Paper Session I-A - Space Shuttle to Reusable Launch Vehicle

Total Page:16

File Type:pdf, Size:1020Kb

Paper Session I-A - Space Shuttle to Reusable Launch Vehicle 1995 (32nd) People and Technology - The Case The Space Congress® Proceedings For Space Apr 25th, 2:00 PM - 5:00 PM Paper Session I-A - Space Shuttle to Reusable Launch Vehicle Jacob E. Huether Rockwell Aerospace, Space Systems Division James M. Spears Rockwell Aerospace, Space Systems Division Carey M. McCleskey National Aeronautics and Space Administration, John F. Kennedy Space Center Russel E. Rhodes National Aeronautics and Space Administration, John F. Kennedy Space Center Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Huether, Jacob E.; Spears, James M.; McCleskey, Carey M.; and Rhodes, Russel E., "Paper Session I-A - Space Shuttle to Reusable Launch Vehicle" (1995). The Space Congress® Proceedings. 6. https://commons.erau.edu/space-congress-proceedings/proceedings-1995-32nd/april-25-1995/6 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Space Shuttle to Reusable Launch Vehlc"le Jacob E. Huether James M. Spears Carey M. McCleskey Russel E. Rhodes Rockwell Aerospace Rockwell Aerospace National Aeronautics and National Aeronautics and Space Systems Division Space Systems Division Space Administration Space Administration Cape Canaveral, Fl Downey, Ca John F. Kennedy Space John F. Kennedy Space Center Center ABSTRACT VISION The National Space Transportation Reliable and affordable access to space Policy "establishes national policy, is the stated goal of future space guidelines, and Implementing transportation vehicles. From an actions for the conduct of National operational perspective, we believe that space transportation programs that this goal can be achieved qnly when will sustain and revitalize U.S. space system operational functloris drive transportation capabilities .••". The vehicle design. Research should be direction to the National focused on those areas which minimize Aeronautics and Space the number of subsystems & fluids used, Administration (NASA) is to the total parts count, and the amount of "provide for the improvement of testing required to valic;late system the Space Shuttle system focusing integrity. · on rellablllty, safety, and cost effectiveness." as well as "be the 'In the development of the Reusable lead agency for technology Launch Vehicle (RLV) a joint development and demonstration Government/Industry Operations for next generation reusable space Synergy Team (OST) was commissioned transportation systems, such as to ensure that lessons learned from the single-stage-to-orbit concept." prevlOus space transportation programs were applied to RLV. The OST has With this vision, NASA has Initiated developed a vision concept which Is Cooperative Agreement Notices directly applicable to RLV and any next between NASA and the private generation space transportation vehicle. sector for X-33 (Reusable Launch This vision concept is based on the Vehicle-Advanced Technology findings of the Access To Space Demonstrator) and X-34 (Reusable Advanced Technology Team (Option 3)1 Launch Vehicle-Small Reusable and the vast experience base from Booster) which would provide previous programs. The Advanced Insight to a decision by December Technology Team findings are contained 1996 to proceed with sub-scale in four basic requirements: flight demonstration to prove the single-stage-to-orbit (SSTO) Define the mission narrowly to concept. This paper deals with transportation only. operational Issues which must be Apply modem advanced technology dealt with In order to achieve SSTO to design a simple vehicle with less goals of reliable low cost space complex subsystems and fewer transportation and order of elements. magnitude reductions in operating Avoid flight-to-flight certification costs. through a prototype development and flight test program. Adopt a management philosophy that empowers individuals to make Canaveral Council of Technical SocieUes - Thirty·Second Space Congress 1-21 decisions at the lowest possible level Reduce operations and hardware replacing today's committee and complexity for maximum utilization of duplicative review process. resources and reduce opportunity for human-induced system failures: Less Building on this, the OST developed an Mhands-on", less human factor. RLV Operations Concept "Vlsion" which Employ near ~ ground comprised ten goals focused on management planning at top levels. operational improvements which are Focus on automatic Interactive geared towards mlnlmlzJng ground test schedullng of flight vehicle, ground time and resource dependence while support facilities, and support maximlzJng vehfde self-diagnosis, logistics. dependability and mirVnl.m servicing Adapt minimum standardized requirements2: payload Interfaces to assure maxirum flexibility and affordability. Provide a simplified, ~ The