”, Physical Review D72, 065020 (2005); hep-ph/0503194. Paper IV F. Sandin and A. M. Oztas¨ ¸, “Condition for gapless color-antitriplet excita- tions in Nambu–Jona-Lasinio models”, Physical Review C73, 035203 (2006); hep- ph/0512087. Paper V T. Klahn,¨ D. Blaschke, F. Sandin, Ch. Fuchs, A. Faessler, H. Grigorian, G. Ropke¨ and J. Trumper¨ , “Modern compact star observations and the quark matter equation of state”, submitted to Physics Letters B; nucl-th/0609067. Paper VI F. Sandin and J. Hansson, “The observational legacy of preon stars – probing new physics beyond the LHC”, to be submitted; astro-ph/0701768. Paper VII F. Sandin and D. Blaschke, “The quark core of protoneutron stars in the phase diagram of quark matter”, submitted to Physical Review D; astro-ph/0701772. vii Other Publications Articles in popular magazines J. Hansson and F. Sandin,“Preonstj¨arnor - en ny sorts himlakropp?”, Popul¨ar Astronomi 4, 8 (2005). J. Hansson and F. Sandin, “Stor som en kula men tyngrean ¨ jorden”, Forskning och Framsteg 7, 40 (2005). Numerical software F. Sandin, “On-line 3-flavour colour superconductivity calculator”, http://3fcs.dyndns.org. F. Sandin, “On-line gravitational femtolensing calculator”, http://femtolensing.dyndns.org. ix Preface This thesis is devoted to the physics of compact stars and some exotic phases of matter that could exist in these fascinating objects. By tradition, it consists of an introduction and appended research papers. The former provides some essential background needed to grasp the content of the papers. As the physics of compact stars is a multi-diciplinary field, a proper introduction is beyond the scope of this thesis. I therefore focus on essential topics, in particular technical aspects applied in the theoretical derivations and numerical calculations. References are given to textbooks and research papers that cover some complementary topics. I am pleased by the combination of main-stream research and investigations on topics of more hypothetical nature that underlays this thesis. The former constitutes a basis for the scientific content of the work, and has been performed in a highly active field of physics in collaboration with leading experts in an international con- text. This work has resulted in useful experiences, four completed papers and about an equal amount of present projects. The numerical software developed in this work is partially available on-line for cross-checking, and for others to use. The work on preon stars is of more hypothetical nature and have resulted in valuable experiences. It is clear that theoretical physics needs both “good” and “bad” new ideas, as it is notoriously difficult to correctly judge the value of a new idea at an early stage in its development. Nevertheless, it takes courage and a sensible type of confidence to develop them, and that need some trial and error. The preon star hypothesis has been awarded with a prize on suggestion by Gerard ’t Hooft and Antonino Zichichi, and it has resulted in three scientific papers. Preon stars have been recognised also in several popular magazines, and the first publication was on Science Direct’s top- 25 list of most read (downloaded) articles. It is a great joy to see that the work has stimulated others to consider the idea. The research presented in this thesis has been performed in collaboration, mainly with David Blaschke, Sverker Fredriksson, Hovik Grigorian, Johan Hansson, Thomas Kl¨ahn, and Ahmet Ozta¸¨ s, and to some extent also with Amand Faessler, Chris- tian Fuchs, Gerd R¨opke, and Joachim Tr¨umper. I thank David Blaschke for his hospitality during my visits to Rostock and Dubna, for his guidance and support in the daily work, and for introducing me in a group of great people and a fruit- ful collaboration. I would also like to express my gratitude to Mark Alford, Jens xi xii Berdermann, Michael Buballa, Mike Cruise, Ed Fenimore, Huben Ganev, Achim Geiser, Jeremy Goodman, Pawel Haensel, Abuki Hiroaki, Gerard ’t Hooft, Hen- ning Knutsen, Kostas Kokkotas, John Ralston, Sanjay Reddy, Avetis Sadoyan, Igor Shovkovy, Andrew Steiner, and Stefan Typel for useful discussions, and for their helpful and inspiring attitude. The numerical results presented in the appended papers were calculated on a local FreeBSD computer cluster that belongs to Hans Weber, I am most grateful to him for giving me unlimited access to his computers, and for useful discussions on classical superconductivity and statistical physics.
