Cestoda: Caryophyllidea): Karyotype and Localization of Telomeric and Ribosomal Sequences After Fluorescence in Situ Hybridization (FISH)

Total Page:16

File Type:pdf, Size:1020Kb

Cestoda: Caryophyllidea): Karyotype and Localization of Telomeric and Ribosomal Sequences After Fluorescence in Situ Hybridization (FISH) Parasitology Research (2019) 118:2789–2800 https://doi.org/10.1007/s00436-019-06450-3 FISH PARASITOLOGY - ORIGINAL PAPER Chromosomal study of Khawia abbottinae (Cestoda: Caryophyllidea): karyotype and localization of telomeric and ribosomal sequences after fluorescence in situ hybridization (FISH) Martina Orosová1 & Irena Provazníková2,3 & Bing Wen Xi4 & Mikuláš Oros1 Received: 17 June 2019 /Accepted: 28 August 2019 /Published online: 4 September 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract An original cytogenetic study combining classical karyotype analysis and modern fluorescence in situ hybridization using telomeric (TTAGGG)n and ribosomal sequences (18S rDNA) was performed in Khawia abbottinae (Cestoda, Caryophyllidea), a parasite of Chinese false gudgeon (Abbottina rivularis) from China. Analyses based on conventional Giemsa staining, DAPI, YOYO-1 dye, and silver (Ag) staining were also carried out. The karyotype is composed of eight pairs of metacentric and telocentric chromosomes (2n =16, n=5m +3t). Constitutive heterochromatin was mainly positioned at pericentromeric regions, and telomeric sequences (TTAGGG)n were restricted to the end of all chromosomes. In mitotic preparations stained with Giemsa, both homologues of chromosome pair 4 showed a distinct secondary constriction. FISH with rDNA probe confirmed that this secondary constriction contains a nucleolar organizer region (NOR). The process of spermatocyte meiosis and the dynamics of nucleolus degradation in dividing cell were scrutinized. The present study and its results enhance the limited knowledge on basic karyotype characteristics and 18S rDNA clusters location in caryophyllidean tapeworms. Keywords Cestoda . Karyotype . FISH . 18S rDNA mapping . Telomeres Introduction one set of reproductive organs (Mackiewicz 1994). Recent studies revealed several unusual molecular and genetic phe- Tapeworms of the order Caryophyllidea represent a unique nomena (Kráľová-Hromadová et al. 2012;Brabecetal.2012; group among the “true” cestodes (Eucestoda) in that they are Scholz et al. 2014; Hanzelová et al. 2015; Špakulová et al. monopleuroid, i.e. their body is monozoic and contains only 2019), such as the lineage-specific nuclear paralogs of mtDNA, intraindividual divergence of ribosomal internal tran- scribed spacers 2 (ITS2) along with multiple rDNA loci, cryp- Handling Editor: Julia Walochnik tic species diversity, phenotypic variability but genetic unifor- mity, and the triploid character of some species. Knowledge * Martina Orosová [email protected] on the chromosome sets of caryophyllidean tapeworms is rather scanty; thus far, 23 tapeworm species have been studied cytogenetically, and the karyotypes complements of only 14 1 Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, species have been recognized in all details (for a review, see 040 01 Košice, Slovakia Špakulová et al. 2011; Orosová and Oros, 2012). 2 š Institute of Entomology, Biology Centre CAS, Brani ovská 31, 370 The genus Khawia Hsü, 1935, the most specious genus of 05 České Budějovice, Czech Republic the order Caryophyllidea, contains eight valid species parasit- 3 Č Faculty of Science, University of South Bohemia in eské izing cyprinid fishes with worldwide distribution, except for Budějovice, Branišovská 1760, 370 05 České Budějovice, Czech Republic the neotropical region (Scholz et al. 2011; Scholz and Oros 2017). Khawia abbottinae Xi, Oros, Wang, Scholz and Xie, 4 Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research 2013 was originally