most affordable vehicle will be automated vehicle enabling blind to payload needs; like a truck, minimum periodic and repetitive not a hospital life support system. maintenance (aircraft-like) and Eimilate payload Impact on the resultant short turnaround time launch vehicle system infrastructure. between missions (hours, not Ensure joint participation Nil months). application of the synergism available Strive to isolate vehide ground between Operations, Avionics, processing from dependence on Propulsion, Payloads, and Vehicle facilities and GSE. Routine, Design to the preliminary scheduled turnaround should archltecturelvehicle concept, and replenish consumables only_ operations development process {i.e. Promote vehlcle health Integrated Product Tea'Tl - IPT). This monitoring/management systems entails Identification of and self-test at a level which supplies technologlH that can enable only operations and maintenance development of a vehicle system (O&M) anomaly related Information meeting attributes of the National that requires corrective action prior to Space Transportation Polley'. next flight. Let the vehicle •talk" to the The role of engineering (concept, ground remotely for processing and development. and technology) during maintenance needs. Incorporate the operatlonal era will be to special vehicle engineering perfonn continuous Improvement instrumentation only on specifically and technology advancement for assigned technology demonstration future market driven needs vehides (i.e. X-33). (retain X-33 capability). Elmnate "flight readiness-style• vehicle certification for every flight. The goal of driving the total Provide alrcraftMstyle vehlcle-type transportation system design rather than certificate for repetitive oommerdal reacting to the vehide design shoukt flight operations. result In the realization of overaH Design-In performance margins economic goals associated with future and flight hardware allowances to space transportation systems. We are eliminate proceHlng Impact, i.e., losing today's market as international strive to elimlnats unplanned work. competition continues to drtve reduced Mission design and flight operations cost of annual mass to orbit. Vehide sizing should be optimized around are ~ autonomous by design. No dedicated software identified POTENTIAL. pa)ioad user maintenance function is required to requirements and not focused on a support operations. single user's needs. In order to promote Canaveral Counclf or Technlcal Societies - Thirty-Second Space Congress 1·22 domestic launch opportunities (market SHUTTLE EVOLUTION growth) we must rethink our current mind set and approaches to vehicle During the Apollo Lunar Exploration certification which are currently Program it became apparent that the next measured in months rather than hours. step was a trip to Mars. ln order to go to Mars, man needed to gain a thorough During the course of the Commercial understanding of living in space for Space Transport Study (CSTS) the longer duration's than a moon flight. A industry alliance recognized that aEarty manned space station in earth orbit identification and definition of system seemed to be the answer; however, the attributes and requirements is essential cost of access to space in support of a to ensuring the transportation system space station was not supported by meets the user's needs."". Table 1, NASA's projected annual budget. The Common CSTS Attributes, is an solution was an inlefim space station, overview of identified attributes which Skylab, and the development of a must be found in the next generation reusable space transportation system, launch system as identified in CSTS Final the Space Shuttle. · · · Report in order for the system to be both operationally & economically feasible. The economic plan used to develop the operations scenario for the shuttle was Table 1 - Common CSTS Attributes a five orbiter fleet with a projected flight rate of forty flights per year from the John F. Kennedy Space Center (KSC) Catenorv Attribute and an additional twenty flights per year Dependability High probability of from Vandenberg Air Force Base Launching on (VAFB). Early analyses confinned that Schedule Schedule Minimum Advanced forty flights from KSC could only be Bookino Time achieved if vehicle ground turnaround Reliability >Current Systems could be completed within 160 hours, Cost Minimum Cost Per hence the 160 hour turnaround Launch allocation. The 160 hour allocation Operations Standardized and processing timeline included initial Simplified Payload operations and
Recommended publications
  • New Pad Constructed for Smaller Rocket Launches