Recommended publications
  • Plasma Physics and Pulsars
    Plasma Physics and Pulsars On the evolution of compact o bjects and plasma physics in weak and strong gravitational and electromagnetic fields by Anouk Ehreiser supervised by Axel Jessner, Maria Massi and Li Kejia as part of an internship at the Max Planck Institute for Radioastronomy, Bonn March 2010 2 This composition was written as part of two internships at the Max Planck Institute for Radioastronomy in April 2009 at the Radiotelescope in Effelsberg and in February/March 2010 at the Institute in Bonn. I am very grateful for the support, expertise and patience of Axel Jessner, Maria Massi and Li Kejia, who supervised my internship and introduced me to the basic concepts and the current research in the field. Contents I. Life-cycle of stars 1. Formation and inner structure 2. Gravitational collapse and supernova 3. Star remnants II. Properties of Compact Objects 1. White Dwarfs 2. Neutron Stars 3. Black Holes 4. Hypothetical Quark Stars 5. Relativistic Effects III. Plasma Physics 1. Essentials 2. Single Particle Motion in a magnetic field 3. Interaction of plasma flows with magnetic fields – the aurora as an example IV. Pulsars 1. The Discovery of Pulsars 2. Basic Features of Pulsar Signals 3. Theoretical models for the Pulsar Magnetosphere and Emission Mechanism 4. Towards a Dynamical Model of Pulsar Electrodynamics References 3 Plasma Physics and Pulsars I. The life-cycle of stars 1. Formation and inner structure Stars are formed in molecular clouds in the interstellar medium, which consist mostly of molecular hydrogen (primordial elements made a few minutes after the beginning of the universe) and dust.
    [Show full text]
  • Negreiros Lecture II
    General Relativity and Neutron Stars - II Rodrigo Negreiros – UFF - Brazil Outline • Compact Stars • Spherically Symmetric • Rotating Compact Stars • Magnetized Compact Stars References for this lecture Compact Stars • Relativistic stars with inner structure • We need to solve Einstein’s equation for the interior as well as the exterior Compact Stars - Spherical • We begin by writing the following metric • Which leads to the following components of the Riemman curvature tensor Compact Stars - Spherical • The Ricci tensor components are calculated as • Ricci scalar is given by Compact Stars - Spherical • Now we can calculate Einstein’s equation as 휇 • Where we used a perfect fluid as sources ( 푇휈 = 푑푖푎푔(휖, 푃, 푃, 푃)) Compact Stars - Spherical • Einstein’s equation define the space-time curvature • We must also enforce energy-momentum conservation • This implies that • Where the four velocity is given by • After some algebra we get Compact Stars - Spherical • Making use of Euler’s equation we get • Thus • Which we can rewrite as Compact Stars - Spherical • Now we introduce • Which allow us to integrate one of Einstein’s equation, leading to • After some shuffling of Einstein’s equation we can write Summary so far... Metric Energy-Momentum Tensor Einstein’s equation Tolmann-Oppenheimer-Volkoff eq. Relativistic Hydrostatic Equilibrium Mass continuity Stellar structure calculation Microscopic Ewuation of State Macroscopic Composition Structure Recapitulando … “Feed” with diferente microscopic models Microscopic Ewuation of State Macroscopic Composition Structure Compare predicted properties with Observed data. Rotating Compact Stars • During its evolution, compact stars may acquire high rotational frequencies (possibly up to 500 hz) • Rotation breaks spherical symmetry, increasing the degrees of freedom.