described as a specific parasite of the Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China Chinese false gudgeon, Abbottina rivularis (Cyprinidae, 2790 Parasitol Res (2019) 118:2789–2800 Gobioninae), from the Yangtze River basin in China (Xi et al. ribosomal genes. Additionally, FISH with the telomeric probe 2013). In total, the authors reported five species of the genus (TTAGGG)n was performed to the examined karyotype for Khawia (K. abbottinae, K. japonensis, K. rossittensis, thepossiblepresenceofinterstitial telomeric sequences K. saurogobii and K. sinensis) in China. (ITS). Moreover, the present study also focused on a descrip- Within the family Lytocestidae, chromosomes have been tion of heterochromatin distribution (DAPI-banding) and the studied only sparsely and the knowledge of karyotype organi- occurrence of nucleoli during meiosis by staining with fluo- zation has been limited to 6 species of 3 genera to date (for rescent dye YOYO-1. review see Špakulová et al. 2011; Orosová and Oros 2012). The majority of previous studies were based exclusively on a description of the diploid number, with low emphasis on chro- Materials and methods mosome morphology. For the genus Khawia, karyological analysis of 4 species, namely K. japonensis (under synonym Specimens of K. iowensis, Grey 1979), K. sinensis, K saurogobii and K. rossittensis revealed a constant diploid number, 2n =16, Fifteen alive specimens of Khawia abbottinae were obtained and similar chromosome morphology (Grey 1979; from the intestine of the Chinese false gudgeon (Abbottina Petkevičiūtė 1998; Mutafova and Nedeva 1999;Orosová rivularis) from water bodies of the middle and lower reaches et al. 2010a; Orosová and Oros 2012). Repetitive DNA anal- of the Yangtze River basin (Yangtze River in Wuhan, Hubei ysis has shown only a very low variation in the arrangement of province, and Taihu Lake in Wuxi, Jiangsu province) in April heterochromatin along the chromosomes among the studied 2011 and April 2018. Tapeworms were dissected from the species. Thus, it is difficult to identify chromosome rearrange- intestine of freshly killed fish, rinsed several times in saline ments and to study chromosome evolution within this genus solution, and processed immediately for chromosome slide based on classical karyotype analysis. Ribosomal DNAs are preparations, and subsamples of specimens were fixed in valuable cytogenetic markers in plant and animal genome re- 96% ethanol for DNA extraction. search, as they are presented in numerous repeated units, gen- erally organized in clusters, and thus are easily visualized in Chromosome preparations the chromosomes. Fluorescent in situ hybridization (FISH) has been used for decades for physical mapping of repeated For cytogenetic analysis, whole living tapeworms were incu- sequences, such as ribosomal DNAs on mitotic and meiotic bated in 0.025% colchicine solution (in saline) for 1 h at room chromosomes in various organisms (Nguyen et al. 2010; temperature (RT). Thereafter, they were placed into a hypo- Sheng and Wang 2010; Cabral-de-Mello et al. 2011; tonic solution of 0.75 M KCl for 2 h at RT and torn gently at Bombarová et al. 2015; Solovyeva et al. 2016; Teixeira et al. the testicular body area using the insulin syringes. The torn 2017;Supiwongetal.2019). There are rarely any molecular worms were placed into freshly prepared cold fixative solution cytogenetic studies that use FISH to map the ribosomal genes (methanol to acetic acid, 3:1) with two changes, 15 min each. of caryophyllidean tapeworms, and such data are available for The fixed material was stored at − 20 °C. only four species. In the genus Khawia, a single locus bearing Spread chromosome preparations were made using the a nuclear organizer region (NOR) was detected at the homo- method according to Orosová and Špakulová (2018). logues of