    PROGRAM HIGHLIGHTS • JULY 2015 At NASA’s Kennedy Space Center in Florida, the Ground Systems Development and Operations (GSDO) Program Office is leading the center’s transfor- mation from a historically government-only launch complex to a spaceport bustling with activity involving government and commercial vehicles alike. GSDO is tasked with developing and using the complex equipment required to safely handle a variety of rockets and spacecraft during assembly, transport and launch. For more information about GSDO accomplishments happening around the center, visit http://go.nasa.gov/groundsystems. New Pad Constructed for Smaller Rocket Launches NASA's Kennedy Space Center in Florida took another step forward in its transformation to a 21st century multi-user spaceport with the completion of the new Small Class Vehicle Launch Pad, designated 39C, in the Launch Pad 39B area. This designated pad to test smaller rockets will make it more affordable for smaller aerospace companies to develop and launch from the center, and to break into the commercial spaceflight market. Kennedy Director Bob Cabana and representatives from the Ground Systems Development and Operations (GSDO) Program and the Center Planning and Development (CPD) and Engineering Directorates marked the completion of the new pad during a ribbon-cutting ceremony July 17. NASA Kennedy Space Center Director Bob Cabana, center, helps cut the ribbon on the new Small Class Vehicle Launch Pad, designated 39C, at Kennedy Space Center in Florida. Also helping to cut the ribbon are, from left, Pat Simpkins, director, Engineering and Technology Directorate; Rich Koller, senior vice president of design firm Jones Edmunds; Scott Col- loredo, director, Center Planning and Development; and Michelle Shoultz, president of Frazier Engineering.
    [Show full text]
  • Proposal to Construct and Operate a Satellite Launching Facility on Christmas Island
    Environment Assessment Report PROPOSAL TO CONSTRUCT AND OPERATE A SATELLITE LAUNCHING FACILITY ON CHRISTMAS ISLAND Environment Assessment Branch 2 May 2000 Christmas Island Satellite Launch Facility Proposal Environment Assessment Report - Environment Assessment Branch – May 2000 3 Table of Contents 1 INTRODUCTION..............................................................................................6 1.1 GENERAL ...........................................................................................................6 1.2 ENVIRONMENT ASSESSMENT............................................................................7 1.3 THE ASSESSMENT PROCESS ...............................................................................7 1.4 MAJOR ISSUES RAISED DURING THE PUBLIC COMMENT PERIOD ON THE DRAFT EIS .................................................................................................................9 1.4.1 Socio-economic......................................................................................10 1.4.2 Biodiversity............................................................................................10 1.4.3 Roads and infrastructure .....................................................................11 1.4.4 Other.......................................................................................................12 2 NEED FOR THE PROJECT AND KEY ALTERNATIVES ......................14 2.1 NEED FOR THE PROJECT ..................................................................................14 2.2 KEY
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • View / Download
    www.arianespace.com www.starsem.com www.avio Arianespace’s eighth launch of 2021 with the fifth Soyuz of the year will place its satellite passengers into low Earth orbit. The launcher will be carrying a total payload of approximately 5 518 kg. The launch will be performed from Baikonur, in Kazakhstan. MISSION DESCRIPTION 2 ONEWEB SATELLITES 3 Liftoff is planned on at exactly: SOYUZ LAUNCHER 4 06:23 p.m. Washington, D.C. time, 10:23 p.m. Universal time (UTC), LAUNCH CAMPAIGN 4 00:23 a.m. Paris time, FLIGHT SEQUENCES 5 01:23 a.m. Moscow time, 03:23 a.m. Baikonur Cosmodrome. STAKEHOLDERS OF A LAUNCH 6 The nominal duration of the mission (from liftoff to separation of the satellites) is: 3 hours and 45 minutes. Satellites: OneWeb satellite #255 to #288 Customer: OneWeb • Altitude at separation: 450 km Cyrielle BOUJU • Inclination: 84.7degrees [email protected] +33 (0)6 32 65 97 48 RUAG Space AB (Linköping, Sweden) is the prime contractor in charge of development and production of the dispenser system used on Flight ST34. It will carry the satellites during their flight to low Earth orbit and then release them into space. The dedicated dispenser is designed to Flight ST34, the 29th commercial mission from the Baikonur Cosmodrome in Kazakhstan performed by accommodate up to 36 spacecraft per launch, allowing Arianespace and its Starsem affiliate, will put 34 of OneWeb’s satellites bringing the total fleet to 288 satellites Arianespace to timely deliver the lion’s share of the initial into a near-polar orbit at an altitude of 450 kilometers.