    [Show full text]
  • Exploring Pulsars
    High-energy astrophysics Explore the PUL SAR menagerie Astronomers are discovering many strange properties of compact stellar objects called pulsars. Here’s how they fit together. by Victoria M. Kaspi f you browse through an astronomy book published 25 years ago, you’d likely assume that astronomers understood extremely dense objects called neutron stars fairly well. The spectacular Crab Nebula’s central body has been a “poster child” for these objects for years. This specific neutron star is a pulsar that I rotates roughly 30 times per second, emitting regular appar- ent pulsations in Earth’s direction through a sort of “light- house” effect as the star rotates. While these textbook descriptions aren’t incorrect, research over roughly the past decade has shown that the picture they portray is fundamentally incomplete. Astrono- mers know that the simple scenario where neutron stars are all born “Crab-like” is not true. Experts in the field could not have imagined the variety of neutron stars they’ve recently observed. We’ve found that bizarre objects repre- sent a significant fraction of the neutron star population. With names like magnetars, anomalous X-ray pulsars, soft gamma repeaters, rotating radio transients, and compact Long the pulsar poster child, central objects, these bodies bear properties radically differ- the Crab Nebula’s central object is a fast-spinning neutron star ent from those of the Crab pulsar. Just how large a fraction that emits jets of radiation at its they represent is still hotly debated, but it’s at least 10 per- magnetic axis. Astronomers cent and maybe even the majority.
    [Show full text]
  • Surface Structure of Quark Stars with Magnetic Fields
    PRAMANA °c Indian Academy of Sciences Vol. 67, No. 5 | journal of November 2006 physics pp. 937{949 Surface structure of quark stars with magnetic ¯elds PRASHANTH JAIKUMAR Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA E-mail: [email protected] Abstract. We investigate the impact of magnetic ¯elds on the electron distribution of the electrosphere of quark stars. For moderately strong magnetic ¯elds of B » 1013 G, quantization e®ects are generally weak due to the large number density of electrons at surface, but can nevertheless a®ect the photon emission properties of quark stars. We outline the main observational characteristics of quark stars as determined by their surface emission, and briefly discuss their formation in explosive events termed as quark-novae, which may be connected to the r-process. Keywords. Quark stars; magnetic ¯elds; nucleosynthesis. PACS Nos 26.60.+c; 24.85.+p; 97.60.Jd 1. Introduction There is a renewed interest in the theory and observation of strange quark stars, which are believed to contain, or be entirely composed of, decon¯ned quark mat- ter [1]. An observational con¯rmation of their existence would be conclusive ev- idence of quark decon¯nement at large baryon densities, an expected feature of quantum chromodynamics (QCD). Furthermore, discovery of a stable bare quark star a±rms the Bodmer{Terazawa{Witten conjecture [2], that at high enough den- sity, strange quark matter, composed of up, down and strange quarks, is absolutely stable with respect to nuclear matter. This intriguing hypothesis is over three decades old, and bare quark stars are but one possible realization put forward in the intervening years.
    [Show full text]
  • Neutron Stars
    Chandra X-Ray Observatory X-Ray Astronomy Field Guide Neutron Stars Ordinary matter, or the stuff we and everything around us is made of, consists largely of empty space. Even a rock is mostly empty space. This is because matter is made of atoms. An atom is a cloud of electrons orbiting around a nucleus composed of protons and neutrons. The nucleus contains more than 99.9 percent of the mass of an atom, yet it has a diameter of only 1/100,000 that of the electron cloud. The electrons themselves take up little space, but the pattern of their orbit defines the size of the atom, which is therefore 99.9999999999999% Chandra Image of Vela Pulsar open space! (NASA/PSU/G.Pavlov et al. What we perceive as painfully solid when we bump against a rock is really a hurly-burly of electrons moving through empty space so fast that we can't see—or feel—the emptiness. What would matter look like if it weren't empty, if we could crush the electron cloud down to the size of the nucleus? Suppose we could generate a force strong enough to crush all the emptiness out of a rock roughly the size of a football stadium. The rock would be squeezed down to the size of a grain of sand and would still weigh 4 million tons! Such extreme forces occur in nature when the central part of a massive star collapses to form a neutron star. The atoms are crushed completely, and the electrons are jammed inside the protons to form a star composed almost entirely of neutrons.