pair 7 in K. saurogobii and of pair 6 in K. sinensis Shortly, small pieces containing medullary parenchyma with (Orosová et al. 2010a; Orosová and Oros 2012). In both spe- testes were transferred into a drop of 60% acetic acid on a cies, FISH with the 18S rDNA probe identified major rDNA clean slide and torn into fine pieces with the help of tungsten clusters located in the pericentromeric region on the small needles. The slide was then placed on a heating plate at 45 °C, metacentric chromosome. and the drop of cell suspension was slowly drawn along the Cytogenetic studies can contribute an array of information slide until the liquid evaporated. The preparations were passed independent from morphological and molecular characteris- through an ethanol series (70, 80, and 100%, 1 min each) and tics, which are routinely used for phylogenetic analysis. The stored at − 20 °C until further use. Before each kind of stain- differences and similarities may not be apparent at the molec- ing, preparation was removed from the freezer, dehydrated in ular or morphological level. However, they could be revealed an ethanol series, and air-dried. through karyological data (Sessions 1996). The intention of the current work was to extend the limited knowledge of chro- Karyological analysis mosomes in caryophyllidean tapeworms. An in-depth chro- mosomal analysis (number, size, morphology) in a newly de- The preparations were stained with 5% solution of Giemsa scribed species of the family Lytocestidae, K. abbottinae,was (Merck, NJ, USA) in phosphate buffer (pH 6.8) for 25 min carried out for the first time. Number and location of NORs and rinsed with distilled water. Detailed analysis (length, mor- were analysed through Ag staining and FISH with 18S phology and centromeric index of chromosomes) was Parasitol Res (2019) 118:2789–2800 2791 performed in 10 best mitotic spreads (with clearly distinguish- DNA polymerase I (ThermoFisher, Waltham, MA, USA). able chromosomes) out of 112 evaluated dividing cells from 9 The reaction time was 1 h at 15 °C. worms. The chromosomes
Recommended publications
  • Dynamic Genetic Diversity and Population Structure of Coreius Guichenoti
    ZooKeys 1055: 135–148 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1055.70117 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Dynamic genetic diversity and population structure of Coreius guichenoti Dongqi Liu1*, Feng Lan2*, Sicai Xie1, Yi Diao1, Yi Zheng1, Junhui Gong1 1 Sichuan Province Key Laboratory of Characteristic Biological Resources of Dry and Hot River Valley, Pan- zhihua University, Panzhihua, 617000, China 2 Upper Changjiang River Burean of Hydrological and Water Resources Survey, Chongqing, 400000, China Corresponding author: Feng Lan ([email protected]) Academic editor: M.E. Bichuette | Received 14 June 2021 | Accepted 27 July 2021 | Published 11 August 2021 http://zoobank.org/ADECA19A-B689-47AE-971B-42913F28F5CE Citation: Liu D, Lan F, Xie S, Diao Y, Zheng Y, Gong J (2021) Dynamic genetic diversity and population structure of Coreius guichenoti. ZooKeys 1055: 135–148. https://doi.org/10.3897/zookeys.1055.70117 Abstract To investigate the genetic effects on the population of Coreius guichenoti of dam constructions in the upper reaches of the Yangtze River, we analyzed the genetic diversity and population structure of 12 popula- tions collected in 2009 and 2019 using mitochondrial DNA (mtDNA) control regions. There was no significant difference in genetic diversity between 2009 and 2019P ( > 0.05), but the population structure tended to become stronger. Genetic differentiation (FST) among five populations (LX, BB, YB, SF and JA) collected in 2009 was not significant P( > 0.05). However, some populations collected in 2019 were significantly differentiated (P < 0.05), indicating that the population structure has undergone change.
