Saving Power with Powertop BETTER SLEEP Intel’S Powertop Analysis Tool Helps Optimize Power Usage and Shows You the Power Guzzlers Hiding out On

Total Page:16

File Type:pdf, Size:1020Kb

Saving Power with Powertop BETTER SLEEP Intel’S Powertop Analysis Tool Helps Optimize Power Usage and Shows You the Power Guzzlers Hiding out On KNOW-HOW PowerTOP Saving power with PowerTOP BETTER SLEEP Intel’s PowerTOP analysis tool helps optimize power usage and shows you the power guzzlers hiding out on your operating system. BY KRISTIAN KISSLING f you dual-boot your laptop with The CPU uses this signal to measure the tool will only show the C states oth- Windows and Linux, you may have the time; of course, if the CPU isn’t actu- erwise, and it will not say anything Inoticed a strange phenomenon – the ally doing anything, the tick just rudely about the power consumption of individ- battery lasts longer on Windows than wakes the CPU out of power save mode. ual system components. on Linux. When this happens, people To change this, dynticks were intro- The good news is that a couple of dis- normally start tweaking their systems – duced with kernel version 2.6.21, timer tros on the market already use kernel unloading modules for power guzzling ticks now only occur if the kernel really 2.6.21: Debian “Sid” and the Debian de- hardware, changing the ACPI settings, needs them. On 64-bit systems, the dyn- rivative Sidux – admittedly experimental and dimming the display. tick feature will appearl in kernel 2.6.23. Linux varients. OpenSUSE 10.2 and Recently, kernel developers have PowerTOP reveals what dynticks do – Ubuntu 7.04 “Feisty Fawn” don’t cur- started to put more thought into the and more. It displays values on the con- rently have updates for the kernel. power situation; thanks to new kernel sole that tell you how much time the features, you can reduce your system’s kernel spent in power save mode (Figure Build Your Own power consumption. PowerTOP [1] is a 1). At the same time, the tool tells you Of course, you could always build a new tool that helps you manage and optimize which kernel software components are kernel of your own, but if this sounds power usage. waking up the kernel and thus helps you too much like rocket science, just wait optimize your system. Timer ticks are for openSUSE 10.3 or Ubuntu 7.10 Power Save Mode not the only thing that interrupt the ker- “Gutsy Gibbon.” Both systems will have A CPU will normally switch to a power nel’s siesta; non-optimized software the new kernel and probably packages save mode if the user falls asleep in front components – Gksu, for example – wake for PowerTOP. of the keyboard – or at least in theory. the kernel more often than necessary. If you do decide to build a brand new What actually happens with legacy ker- kernel, you can download the kernel nels is that an internal clock, the static Kernel Panic from Kernel.org [2]. The following exam- timer tick, occurs about a thousand Newcomers might be a bit worried about times per second. needing kernel 2.6.21 to run PowerTOP – Daniela Benzler, Fotolia Benzler, Daniela 54 ISSUE 83 OCTOBER 2007 WWW.LINUX - MAGAZINE.COM PowerTOP KNOW-HOW After saving the modified .config file, build the kernel using the following command: sudo make-kpkg --initrdU --revision=i686ver1 binary This step creates .deb packages, which you can install and uninstall in the nor- mal way. The process is typically fairly slow – in fact, it can take hours to com- plete on a slow machine. When you are done, type sudo make-kpkg clean to remove unwanted files. Now change to the parent directory and install the new kernel by typing sudo dpkg -i kernel-image-version.deb. The command updates the Grub boot manager at the same time. If the GUI does not appear after re- Figure 1: PowerTOP tells you how often the CPU enters power save mode and which programs booting, you will need to change the wake it up again. nvidia entry below Section "Device" in your /etc/X11/xorg.conf to nv, or fglrx to ple explains how to build a kernel for then change directory to linux. The ker- ati, and then relaunch the display man- Ubuntu. Your mileage will differ depend- nel typically parses a configuration file ager. The new kernel needs new drivers ing on your distribution. Just make sure to find out which kernel options you will for 3D graphics acceleration support. you know what you are doing – if you be using. You may need to build modules manu- slip up, you might not be able to boot ally for your WLAN or graphics card and the system. Template apply a couple of patches. The following HOWTO is designed for It is a good idea to use the configuration Even if your newly built kernel doesn’t “Edgy Eft” and “Feisty Fawn,” and it file