    [Show full text]
  • The Star Newsletter
    THE HOT STAR NEWSLETTER ? An electronic publication dedicated to A, B, O, Of, LBV and Wolf-Rayet stars and related phenomena in galaxies No. 25 December 1996 http://webhead.com/∼sergio/hot/ editor: Philippe Eenens http://www.inaoep.mx/∼eenens/hot/ [email protected] http://www.star.ucl.ac.uk/∼hsn/index.html Contents of this Newsletter Abstracts of 6 accepted papers . 1 Abstracts of 2 submitted papers . .4 Abstracts of 3 proceedings papers . 6 Abstract of 1 dissertation thesis . 7 Book .......................................................................8 Meeting .....................................................................8 Accepted Papers The Mass-Loss History of the Symbiotic Nova RR Tel Harry Nussbaumer and Thomas Dumm Institute of Astronomy, ETH-Zentrum, CH-8092 Z¨urich, Switzerland Mass loss in symbiotic novae is of interest to the theory of nova-like events as well as to the question whether symbiotic novae could be precursors of type Ia supernovae. RR Tel began its outburst in 1944. It spent five years in an extended state with no mass-loss before slowly shrinking and increasing its effective temperature. This transition was accompanied by strong mass-loss which decreased after 1960. IUE and HST high resolution spectra from 1978 to 1995 show no trace of mass-loss. Since 1978 the total luminosity has been decreasing at approximately constant effective temperature. During the present outburst the white dwarf in RR Tel will have lost much less matter than it accumulated before outburst. - The 1995 continuum at λ ∼< 1400 is compatible with a hot star of T = 140 000 K, R = 0.105 R , and L = 3700 L . Accepted by Astronomy & Astrophysics Preprints from [email protected] 1 New perceptions on the S Dor phenomenon and the micro variations of five Luminous Blue Variables (LBVs) A.M.
    [Show full text]
  • Collapsing Supra-Massive Magnetars: Frbs, the Repeating FRB121102 and Grbs
    J. Astrophys. Astr. (2018) 39:14 © Indian Academy of Sciences https://doi.org/10.1007/s12036-017-9499-9 Review Collapsing supra-massive magnetars: FRBs, the repeating FRB121102 and GRBs PATRICK DAS GUPTA∗ and NIDHI SAINI Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India. ∗Corresponding author. E-mail: [email protected], [email protected] MS received 30 August 2017; accepted 3 October 2017; published online 10 February 2018 Abstract. Fast Radio Bursts (FRBs) last for ∼ few milli-seconds and, hence, are likely to arise from the gravitational collapse of supra-massive, spinning neutron stars after they lose the centrifugal support (Falcke & Rezzolla 2014). In this paper, we provide arguments to show that the repeating burst, FRB 121102, can also be modeled in the collapse framework provided the supra-massive object implodes either into a Kerr black hole surrounded by highly magnetized plasma or into a strange quark star. Since the estimated rates of FRBs and SN Ib/c are comparable, we put forward a common progenitor scenario for FRBs and long GRBs in which only those compact remnants entail prompt γ -emission whose kick velocities are almost aligned or anti-aligned with the stellar spin axes. In such a scenario, emission of detectable gravitational radiation and, possibly, of neutrinos are expected to occur during the SN Ib/c explosion as well as, later, at the time of magnetar implosion. Keywords. FRBs—FRB 121102—Kerr black holes—Blandford–Znajek process—strange stars—GRBs— pre-natal kicks. 1. Introduction 43% linear polarization and 3% circular polarization (Petroff et al.