    [Show full text]
  • 1 Curriculum Vitae Stephen S. Curran, Ph.D. Department of Coastal
    Curriculum vitae Stephen S. Curran, Ph.D. Department of Coastal Sciences The University of Southern Mississippi Gulf Coast Research Laboratory 703 East Beach Drive Phone: (228) 238-0208 Ocean Springs, MS 39564 Email: [email protected] Research and Teaching Interests: I am an organismal biologist interested in the biodiversity of metazoan parasitic animals. I study their taxonomy using traditional microscopic and histological techniques and their genetic interrelationships and systematics using ribosomal DNA sequences. I also investigate the effects of extrinsic factors on aquatic environments by using parasite prevalence and abundance as a proxy for total biodiversity in aquatic communities and for assessing food web dynamics. I am also interested in the epidemiology of viral diseases of crustaceans. University Teaching Experience: •Instructor for Parasites of Marine Animals Summer class, University of Southern Mississippi, Gulf Coast Research Laboratory (2011-present). •Co-Instructor (with Richard Heard) for Marine Invertebrate Zoology, University of Southern Mississippi, Gulf Coast Research Laboratory (2007). •Intern Mentor, Gulf Coast Research Laboratory. I’ve instructed 16 interns during (2003, 2007- present). •Graduate Teaching Assistant for Animal Parasitology, Department of Ecology and Evolutionary Biology, University of Connecticut (Spring 1995). •Graduate Teaching Assistant for Introductory Biology for Majors, Department of Ecology and Evolutionary Biology, University of Connecticut (Fall 1994). Positions: •Assistant Research
    [Show full text]
  • Cestodes of the Fishes of Otsego Lake and Nearby Waters
    Cestodes of the fishes of Otsego Lake and nearby waters Amanda Sendkewitz1, Illari Delgado1, and Florian Reyda2 INTRODUCTION This study of fish cestodes (i.e., tapeworms) is part of a survey of the intestinal parasites of fishes of Otsego Lake and its tributaries (Cooperstown, New York) from 2008 to 2014. The survey included a total of 27 fish species, consisting of six centrarchid species, one ictalurid species, eleven cyprinid species, three percid species, three salmonid species, one catostomid species, one clupeid species, and one esocid species. This is really one of the first studies on cestodes in the area, although one of the first descriptions of cestodes was done on the Proteocephalus species Proteocephalus ambloplitis by Joseph Leidy in Lake George, NY in 1887; it was originally named Taenia ambloplitis. Parasite diversity is a large component of biodiversity, and is often indicative of the health and stature of a particular ecosystem. The presence of parasitic worms in fish of Otsego County, NY has been investigated over the course of a multi-year survey, with the intention of observing, identifying, and recording the diversity of cestode (tapeworm) species present in its many fish species. The majority of the fish species examined harbored cestodes, representing three different orders: Caryophyllidea, Proteocephalidea, and Bothriocephalidea. METHODS The fish utilized in this survey were collected through hook and line, gill net, electroshock, or seining methods throughout the year from 2008-2014. Cestodes were collected in sixteen sites throughout Otsego County. These sites included Beaver Pond at Rum Hill, the Big Pond at Thayer Farm, Canadarago Lake, a pond at College Camp, the Delaware River, Hayden Creek, LaPilusa Pond, Mike Schallart’s Pond in Schenevus, Moe Pond, a pond in Morris, NY, Oaks Creek, Paradise Pond, Shadow Brook, the Susquehanna River, the Wastewater Treatment Wetland (Cooperstown), and of course Otsego Lake.
    [Show full text]
  • Draft Carpathian Red List of Forest Habitats
    CARPATHIAN RED LIST OF FOREST HABITATS AND SPECIES CARPATHIAN LIST OF INVASIVE ALIEN SPECIES (DRAFT) PUBLISHED BY THE STATE NATURE CONSERVANCY OF THE SLOVAK REPUBLIC 2014 zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 1 227.8.20147.8.2014 222:36:052:36:05 © Štátna ochrana prírody Slovenskej republiky, 2014 Editor: Ján Kadlečík Available from: Štátna ochrana prírody SR Tajovského 28B 974 01 Banská Bystrica Slovakia ISBN 978-80-89310-81-4 Program švajčiarsko-slovenskej spolupráce Swiss-Slovak Cooperation Programme Slovenská republika This publication was elaborated within BioREGIO Carpathians project supported by South East Europe Programme and was fi nanced by a Swiss-Slovak project supported by the Swiss Contribution to the enlarged European Union and Carpathian Wetlands Initiative. zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 2 115.9.20145.9.2014 223:10:123:10:12 Table of contents Draft Red Lists of Threatened Carpathian Habitats and Species and Carpathian List of Invasive Alien Species . 5 Draft Carpathian Red List of Forest Habitats . 20 Red List of Vascular Plants of the Carpathians . 44 Draft Carpathian Red List of Molluscs (Mollusca) . 106 Red List of Spiders (Araneae) of the Carpathian Mts. 118 Draft Red List of Dragonfl ies (Odonata) of the Carpathians . 172 Red List of Grasshoppers, Bush-crickets and Crickets (Orthoptera) of the Carpathian Mountains . 186 Draft Red List of Butterfl ies (Lepidoptera: Papilionoidea) of the Carpathian Mts. 200 Draft Carpathian Red List of Fish and Lamprey Species . 203 Draft Carpathian Red List of Threatened Amphibians (Lissamphibia) . 209 Draft Carpathian Red List of Threatened Reptiles (Reptilia) . 214 Draft Carpathian Red List of Birds (Aves). 217 Draft Carpathian Red List of Threatened Mammals (Mammalia) .
