Sheet1 Page 1 Appendix Table 2: GO Enri GO:0045513

Total Page:16

File Type:pdf, Size:1020Kb

Sheet1 Page 1 Appendix Table 2: GO Enri GO:0045513 Sheet1 Appendix Table 2: GO enrichement analysis on the top 1000 genes with the highest foldchagne in Appendix Table 1 GO:0045513 GO:0086019 GO:0033783 GO:0000016 GO:0010286 GO:0002194 GO:0061114 GO:0090425 GO:1901978 GO:2000979 GO:1990136 GO:0009593 GO:0071545 GO:1990123 GO:0047198 GO:1904515 GO:0030815 GO:0031895 GO:0017129 GO:0031427 GO:0051871 GO:0007624 GO:0030354 GO:0031777 GO:0021919 GO:0002590 GO:1901096 GO:0045518 GO:1904158 GO:1990718 GO:0032994 GO:0032973 GO:0070881 GO:1900925 GO:0009444 GO:0038097 GO:2000108 GO:0014804 GO:1903691 GO:0038009 GO:0051394 GO:0060299 GO:1900826 GO:1901629 GO:0072492 GO:0072105 GO:0072195 GO:0071418 Page 1 Sheet1 GO:1904015 GO:0043112 GO:0046368 GO:0008424 GO:0038172 GO:2001108 GO:0097161 GO:0080144 GO:0043545 GO:0008265 GO:0036458 GO:0045769 GO:0001990 GO:2000863 GO:0047127 GO:0045048 GO:0035039 GO:0033011 GO:0010092 GO:0010124 GO:0047856 GO:0021636 GO:0043049 GO:0060980 GO:0061441 GO:1902378 GO:1902946 GO:0038002 GO:0047442 GO:2001213 GO:0004855 GO:0002923 GO:0050857 GO:0072518 GO:1901291 GO:0034039 GO:0017168 GO:0071622 GO:0021793 GO:0050923 GO:0060618 GO:0070524 GO:0042922 GO:0050670 GO:0047915 GO:2001245 GO:0050543 GO:0045281 GO:0032431 Page 2 Sheet1 GO:0032311 GO:0000839 GO:0006616 GO:0097581 GO:0061106 GO:1903524 GO:1904320 GO:1904325 GO:1904326 GO:1904330 GO:1904343 GO:1904346 GO:1990767 GO:1990769 GO:0044547 GO:0002724 GO:1903949 GO:1904199 GO:0005954 GO:0060096 GO:0060691 GO:1900100 GO:1903489 GO:1990418 GO:0001011 GO:0001087 GO:0001093 GO:1900169 GO:0008753 GO:0002664 GO:0008422 GO:1902684 GO:1903743 GO:0015439 GO:0033059 GO:0051917 GO:0060268 GO:0043063 GO:0005595 GO:1903241 GO:0071926 GO:0072362 GO:0048073 GO:0008428 GO:0002183 GO:0098902 GO:0005053 GO:0071449 GO:0016078 Page 3 Sheet1 GO:1904209 GO:2000691 GO:0036111 GO:0033989 GO:0044594 GO:0008457 GO:0047256 GO:0035805 GO:0098595 GO:1904568 GO:0032600 GO:0032913 GO:0034107 GO:0034119 GO:0042103 GO:0046014 GO:1902809 GO:0048521 GO:1903924 GO:0003117 GO:0051733 GO:0051736 GO:0047220 GO:0090336 GO:1900748 GO:0033623 GO:0046013 GO:2000978 GO:1902287 GO:0030151 GO:0008046 GO:0048841 GO:0086001 GO:0031124 GO:0031417 GO:0014827 GO:0051653 GO:0071816 GO:0071818 GO:0086005 GO:0051146 GO:0015279 GO:0043395 GO:0017080 GO:0002116 GO:2000252 GO:0006497 GO:0021785 GO:0030001 Page 4 Sheet1 GO:0034314 GO:0060298 GO:0048681 GO:0072178 GO:0043546 GO:0060438 GO:0016199 GO:0005927 GO:0004955 