for the existing kernel as a template support all your hardware, you will at basically draws from the Ubuntu wiki. for the new file; you will find the least find out which software is using up Start by installing the build-essential, file below config-CurrentKernel in the too much power. You can then make a kernel-package, xmlto, libncursesw5-dev, /boot directory. Give the sudo cp /boot/ note of the culprits and optimize them and libncurses5-dev packages. Then config-CurrentKernel .config command on the old kernel. download a current kernel with an ex- to copy your existing configuration, and tension of tar.bz2 from Kernel.org to a save the configuration as a hidden file Installing PowerTOP directory of your choice. in the /usr/src/linux directory – typing The next step is to download the latest Change to the directory you chose and ls -la should list the file (Figure 2). version of PowerTOP. Unpack the ar- type sudo tar xvjf linux-2.6.21.5.tar.bz2 chive, change to the new directory, and -C /usr/src to unpack the kernel, taking Configuration type make to build the software. care to replace 2.6.21.5 with the version The new kernel is bound to include new you are using. configuration settings. sudo make old- Kernel Options Next, change directory to /usr/src and config prompts you to decide what to do According to the FAQ, you need to create a symbolic link called linux that with each new option. The best ap- enable the following options in the points at the directory with the kernel proach is to press Enter in each case to configuration file: you just unpacked, accept the defaults, which are then auto- • CONFIG_NO_HZ matically dropped into your .config file. • CONFIG_TIMER_STATS sudo ln -sU You can edit the file later (you need root • CONFIG_HIGH_RES_TIMERS /usr/src/linux-2.6.21.5U privileges to do so) to enable and disable /usr/src/linux various kernel options, as described by • CONFIG_HPET the FAQ on the PowerTOP page [3]. • CONFIG_CPU_FREQ_GOV_ONDE- GLOSSARY The “Kernel Options” box lists the op- MAND C States: Idle states of ACPI-capable tions. For example, to enable the CON- • CONFIG_USB_SUSPEND FIG_NO_HZ option, you need to change CPUs. Four phases range from C1 (idle) • CONFIG_SND_AC97_POWER_SAVE to C4 (stopped processing). The higher the # CONFIG_NO_HZ is not set to CON- Disable the following features: the number, the less power the CPU FIG_NO_HZ=y (Figure 3). Reverse this • CONFIG_IRQBALANCE consumes. Core-Duo CPUs also have a procedure to disable an option – and deep state C4. don’t forget the pound sign! • CONFIG_ACPI_DEBUG WWW.LINUX - MAGAZINE.COM ISSUE 83 OCTOBER 2007 55 KNOW-HOW PowerTOP makers, organized hierarchically by the frequency with which they interrupt the CPU. PowerTOP occasionally displays a third black bar in the footer line with a letter and the name of an active process causing a number of wakeups. If you press the letter, PowerTOP sends a kill signal to the process. Minor edits to configuration files can drastically change the hacking order in the power guzzler charts. Conclusions Most of the time, you need to install special patches to reduce the power consumption of individual programs. For example, if you add a line for Option "NoDRI" to the Section "Device" part Figure 2: After you copy the configuration file for the existing kernel to the /usr/ src/ linux of your /etc/X11/xorg.conf, the <inter- directory, you can customize the kernel options in the .config file at a later stage. rupt> i915@pci entry will disappear out of the charts. Then launch the software directly to Wakeups-from-idle; it tells you how Before you can tackle some candi- from the same directory simply by typ- often the CPU wakes up from idle state dates, you must find out which program ing sudo ./powertop. per second. is hiding behind the cryptic name, such This value should be as low as possi- as i8042. In this case, the mailing list [4] Power Hogs ble – the website claims you can reduce and the Tips & Tricks section [5] on the If you believe what Intel claims, Power- a three-figure number to single figures. PowerTOP website can help. The FAQ TOP works best on laptops with Intel This might work in theory, but you [3] reveals that i8042 refers to the kernel CPUs. C state information is only for would need a whole bunch of patches driver for the mouse and keyboard – mobile CPUs in laptops. With AMD sys- and workarounds. don’t be surprised if you see this entry tems, desktop users can at least measure when you investigate your system’s the power consumption of individual Battery Life power consumption with PowerTOP. ■ programs. The line below Wakeups tells you how PowerTOP displays various values (see long your laptop’s batteries are likely to INFO Figure 1).