    [Show full text]
  • Reporting a New Caryophyllidean Worm from a Freshwater Clarias Batrachus
    © 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162) REPORTING A NEW CARYOPHYLLIDEAN WORM FROM A FRESHWATER CLARIAS BATRACHUS 1Khushal Bhavsar, 2Avinash Bhangale and 3Ajit Kalse, 1Researcher, 2Associate Professor, & 3Professor Helminth Research Laboratory, P.G. Department of Zoology, Nanasaheb Y. N. Chavan ASC College, Chalisgaon Dist. Jalgaon-424101, (M.S.) Abstract: Present study deals with reporting of a Caryophyllidean tapeworm Lytocestus sahayi n. sp. collected from intestine of freshwater catfish Clarias batrachus (Linneus, 1758) from Mundkhede Dam near Chalisgaon (M.S.) India. Worm comes closer to all known species of the genus Lytocestus, in general topography of organs, but differs due to long head, tapering anteriorly, well-marked off from body. Testes oval to rounded, 500- 530 in number, unevenly distributed. Cirrus pouch large, oval, preovarian, vertically placed, cirrus thin, straight, vas deferens short, thin, coiled. Ootype is small, oval. Vagina long, thin tube, coiled. Ovary bilobed, ‘Butterfly’ shaped, with 25-28 ovarian follicles, situated in posterior region of the worm. Eggs are oval, operculated. Vitellaria are granular, arranged in two rows. Index Terms- Cestode, Clarias batrachus, Lytocestus, Mundkhede. INTRODUCTION Cohn, 1908 erected the genus Lytocestus with its type species L. adhaerens from edible cat fish Clarias fuscus at HongKong. This genus was first confirmed by Woodland, 1926 that included four more species in addition to the type species. They are L. filiformis Woodland, 1923 in Mormyrus caschive, Egyptian Sudan; L. chalmersius Woodland, 1924; L. cunningtoni Fuhrmann and Baer, 1925 and L. indicus Moghe, 1925 (Syn. Caryophyllaeces indicus) from Clarias batrachus in India. Later, Hunter, 1927 placed the genus in subfamily of its own, viz.