    [Show full text]
  • 7. Operations
    7. Operations 7.1 Ground Operations The Exploration Systems Architecture Study (ESAS) team addressed the launch site integra- tion of the exploration systems. The team was fortunate to draw on expertise from members with historical and contemporary human space flight program experience including the Mercury, Gemini, Apollo, Skylab, Apollo Soyuz Test Project, Shuttle, and International Space Station (ISS) programs, as well as from members with ground operations experience reaching back to the Redstone, Jupiter, Pershing, and Titan launch vehicle programs. The team had a wealth of experience in both management and technical responsibilities and was able to draw on recent ground system concepts and other engineering products from the Orbital Space Plane (OSP) and Space Launch Initiative (SLI) programs, diverse X-vehicle projects, and leadership in NASA/Industry/Academia groups such as the Space Propulsion Synergy Team (SPST) and the Advanced Spaceport Technology Working Group (ASTWG). 7.1.1 Ground Operations Summary The physical and functional integration of the proposed exploration architecture elements will occur at the primary launch site at the NASA Kennedy Space Center (KSC). In order to support the ESAS recommendation of the use of a Shuttle-derived Cargo Launch Vehicle (CaLV) and a separate Crew Launch Vehicle (CLV) for lunar missions and the use of a CLV for ISS missions, KSC’s Launch Complex 39 facilities and ground equipment were selected for conversion. Ground-up replacement of the pads, assembly, refurbishment, and/or process- ing facilities was determined to be too costly and time-consuming to design, build, outfit, activate, and certify in a timely manner to support initial test flights leading to an operational CEV/CLV system by 2011.
    [Show full text]
  • Launching Orion Into Space
    National Aeronautics and Space Administration LAUNCHING ORION INTO SPACE LAUNCHING ORION 27,000 MPH Speed to propel into Space to Deep Space Learn about the tremendous effort put forth by thousands of people across the country to launch Orion into orbit, and the challenges that will be faced as Orion 17,500 MPH is prepared for flight. Orion separating from the launch vehicle Orion has been designed Flight tests are difficult and There are thousands of Separation events that are with the minimal mass and complex but are necessary for steps that must be carried critical during Orion’s first few maximum capability needed engineers to gain confidence out sequentially – or even minutes of spaceflight are very to safely transport everything that the systems critical to simultaneously – and function dynamic, requiring the close needed for four crew crew safety will work during in perfect harmony for a attention of the entire members to live and work in space flight. seamless launch. flight team. space for up to 21 days. E SPAC N OF ITIO FIN ES) DE MIL THE JOURNEY TO THE LAUNCH PAD LAUNCHING ORION (62 DESIGNING ORION PUTTING ORION SENDING ORION THROUGH PUSHING ORION TO THE TEST THE ATMOSPHERE INTO DEEP SPACE Orion accelerating through Earth’s atmosphere Orion on the launch pad O MPH at NASA’s multi-purpose AN ENGINEER’S MAGNUM OPUS RIGOROUS TESTING PRIOR TO FLIGHT OVERCOMING EARTH’S GRAVITY ACHIEVING SUCCESS spaceport in Florida www.nasa.gov Challenges of Spaceflight: Putting Orion to the Test Spaceflight Stage Fright Launching Orion into Space The Orion spacecraft is comprised of the crew module, On Orion’s way to orbit, there are a series of events where astronauts will live and work during the mission; that must occur to separate the spacecraft from the Orion is America’s next-generation spacecraft.