Recommended publications
  • Enea® Linux 4.0 Release Information
    Enea® Linux 4.0 Release Information 4.0-docupdate1 Enea® Linux 4.0 Release Information Enea® Linux 4.0 Release Information Copyright Copyright © Enea Software AB 2014. This User Documentation consists of confidential information and is protected by Trade Secret Law. This notice of copyright does not indicate any actual or intended publication of this information. Except to the extent expressly stipulated in any software license agreement covering this User Documentation and/or corresponding software, no part of this User Documentation may be reproduced, transmitted, stored in a retrieval system, or translated, in any form or by any means, without the prior written permission of Enea Software AB. However, permission to print copies for personal use is hereby granted. Disclaimer The information in this User Documentation is subject to change without notice, and unless stipulated in any software license agreement covering this User Documentation and/or corresponding software, should not be construed as a commitment of Enea Software AB. Trademarks Enea®, Enea OSE®, and Polyhedra® are the registered trademarks of Enea AB and its subsidiaries. Enea OSE®ck, Enea OSE® Epsilon, Enea® Element, Enea® Optima, Enea® Linux, Enea® LINX, Enea® LWRT, Enea® Accelerator, Polyhedra® Flash DBMS, Polyhedra® Lite, Enea® dSPEED, Accelerating Network Convergence™, Device Software Optimized™, and Embedded for Leaders™ are unregistered trademarks of Enea AB or its subsidiaries. Any other company, product or service names mentioned in this document are the registered or unregistered trade- marks of their respective owner. Acknowledgements and Open Source License Conditions Information is found in the Release Information manual. © Enea Software AB 2014 4.0-docupdate1 ii Enea® Linux 4.0 Release Information Table of Contents 1 - About This Release .....................................................................................................
    [Show full text]
  • Linux Kernel and Driver Development Training Slides
    Linux Kernel and Driver Development Training Linux Kernel and Driver Development Training © Copyright 2004-2021, Bootlin. Creative Commons BY-SA 3.0 license. Latest update: October 9, 2021. Document updates and sources: https://bootlin.com/doc/training/linux-kernel Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering Send them to [email protected] - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/470 Rights to copy © Copyright 2004-2021, Bootlin License: Creative Commons Attribution - Share Alike 3.0 https://creativecommons.org/licenses/by-sa/3.0/legalcode You are free: I to copy, distribute, display, and perform the work I to make derivative works I to make commercial use of the work Under the following conditions: I Attribution. You must give the original author credit. I Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. I For any reuse or distribution, you must make clear to others the license terms of this work. I Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. Document sources: https://github.com/bootlin/training-materials/ - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/470 Hyperlinks in the document There are many hyperlinks in the document I Regular hyperlinks: https://kernel.org/ I Kernel documentation links: dev-tools/kasan I Links to kernel source files and directories: drivers/input/ include/linux/fb.h I Links to the declarations, definitions and instances of kernel symbols (functions, types, data, structures): platform_get_irq() GFP_KERNEL struct file_operations - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/470 Company at a glance I Engineering company created in 2004, named ”Free Electrons” until Feb.
    [Show full text]
  • Fixing USB Autosuspend Serge Y
    Fixing USB Autosuspend Serge Y. Stroobandt Copyright 2015–2017, licensed under Creative Commons BY-NC-SA Problem The Linux kernel automatically suspends USB de- vices when there is driver support and the devices are not in use.1 This saves quite a bit of power. How- ever, some USB devices are not compatible with USB autosuspend and will misbehave at some point. Af- fected devices are most commonly USB mice and keyboards.2 Personally,I had only one Microsoft™ Wheel Mouse Optical affected, despitewning o other mod- els of the same brand. In essence, this is not really a USB hardware problem, but perhaps more a Lin- ux problem. The actual fault lies with a misinterpretation of the eXtensible Host Controller Interface (xHCI) specification. This issueviousl pre y did not exist with the older Enhanced Host Controller Interface (EHCI) specification. A «Sharp» explanation is available online.3 The Linux kernel patch for this problem will probably one day automatically trickle in downstream and onto my affectedubuntu X LTS 14.04 system. Nonetheless, with a crashing computer mouse at hand, things cannot wait. However, patching my current 3.13.0-35-generic x86_64 kernel is out of the question! We will rather grab this opportunity to learn a bit about writing rules for udev , the device manager for the Linux kernel. I am writing “for the Linux kernel”, because udev executes entirely in user space. Identify the device First, one needs to properly identify the affected USBvice de by its vendor and product ID. Run the following command and look for the device description.