    [Show full text]
  • THE LARGER ANIMAL PARASITES of the FRESH-WATER FISHES of MAINE MARVIN C. MEYER Associate Professor of Zoology University of Main
    THE LARGER ANIMAL PARASITES OF THE FRESH-WATER FISHES OF MAINE MARVIN C. MEYER Associate Professor of Zoology University of Maine PUBLISHED BY Maine Department of Inland Fisheries and Game ROLAND H. COBB, Commissioner Augusta, Maine 1954 THE LARGER ANIMAL PARASITES OF THE FRESH-WATER FISHES OF MAINE PART ONE Page I. Introduction 3 II. Materials 8 III. Biology of Parasites 11 1. How Parasites are Acquired 11 2. Effects of Parasites Upon the Host 12 3. Transmission of Parasites to Man as a Result of Eating Infected Fish 21 4. Control Measures 23 IV. Remarks and Recommendations 27 V. Acknowledgments 30 PART TWO VI. Groups Involved, Life Cycles and Species En- countered 32 1. Copepoda 33 2. Pelecypoda 36 3. Hirudinea 36 4. Acanthocephala 37 5. Trematoda 42 6. Cestoda 53 7. Nematoda 64 8. Key, Based Upon External Characters, to the Adults of the Different Groups Found Parasitizing Fresh-water Fishes in Maine 69 VII. Literature on Fish Parasites 70 VIII. Methods Employed 73 1. Examination of Hosts 73 2. Killing and Preserving 74 3. Staining and Mounting 75 IX. References 77 X. Glossary 83 XI. Index 89 THE LARGER ANIMAL PARASITES OF THE FRESH-WATER FISHES OF MAINE PART ONE I. INTRODUCTION Animals which obtain their livelihood at the expense of other animals, usually without killing the latter, are known as para- sites. During recent years the general public has taken more notice of and concern in the parasites, particularly those occur- ring externally, free or encysted upon or under the skin, or inter- nally, in the flesh, and in the body cavity, of the more important fresh-water fish of the State.
    [Show full text]
  • Cestoda: Caryophyllidea), Parasites of Cyprinid Fish, Including a Key to Their Identification and Molecular Phylogeny
    Ahead of print online version FOLIA PARASITOLOGICA 58[3]: 197–223, 2011 © Institute of Parasitology, Biology Centre ASCR ISSN 0015-5683 (print), ISSN 1803-6465 (online) http://www.paru.cas.cz/folia/ Revision of Khawia spp. (Cestoda: Caryophyllidea), parasites of cyprinid fish, including a key to their identification and molecular phylogeny Tomáš Scholz1, Jan Brabec1, Ivica Kráľová-Hromadová2, Mikuláš Oros2, Eva Bazsalovicsová2, Alexey Ermolenko3 and Vladimíra Hanzelová2 1 Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; 2 Parasitological Institute, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic; 3 Institute of Biology and Soil Science, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia Abstract: Monozoic cestodes of the genus Khawia Hsü, 1935 (Caryophyllidea: Lytocestidae), parasites of cyprinid fish in Europe, Asia, Africa and North America, are revised on the basis of taxonomic evaluation of extensive materials, including recently collected specimens of most species. This evaluation has made it possible to critically assess the validity of all 17 nominal species of the ge- nus and to provide redescriptions of the following seven species considered to be valid: Khawia sinensis Hsü, 1935 (type species); K. armeniaca (Cholodkovsky, 1915); K. baltica Szidat, 1941; K. japonensis (Yamaguti, 1934); K. parva (Zmeev, 1936); K. rossit- tensis (Szidat, 1937); and K. saurogobii Xi, Oros, Wang, Wu, Gao et Nie, 2009. Several new synonyms are proposed: Khawia barbi Rahemo et Mohammad, 2002 and K. lutei Al-Kalak et Rahemo, 2003 are synonymized with K.