    [Show full text]
  • R-Process Elements from Magnetorotational Hypernovae
    r-Process elements from magnetorotational hypernovae D. Yong1,2*, C. Kobayashi3,2, G. S. Da Costa1,2, M. S. Bessell1, A. Chiti4, A. Frebel4, K. Lind5, A. D. Mackey1,2, T. Nordlander1,2, M. Asplund6, A. R. Casey7,2, A. F. Marino8, S. J. Murphy9,1 & B. P. Schmidt1 1Research School of Astronomy & Astrophysics, Australian National University, Canberra, ACT 2611, Australia 2ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia 3Centre for Astrophysics Research, Department of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, AL10 9AB, UK 4Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 5Department of Astronomy, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden 6Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany 7School of Physics and Astronomy, Monash University, VIC 3800, Australia 8Istituto NaZionale di Astrofisica - Osservatorio Astronomico di Arcetri, Largo Enrico Fermi, 5, 50125, Firenze, Italy 9School of Science, The University of New South Wales, Canberra, ACT 2600, Australia Neutron-star mergers were recently confirmed as sites of rapid-neutron-capture (r-process) nucleosynthesis1–3. However, in Galactic chemical evolution models, neutron-star mergers alone cannot reproduce the observed element abundance patterns of extremely metal-poor stars, which indicates the existence of other sites of r-process nucleosynthesis4–6. These sites may be investigated by studying the element abundance patterns of chemically primitive stars in the halo of the Milky Way, because these objects retain the nucleosynthetic signatures of the earliest generation of stars7–13.
    [Show full text]
  • Magnetars: Explosive Neutron Stars with Extreme Magnetic Fields
    Magnetars: explosive neutron stars with extreme magnetic fields Nanda Rea Institute of Space Sciences, CSIC-IEEC, Barcelona 1 How magnetars are discovered? Soft Gamma Repeaters Bright X-ray pulsars with 0.5-10keV spectra modelled by a thermal plus a non-thermal component Anomalous X-ray Pulsars Bright X-ray transients! Transients No more distinction between Anomalous X-ray Pulsars, Soft Gamma Repeaters, and transient magnetars: all showing all kind of magnetars-like activity. Nanda Rea CSIC-IEEC Magnetars general properties 33 36 Swift-XRT COMPTEL • X-ray pulsars Lx ~ 10 -10 erg/s INTEGRAL • strong soft and hard X-ray emission Fermi-LAT • short X/gamma-ray flares and long outbursts (Kuiper et al. 2004; Abdo et al. 2010) • pulsed fractions ranging from ~2-80 % • rotating with periods of ~0.3-12s • period derivatives of ~10-14-10-11 s/s • magnetic fields of ~1013-1015 Gauss (Israel et al. 2010) • glitches and timing noise (Camilo et al. 2006) • faint infrared/optical emission (K~20; sometimes pulsed and transient) • transient radio pulsed emission (see Woods & Thompson 2006, Mereghetti 2008, Rea & Esposito 2011 for a review) Nanda Rea CSIC-IEEC How magnetar persistent emission is believed to work? • Magnetars have magnetic fields twisted up, inside and outside the star. • The surface of a young magnetar is so hot that it glows brightly in X-rays. • Magnetar magnetospheres are filled by charged particles trapped in the twisted field lines, interacting with the surface thermal emission through resonant cyclotron scattering. (Thompson, Lyutikov & Kulkarni 2002; Fernandez & Thompson 2008; Nobili, Turolla & Zane 2008a,b; Rea et al.
    [Show full text]
  • When Neutron Stars Melt, What’S Left Behind Is Spectacular Explosion
    Space oddity implodes. The outer layers are cast off in a When neutron stars melt, what’s left behind is spectacular explosion. What’s left behind is truly strange. Anil Ananthaswamy reports a rapidly spinning neutron star, which as the name implies is made mainly of neutrons, with a crust of iron. Whirling up to 1000 times per second, a neutron star is constantly shedding magnetic fields. Over time, this loss of energy causes the star to spin slower and slower. As it spins down, the centrifugal forces that kept gravity at bay start weakening, allowing gravity to squish the star still further. In what is a blink of an eye in cosmic time, the neutrons can be converted to strange N 22 September last year, the website of fundamental building blocks of matter in quark matter, which is a soup of up, down and The Astronomer’s Telegram alerted ways that even machines like the Large strange quarks. In theory, this unusual change Oresearchers to a supernova explosion in Hadron Collider cannot. happens when the density inside the neutron a spiral galaxy about 84 million light years Astrophysicists can thank string theorist star starts increasing. New particles called away. There was just one problem. The same Edward Witten for quark stars. In 1984, he hyperons begin forming that contain at least object, SN 2009ip, had blown up in a similarly hypothesised that protons and neutrons one strange quark bound to others. spectacular fashion just weeks earlier. Such may not be the most stable forms of matter. However, the appearance of hyperons stars shouldn’t go supernova twice, let alone Both are made of two types of smaller marks the beginning of the end of the neutron in quick succession.