    [Show full text]
  • Powerkap - a Tool for Improving Energy Transparency for Software Developers on GNU/Linux (X86) Platforms
    Project Report Department of Computing Imperial College of Science, Technology and Medicine PowerKap - A tool for Improving Energy Transparency for Software Developers on GNU/Linux (x86) platforms Author: Supervisor: Krish De Souza Dr. Anandha Gopalan Submitted in partial fulfilment of the requirements for the M.Eng Computing 4 of Imperial College London Contents 1 Introduction 6 1.1 Motivation . .6 1.2 Objectives . .7 1.3 Achievements . .7 2 Background 9 2.1 The relationship between power and energy. .9 2.2 Power controls on x86 platforms . .9 2.3 Improving software for power efficiency . 10 2.3.1 Algorithm . 10 2.3.2 Multithreading . 10 2.3.3 Vectorisation . 10 2.3.4 Improper sleep loops . 12 2.3.5 OS Timers . 13 2.3.6 Context aware programming . 13 2.4 Current methods of monitoring energy. 14 2.4.1 Out of Band Energy Monitor . 14 2.4.2 In-Band Energy Monitor . 14 2.4.2.1 Powertop . 15 2.4.2.2 Turbostat . 16 2.5 Related Work . 16 2.5.1 ENTRA 2012-2015 . 16 2.5.1.1 Common Assertion Language . 16 2.5.1.2 Compiler Optimisation and Power Trade-offs . 18 2.5.1.3 Superoptimization . 18 2.5.1.4 Thermal trade-off . 20 2.5.2 eProf . 20 2.5.2.1 Asynchronous vs Synchronous . 20 2.5.2.2 Profiling implementation . 21 2.5.3 Energy Formal Definitions . 21 2.5.3.1 Java Based Energy Formalism . 22 2.5.3.2 Energy Application Model . 22 2.5.4 Impact of language, Compiler, Optimisations .
    [Show full text]
  • SUSE Linux Enterprise Server 12 SP4 System Analysis and Tuning Guide System Analysis and Tuning Guide SUSE Linux Enterprise Server 12 SP4
    SUSE Linux Enterprise Server 12 SP4 System Analysis and Tuning Guide System Analysis and Tuning Guide SUSE Linux Enterprise Server 12 SP4 An administrator's guide for problem detection, resolution and optimization. Find how to inspect and optimize your system by means of monitoring tools and how to eciently manage resources. Also contains an overview of common problems and solutions and of additional help and documentation resources. Publication Date: September 24, 2021 SUSE LLC 1800 South Novell Place Provo, UT 84606 USA https://documentation.suse.com Copyright © 2006– 2021 SUSE LLC and contributors. All rights reserved. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright notice and license. A copy of the license version 1.2 is included in the section entitled “GNU Free Documentation License”. For SUSE trademarks, see https://www.suse.com/company/legal/ . All other third-party trademarks are the property of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its aliates. Asterisks (*) denote third-party trademarks. All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee complete accuracy. Neither SUSE LLC, its aliates, the authors nor the translators shall be held liable for possible errors or the consequences thereof. Contents About This Guide xii 1 Available Documentation xiii
    [Show full text]
  • Controlling Processor C-State Usage in Linux
    Controlling Processor C-State Usage in Linux A Dell technical white paper describing the use of C-states with Linux operating systems Stuart Hayes | Enterprise Linux Engineering Controlling Processor C-State Usage in Linux THIS DOCUMENT IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL INACCURACIES. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS OR IMPLIED WARRANTIES OF ANY KIND. © 2013 Dell Inc. All rights reserved. Reproduction of this material in any manner whatsoever without the express written permission of Dell Inc. is strictly forbidden. For more information, contact Dell. Dell, the DELL logo, and the DELL badge are trademarks of Dell Inc. Intel and Xeon are registered trademarks of Intel Corporation in the U.S. and other countries. Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks and names or their products. Dell Inc. disclaims any proprietary interest in trademarks and trade names other than its own. November 2013 | Revision 1.1 Page ii Controlling Processor C-State Usage in Linux Contents Introduction ................................................................................................................ 4 Background ................................................................................................................. 4 Checking C-State Usage .................................................................................................. 4 Disabling C-States for Low Latency ...................................................................................