    [Show full text]
  • The Complete Mitochondrial DNA of Three Monozoic Tapeworms in the Caryophyllidea: a Mitogenomic Perspective on the Phylogeny of Eucestodes Wen X
    Li et al. Parasites & Vectors (2017) 10:314 DOI 10.1186/s13071-017-2245-y RESEARCH Open Access The complete mitochondrial DNA of three monozoic tapeworms in the Caryophyllidea: a mitogenomic perspective on the phylogeny of eucestodes Wen X. Li1, Dong Zhang1,2, Kellyanne Boyce3, Bing W. Xi4, Hong Zou1, Shan G. Wu1, Ming Li1 and Gui T. Wang1* Abstract Background: External segmentation and internal proglottization are important evolutionary characters of the Eucestoda. The monozoic caryophyllideans are considered the earliest diverging eucestodes based on partial mitochondrial genes and nuclear rDNA sequences, yet, there are currently no complete mitogenomes available. We have therefore sequenced the complete mitogenomes of three caryophyllideans, as well as the polyzoic Schyzocotyle acheilognathi, explored the phylogenetic relationships of eucestodes and compared the gene arrangements between unsegmented and segmented cestodes. Results: The circular mitogenome of Atractolytocestus huronensis was 15,130 bp, the longest sequence of all the available cestodes, 14,620 bp for Khawia sinensis, 14,011 bp for Breviscolex orientalis and 14,046 bp for Schyzocotyle acheilognathi. The A-T content of the three caryophyllideans was found to be lower than any other published mitogenome. Highly repetitive regions were detected among the non-coding regions (NCRs) of the four cestode species. The evolutionary relationship determined between the five orders (Caryophyllidea, Diphyllobothriidea, Bothriocephalidea, Proteocephalidea and Cyclophyllidea) is consistent with that expected from morphology and the large fragments of mtDNA when reconstructed using all 36 genes. Examination of the 54 mitogenomes from these five orders, revealed a unique arrangement for each order except for the Cyclophyllidea which had two types that were identical to that of the Diphyllobothriidea and the Proteocephalidea.
    [Show full text]
  • Recent Distribution of Sphaerium Nucleus (Studer, 1820) (Bivalvia: Sphaeriidae) in the Czech Republic
    Malacologica Bohemoslovaca (2008), 7: 26–32 ISSN 1336-6939 Recent distribution of Sphaerium nucleus (Studer, 1820) (Bivalvia: Sphaeriidae) in the Czech Republic TEREZA KOŘÍNKOVÁ1, LUBOŠ BERAN2 & MICHAL HORSÁK3 1Department of Zoology, Charles University, Viničná 7, Praha 2, CZ-12844, Czech Republic, e-mail: [email protected] 2 Kokořínsko PLA Administration, Česká 149, Mělník, CZ-27601, Czech Republic, e-mail [email protected] 3 Department of Botany and Zoology, Masaryk University, Kotlářská 2, Brno, CZ-61137, Czech Republic; e-mail: [email protected] KOŘÍNKOVÁ T., BERAN L. & HORSÁK M., 2008: Recent distribution of Sphaerium nucleus (Studer, 1820) (Bivalvia: Sphaeriidae) in the Czech Republic. – Malacologica Bohemoslovaca, 7: 26–32. Online serial at <http://mollusca. sav.sk> 3-Apr-2008. Recent data about the distribution of Sphaerium nucleus in the Czech Republic are summarized and used in an attempt to evaluate its conservation status. During the last ten years, this species was found at 40 sites, mostly shallow small water bodies situated in lowland river alluviums. These types of habitats are generally endangered due to the huge human impact and exploration of these areas. The revision of voucher specimens of Sphaerium corneum s.lat. deposited in museum collections yielded a further 22 old records of S. nucleus Key words: Sphaerium nucleus, distribution, molluscan assemblages, habitats, threats Introduction The aim of this paper is to summarize all known records of S. nucleus in the Czech Republic based on both results In the last two decades, research on sibling species com- of current field researches and revisions of collection ma- plexes has been widely involved in taxonomy and distri- terials.