    [Show full text]
  • Black Hole Formation the Collapse of Compact Stellar Objects to Black Holes
    Utrecht University Institute of Theoretical Physics Black Hole Formation The Collapse of Compact Stellar Objects to Black Holes Author: Michiel Bouwhuis [email protected] Supervisor: Dr. Tomislav Prokopec [email protected] February 17, 2009 Theoretical Physics Colloquium Abstract This paper attemps to prove the existence of black holes by combining obser- vational evidence with theoretical findings. First, basic properties of black holes are explained. Then black hole formation is studied. The relativistic hydrostatic equations are derived. For white dwarfs the equation of state and the Chandrasekhar limit M = 1:43M are worked out. An upper bound of M = 3:6M for the mass of any compact object is determined. These results are compared with observational evidence to prove that black holes exist. Contents 1 Introduction 3 2 Black Holes Basics 5 2.1 The Schwarzschild Metric . 5 2.2 Black Holes . 6 2.3 Eddington-Finkelstein Coordinates . 7 2.4 Types of Black Holes . 9 3 Stellar Collapse and Black Hole Formation 11 3.1 Introduction . 11 3.2 Collapse of Dust . 11 3.3 Gravitational Balance . 15 3.4 Equations of Structure . 15 3.5 White Dwarfs . 18 3.6 Neutron Stars . 23 4 Astronomical Black Holes 26 4.1 Stellar-Mass Black Holes . 26 4.2 Supermassive Black Holes . 27 5 Discussion 29 5.1 Black hole alternatives . 29 5.2 Conclusion . 29 2 Chapter 1 Introduction The idea of a object so heavy that even light cannot escape its gravitational well is very old. It was first considered by British amateur astronomer John Michell in 1783.
    [Show full text]
  • Physics of Compact Stars
    Physics of Compact Stars • Crab nebula: Supernova 1054 • Pulsars: rotating neutron stars • Death of a massive star • Pulsars: lab’s of many-particle physics • Equation of state and star structure • Phase diagram of nuclear matter • Rotation and accretion • Cooling of neutron stars • Neutrinos and gamma-ray bursts • Outlook: particle astrophysics David Blaschke - IFT, University of Wroclaw - Winter Semester 2007/08 1 Example: Crab nebula and Supernova 1054 1054 Chinese Astronomers observe ’Guest-Star’ in the vicinity of constellation Taurus – 6times brighter than Venus, red-white light – 1 Month visible during the day, 1 Jahr at evenings – Luminosity ≈ 400 Million Suns – Distance d ∼ 7.000 Lightyears (ly) (when d ≤ 50 ly Life on earth would be extingished) 1731 BEVIS: Telescope observation of the SN remnants 1758 MESSIER: Catalogue of nebulae and star clusters 1844 ROSSE: Name ’Crab nebula’ because of tentacle structure 1939 DUNCAN: extrapolates back the nebula expansion −! Explosion of a point source 766 years ago 1942 BAADE: Star in the nebula center could be related to its origin 1948 Crab nebula one of the brightest radio sources in the sky CHANDRA (BLAU) + HUBBLE (ROT) 1968 BAADE’s star identified as pulsar 2 Pulsars: Rotating Neutron stars 1967 Jocelyne BELL discovers (Nobel prize 1974 for HEWISH) pulsating radio frequency source (pulse in- terval: 1.34 sec; pulse duration: 0.01 sec) Today more than 1700 of such sources are known in the milky way ) PULSARS Pulse frequency extremely stable: ∆T=T ≈ 1 sec/1 million years 1968 Explanation
    [Show full text]