    [Show full text]
  • Oracle Solaris Operating System: Optimized for Sun X86 Systems in the Enterprise
    An Oracle White Paper August 2011 Oracle Solaris Operating System: Optimized for Sun x86 Systems in the Enterprise Oracle Solaris Operating System: Optimized for Sun x86 Systems in the Enterprise Executive Overview ........................................................................... 1 Introduction ....................................................................................... 2 The Oracle Solaris Ecosystem ....................................................... 3 Intel Xeon Processor E7 Family ..................................................... 3 Oracle Integration .......................................................................... 4 Intelligent Performance ...................................................................... 5 Memory Placement Optimization (MPO) ........................................ 5 Intel Turbo Boost ........................................................................... 8 Automated Energy Efficiency ............................................................. 8 Oracle Solaris Power Aware Dispatcher ........................................ 9 PowerTOP ................................................................................... 10 Power Budgets and Power Capping ............................................ 11 Always Running APIC Timer ....................................................... 12 Reliability ......................................................................................... 12 Oracle Solaris FMA for Intel Xeon Processors ............................. 13 Security
    [Show full text]
  • Profiling Energy Profilers
    Profiling Energy Profilers Erik Jagroep, Jan Martijn E.M. Miguel Ferreira, van der Werf, Slinger Jansen Joost Visser Utrecht University Software Improvement Group B.V. Dept. of Information and Computing Sciences Amstelplein 1 Princetonplein 5 Amsterdam, The Netherlands Utrecht, The Netherlands {m.ferreira, j.visser}@sig.eu {e.a.jagroep, j.m.e.m.vanderwerf, slinger.jansen}@uu.nl ABSTRACT of power [13]. In addition, \a single ill-behaving power- While energy is directly consumed by hardware, it is the unfriendly software component on the system can thwart software that provides the instructions to do so. Energy pro- all of the power management benefits built into the hard- filers provide a means to measure the energy consumption ware" [12]. of software, enabling the user to take measures in making An energy profiler (EP) is a software tool that estimates software more sustainable. Although each energy profiler the energy consumption of a system based on the compu- has access to roughly the same data, the reported measure- tational resources used by applications, and by monitoring ments can differ significantly between energy profilers. In the hardware resources [1, 3, 11]. The use of EPs enables this research, energy profilers are evaluated through a series practitioners to investigate the energy consumption behav- of experiments on their functionality and the accuracy of the ior of their software without having to invest in specialized reported measurements. The results show that there is still hardware. However, many different EPs exist and each has work to be done before these software tools can be safely its own internal model to estimate the energy consumption.
    [Show full text]
  • Dell Poweredge Systems Red Hat Enterprise Linux 5(X86 64, X86) Installation Instructions and Important Information
    Dell PowerEdge Systems Red Hat Enterprise Linux 5 (x86_64, x86) Installation Instructions and Important Information Notes, Cautions, and Warnings NOTE: A NOTE indicates important information that helps you make better use of your computer. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. © 2013 Dell Inc. All Rights Reserved. Trademarks used in this text: Dell™, the Dell logo, Dell Boomi™, Dell Precision™ , OptiPlex™, Latitude™, PowerEdge™, PowerVault™, PowerConnect™, OpenManage™, EqualLogic™, Compellent™, KACE™, FlexAddress™, Force10™, Venue™ and Vostro™ are trademarks of Dell Inc. Intel®, Pentium®, Xeon®, Core® and Celeron® are registered trademarks of Intel Corporation in the U.S. and other countries. AMD® is a registered trademark and AMD Opteron™, AMD Phenom™ and AMD Sempron™ are trademarks of Advanced Micro Devices, Inc. Microsoft®, Windows®, Windows Server®, Internet Explorer®, MS-DOS®, Windows Vista® and Active Directory® are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Red Hat® and Red Hat® Enterprise Linux® are registered trademarks of Red Hat, Inc. in the United States and/or other countries. Novell® and SUSE® are registered trademarks of Novell Inc. in the United States and other countries. Oracle® is a registered trademark of Oracle Corporation and/or its affiliates. Citrix®, Xen®, XenServer® and XenMotion® are either registered trademarks or trademarks of Citrix Systems, Inc. in the United States and/or other countries. VMware®, vMotion®, vCenter®, vCenter SRM™ and vSphere® are registered trademarks or trademarks of VMware, Inc.