    [Show full text]
  • Scolex Morphology of Monozoic Tapeworms (Caryophyllidea) from the Nearctic Region: Taxonomic and Evolutionary Implications
    Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2020, 67: 003 doi: 10.14411/fp.2020.003 http://folia.paru.cas.cz Research Article Scolex morphology of monozoic tapeworms (Caryophyllidea) from the Nearctic Region: taxonomic and evolutionary implications Mikuláš Oros1, Dalibor Uhrovič1, Anindo Choudhury2, John S. Mackiewicz3 and Tomáš Scholz4 1 Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia; 2 Division of Natural Sciences, St. Norbert College, De Pere, Wisconsin, USA; 3 Biological Sciences, State University of New York at Albany, New York, USA; 4 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic Abstract: A comparative study of the scoleces of monozoic tapeworms (Cestoda: Caryophyllidea), parasites of catostomid and cyprinid fishes (Teleostei: Cypriniformes) in the Nearctic Region, was carried out using light and scanning electron microscopy. Scoleces of 22 genera of North American caryophyllideans were characterised and their importance for taxonomy, classification and phylogenetic studies was critically reviewed. Nearctic genera exhibit a much higher variation in the shape and form of scoleces compared with taxa in other biogeographical regions. The following basic scolex types can be recognised in Nearctic caryophyllideans: monobothriate (Pro- monobothrium Mackiewicz, 1968), loculotruncate (Promonobothrium, Dieffluvium Williams, 1978), bothrioloculodiscate (Archigetes Leuckart, 1878, Janiszewskella Mackiewicz et Deutsch, 1976, Penarchigetes
    [Show full text]
  • Clonorchis Sinensis and Clonorchiasis: Epidemiology, Pathogenesis, Omics, Prevention and Control Ze-Li Tang1,2, Yan Huang1,2 and Xin-Bing Yu1,2*
    Tang et al. Infectious Diseases of Poverty (2016) 5:71 DOI 10.1186/s40249-016-0166-1 SCOPINGREVIEW Open Access Current status and perspectives of Clonorchis sinensis and clonorchiasis: epidemiology, pathogenesis, omics, prevention and control Ze-Li Tang1,2, Yan Huang1,2 and Xin-Bing Yu1,2* Abstract Clonorchiasis, caused by Clonorchis sinensis (C. sinensis), is an important food-borne parasitic disease and one of the most common zoonoses. Currently, it is estimated that more than 200 million people are at risk of C. sinensis infection, and over 15 million are infected worldwide. C. sinensis infection is closely related to cholangiocarcinoma (CCA), fibrosis and other human hepatobiliary diseases; thus, clonorchiasis is a serious public health problem in endemic areas. This article reviews the current knowledge regarding the epidemiology, disease burden and treatment of clonorchiasis as well as summarizes the techniques for detecting C. sinensis infection in humans and intermediate hosts and vaccine development against clonorchiasis. Newer data regarding the pathogenesis of clonorchiasis and the genome, transcriptome and secretome of C. sinensis are collected, thus providing perspectives for future studies. These advances in research will aid the development of innovative strategies for the prevention and control of clonorchiasis. Keywords: Clonorchiasis, Clonorchis sinensis, Diagnosis, Pathogenesis, Omics, Prevention Multilingual abstracts snails); metacercaria (in freshwater fish); and adult (in Please see Additional file 1 for translations of the definitive hosts) (Fig. 1) [1, 2]. Parafossarulus manchour- abstract into the five official working languages of the icus (P. manchouricus) is considered the main first inter- United Nations. mediate host of C. sinensis in Korea, Russia, and Japan [3–6].
    [Show full text]
  • From Freshwater Fishes in Africa (Tomáš Scholz)
    0 Organizer: Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic Workshop venue: Instutute of Vertebrate Biology, Academy of Sciences CR Workshop date: 28 November 2018 Cover photo: Research on fish parasites throughout Africa: Fish collection in, Lake Turkana, Kenya; Fish examination in the Sudan; Teaching course on fish parasitology at the University of Khartoum, Sudan; Field laboratory in the Sudan Authors of cover photo: R. Blažek, A. de Chambrier and R. Kuchta All rights reserved. No part of this e-book may be reproduced or transmitted in any form or by any means without prior written permission of copyright administrator which can be contacted at Masaryk University Press, Žerotínovo náměstí 9, 601 77 Brno. © 2018 Masaryk University The stylistic revision of the publication has not been performed. The authors are fully responsible for the content correctness and layout of their contributions. ISBN 978-80-210-9079-8 ISBN 978-80-210-9083-5 (online: pdf) 1 Contents (We present only the first author in contents) ECIP Scientific Board ....................................................................................................................... 5 List of attendants ............................................................................................................................ 6 Programme ..................................................................................................................................... 7 Abstracts ........................................................................................................................................
    [Show full text]