    [Show full text]
  • Spaceport Infrastructure Cost Trends
    AIAA 2014-4397 SPACE Conferences & Exposition 4-7 August 2014, San Diego, CA AIAA SPACE 2014 Conference and Exposition Spaceport Infrastructure Cost Trends Brian S. Gulliver, PE1, and G. Wayne Finger, PhD, PE2 RS&H, Inc. The total cost of employing a new or revised space launch system is critical to understanding its business potential, analyzing its business case and funding its development. The design, construction and activation of a commercial launch complex or spaceport can represent a significant portion of the non-recurring costs for a new launch system. While the historical cost trends for traditional launch site infrastructure are fairly well understood, significant changes in the approach to commercial launch systems in recent years have required a reevaluation of the cost of ground infrastructure. By understanding the factors which drive these costs, informed decisions can be made early in a program to give the business case the best chance of economic success. The authors have designed several NASA, military, commercial and private launch complexes and supported the evaluation and licensing of commercial aerospaceports. Data from these designs has been used to identify the major factors which, on a broad scale, drive their non-recurring costs. Both vehicle specific and location specific factors play major roles in establishing costs. I. Introduction It is critical for launch vehicle operators and other stakeholders to understand the factors and trends that affect the non-recurring costs of launch site infrastructure. These costs are often an area of concern when planning for the development of a new launch vehicle program as they can represent a significant capital investment that must be recovered over the lifecycle of the program.
    [Show full text]
  • Commercial Spaceports: a New Frontier of Infrastructure Law
    Copyright © 2020 Environmental Law Institute®, Washington, DC. Reprinted with permission from ELR®, http://www.eli.org, 1-800-433-5120. COMMENTS COMMErcIAL SPACEPORTS: A NEW FRONTIER OF INfrASTRUCTURE LAW by Kathryn Kusske Floyd and Tyler G. Welti Kathryn Kusske Floyd and Tyler G. Welti are infrastructure lawyers advising commercial space developers as part of Venable LLP’s commercial space legal and policy practice. hile a “spaceport” may sound like a concept fies several considerations associated with the new frontier of mostly confined to science fiction, several commercial space transportation infrastructure projects. commercial spaceports are in operation in the WUnited States and abroad, and more are being developed. I. The Commercial Space Industry As the name suggests, spaceports, or commercial space launch sites, are used to conduct launch and reentry opera- tions to and from space, such as launching satellites into A. The Space Economy orbit or sending space tourists to the edge of space and back. A commercial space launch site can be operated by The burgeoning commercial space industry comprises a nonfederal entity, such as a business, state or local gov- private ventures, public ventures, and public-private part- ernment, or public-private partnership, and offers its infra- nerships. Launch operations can be solely commercial or structure and related services to private space companies can provide services pursuant to government contracts or federal agencies seeking to conduct launch operations. with civil and/or defense agencies. Currently, the industry Operating a commercial space launch site in the United includes the following commercial activities: States requires a launch site operator license (LSOL) issued by the Federal Aviation Administration’s (FAA’s) Office of Com- • Orbital launches to place satellites and other payloads mercial Space Transportation (AST).
    [Show full text]
  • I I I I I I I I I I I I I I I I I I 1 / , "2.&
    I RTR 218-01, Vol. I I I I I I 1 /, "2.& - 17 q BASE HEATING METHODOLOGY I IMPROVEMENTS I /JAS 8- 3 ~ 111 I November 1992 I Prepared by: I Robert L. Bender John E. Reardon Richard E. Somers I Michael S. Fulton of REMTECH inc. I Sheldon D. Smith of SECA, Inc. I Harold Pergament of PST, Inc. I Contract: I NAS8-38141 I For: National Aeronautics and Space Administration I Georg.e C. Marshall Space Flight Center Marshall Space Flight Center, AL 35812 I I i=_ _" r,,,,,_-1- I=" C I..-I RTR 218-O1 FOREWORD The need for improvements in launch vehicle base heating prediction methodology was recognized by the ALS Program in 1989 and implemented through Advanced Development Plan #4202. This plan was contracted to REMTECH by NASA/MSFC through Contract NAS8-38141. REMTECH was supported in this effort by SECA, Inc., of Huntsville, AL, and PST, Inc., of Princeton, NJ. The period of performance was from September 1989 through November 1992. The important output from this effort is a new Design Base Heating Code which incorporates the improvements and provides quick-look capability to assess base heating from a variety of launch vehicle concepts. The analyses leading to the methodology improvements are reported in this document. A companion user's guide document is also provided to assist potential users with the code. The NASA/MSFC Contract Officer's Technical Representative for this contract was Mr. Peter Sulyma, of the Induced Environments Branch, Aerophysics Division of the Structures and Dynamics Laboratory, ED33.