    [Show full text]
  • The Yocto Project Accelerating Embedded Product Development
    Introduction to the Yocto Project Accelerating Embedded Product Development Rudolf J Streif [ yoc-to ] The smallest unit of measure, equal to one septillionth (10-24). The Yocto Project Ecosystem What it is, who we are, and why you should care... 3/64 © 2015 The Yocto Project The Yocto Project is not an Embedded Linux Distribution. It creates a custom one for You! The Yocto Project is not Single Open Source Project. It is an Ecosystem. The Yocto Project combines the convenience of a ready-to-run Linux Distribution with the flexibility of a custom Linux operating system stack. 4/61 © 2015 The Yocto Project Embedded Linux – Why is it Challenging? • DIY/Roll-Your-Own or Modify Mainstream Distro • Long Term Maintenance is difficult • Upstream Changes are difficult to track • Not embedded friendly • Licensing issues • No commercial embedded support • Build System and Cross Toolchain Challenges • Commercial/Community Embedded Linux • Too many competing systems • Incompatible distributions/build systems Developers spend lots of time porting or making build systems Leaves less time and resources to develop value- adding software features 5/61 © 2015 The Yocto Project Embedded Linux Landscape (1) Android – http://source.android.com ● Great for systems with ARM-based SoCs and touch screens ● Build system and development tools Ångström Distribution – http://www.angstrom-distribution.org ● Community distribution with a growing list of supported development boards ● Yocto Project build environment ● Online builder Narcissus Buildroot – http://buildroot.uclibc.org
    [Show full text]
  • Power Management Guide
    Red Hat Enterprise Linux 7 Power Management Guide Managing and optimizing power consumption on RHEL 7 Last Updated: 2020-08-11 Red Hat Enterprise Linux 7 Power Management Guide Managing and optimizing power consumption on RHEL 7 Marie Doleželová Red Hat Customer Content Services [email protected] Jana Heves Red Hat Customer Content Services Jacquelynn East Red Hat Customer Content Services Don Domingo Red Hat Customer Content Services Rüdiger Landmann Red Hat Customer Content Services Jack Reed Red Hat Customer Content Services Red Hat, Inc. Legal Notice Copyright © 2017 Red Hat, Inc. This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
    [Show full text]
  • Project 1: Boot Process of an Embedded System, Its BSP and Development Environment
    LECTURE: MP-6171 SISTEMAS EMPOTRADOS DE ALTO DESEMPEÑO Project 1: Boot Process of an Embedded System, its BSP and Development Environment Lecturers: MSc. José Araya Martínez MSc. Sergio Arriola-Valverde First term, 2020 0 Contents 1 Introduction3 1.1 Administrative Matters...........................3 1.1.1 Team Formation..........................3 1.1.2 Forum and Communication....................3 1.1.3 Plagiarism.............................4 1.2 Development Environment Overview....................4 1.2.1 Nomenclature............................5 2 Setting up the Host5 2.1 Downloading the VM and Configuring VirtualBox............6 2.2 Version Control: GIT............................7 2.3 Configure Local Area Network with Static IP...............8 2.4 Configure a TFTP Server for File Sharing.................9 2.5 Set NFS for Mounting a Remote File System............... 10 2.6 Installing the Eclipse IDE for C/C++ Developers............. 10 3 Setting up our Embedded System and its Board Support Package 11 3.1 Using a Pre-compiled Image: Raspbian.................. 12 3.2 Establishing UART Connection with the RPI............... 13 3.3 How Does an Embedded Device Boot?................... 16 3.3.1 The Specific Case of the Raspberry Pi 4.............. 18 3.4 First Stage Bootloader: BootROM..................... 19 3.5 Second Stage Bootloader: Das U-Boot................... 19 3.5.1 Toolchain for Cross-Compilation................. 20 3.5.2 Cross-compiling U-Boot...................... 21 3.5.3 Configuring our Target to Load U-Boot.............. 22 3.5.4 Configuring Static IP in U-Boot.................. 24 3.6 The Linux Kernel.............................. 25 3.6.1 Cross-compiling the Linux Kernel................. 26 3.6.2 Loading Kernel from TFTP.................... 29 3.7 YOCTO, File System and the Toolchain.................
    [Show full text]