    [Show full text]
  • A Launch Pad Escape System for Human Spaceflight Is One of Those Things That Everyone Hopes They Will Never Need but Is Critical for Every Manned Space Program
    https://ntrs.nasa.gov/search.jsp?R=20110012275 2019-08-30T15:55:02+00:00Z Launch Pad Escape System Design (Human Spaceflight): -Kelli Maloney A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types ofthese EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well.
    [Show full text]
  • Building KSC's Launch Complex 39
    National Aeronautics and Space Administration Building KSC’s Launch Complex 39 n the beginning, there was sand and house the Apollo spacecraft and the Launch I palmettos and water. Yet out of this idyllic Control Center. setting would grow the most unique structures The launcher-transporter would incorpo- -- engineering milestones -- that would set the rate three major facilities: a pedestal for the stage for the future in space. space vehicle, an umbilical tower to service The Kennedy Space Center of the 21st the upper reaches of the space vehicle, and a century began life in the early 1960s when new rail transporter. An arming tower would stand facilities were needed to launch the moon- about midway between the assembly building facts bound Saturn V rockets. and the pads. Initial plans called for a launch complex The Apollo Saturn would carry a number comprising a Vertical Assembly Building of hazardous explosives: the launch escape sys- (VAB), a launcher-transporter, an arming area tem (the tower on top of the vehicle that lifted and a launch pad. The VAB would consist of the spacecraft away from the launch vehicle in assembly bay areas for each of the stages, with case of an emergency), retrorockets to sepa- a high-bay unit approximately 110 meters in rate the stages, ullage rockets to force fuel to height for final assembly and checkout of the the bottom of tanks, and the launch vehicle’s vehicle. Buildings adjacent to the VAB would destruct system. Launch Pad 39A is under construction (foreground) with the imposing Vertical Assembly Building rising from the sand in the background.
    [Show full text]
  • Alternatives for Future U.S. Space-Launch Capabilities Pub
    CONGRESS OF THE UNITED STATES CONGRESSIONAL BUDGET OFFICE A CBO STUDY OCTOBER 2006 Alternatives for Future U.S. Space-Launch Capabilities Pub. No. 2568 A CBO STUDY Alternatives for Future U.S. Space-Launch Capabilities October 2006 The Congress of the United States O Congressional Budget Office Note Unless otherwise indicated, all years referred to in this study are federal fiscal years, and all dollar amounts are expressed in 2006 dollars of budget authority. Preface Currently available launch vehicles have the capacity to lift payloads into low earth orbit that weigh up to about 25 metric tons, which is the requirement for almost all of the commercial and governmental payloads expected to be launched into orbit over the next 10 to 15 years. However, the launch vehicles needed to support the return of humans to the moon, which has been called for under the Bush Administration’s Vision for Space Exploration, may be required to lift payloads into orbit that weigh in excess of 100 metric tons and, as a result, may constitute a unique demand for launch services. What alternatives might be pursued to develop and procure the type of launch vehicles neces- sary for conducting manned lunar missions, and how much would those alternatives cost? This Congressional Budget Office (CBO) study—prepared at the request of the Ranking Member of the House Budget Committee—examines those questions. The analysis presents six alternative programs for developing launchers and estimates their costs under the assump- tion that manned lunar missions will commence in either 2018 or 2020. In keeping with CBO’s mandate to provide impartial analysis, the study makes no recommendations.
    [Show full text]