GO:0021637 GO:0050777 GO:0060736 GO:0017154 GO:0071526 GO:0032816 GO:0008347 GO:0000413 GO:0086073 GO:0050891 GO:0072675 GO:0016012 GO:0007262 GO:0050881 GO:0033033 GO:0030275 GO:0090031 GO:0045616 GO:2000676 GO:0042163 GO:0003882 GO:1900220 GO:0010045 GO:0004909 GO:0017082 GO:0060849 GO:0050692 GO:0031645 GO:0051100 GO:0034224 GO:0050849 GO:0098900 GO:0016492 GO:0050135 GO:0018003 GO:0010002 GO:0070237 GO:1904426 GO:1990256 GO:0042126 Page 5 Sheet1 GO:0008940 GO:0070375 GO:2000342 GO:0016653 GO:0005185 GO:0031894 GO:0034066 GO:0033058 GO:0046452 GO:0004146 GO:0051878 GO:0004997 GO:0050262 GO:0045517 GO:0006782 GO:0031104 GO:0070370 GO:0014809 GO:0051282 GO:0014802 GO:0033018 GO:1900825 GO:1901019 GO:2001288 GO:0050975 GO:0046899 GO:0033578 GO:0036071 GO:0042094 GO:0002114 GO:0021852 GO:0031936 GO:0003221 GO:0048710 GO:0097156 GO:0015819 GO:1903401 GO:0023035 GO:0036509 GO:0070525 GO:0000408 GO:0004958 GO:0002528 GO:0021873 GO:0051445 GO:0035038 GO:1903445 GO:0046226 GO:0046395 Page 6 Sheet1 GO:0021649 GO:0038190 GO:1902336 GO:1904835 GO:0021897 GO:0032414 GO:0010044 GO:0002378 GO:0002711 GO:2000473 GO:0010825 GO:0000702 GO:0034103 GO:0021836 GO:0050925 GO:0046514 GO:0021602 GO:0021610 GO:0021644 GO:0021784 GO:0045634 GO:0010749 GO:0006713 GO:0046327 GO:0061402 GO:0004613 GO:0051270 GO:0031751 GO:0072600 GO:0036041 GO:0006121 GO:0005749 GO:0001582 GO:1903767 GO:0033041 GO:0015037 GO:0044861 GO:0000461 GO:0042175 GO:0030023 GO:0043519 GO:0021557 GO:0021558 GO:0045977 GO:2000981 GO:0071820 GO:0010840 GO:1903640 GO:1904179 Page 7 Sheet1 GO:0098727 GO:1900102 GO:0000105 GO:0009069 GO:0009070 GO:0009257 GO:1904694 GO:0004152 GO:0048039 GO:0070593 GO:0036117 GO:0009590 GO:0045234 GO:2000852 GO:0007597 GO:0089701 GO:0072368 GO:0002920 GO:0036398 GO:0032915 GO:0060775 GO:0061101 GO:0014846 GO:0045645 GO:0045659 GO:0006793 GO:0006421 GO:0004816 GO:0097035 GO:0006431 GO:0008215 GO:0036112 GO:0072422 GO:0002842 GO:0002863 GO:0070012 GO:0008628 GO:0038052 GO:0032510 GO:0033364 GO:0048753 GO:0035250 GO:0046873 GO:0060412 GO:0004908 GO:0060732 GO:0005004 GO:0045545 GO:0000801 Page 8 Sheet1 GO:2000601 GO:0009396 GO:0032592 GO:0045577 GO:0045607 GO:0001780 GO:0000974 GO:0007156 GO:0045582 GO:0031290 GO:0070528 GO:0004394 GO:0016232 GO:0017095 GO:0018721 GO:0018722 GO:0018723 GO:0018724 GO:0018725 GO:0018726 GO:0018727 GO:0019111 GO:0034930 GO:0051922 GO:0080131 GO:0005759 GO:0086002 GO:0098911 GO:0043931 GO:0051280 GO:0048671 GO:0090091 GO:1904030 GO:0021957 GO:0045010 GO:0006704 GO:0042446 GO:0030856 GO:0043497 GO:0090501 GO:0045348 GO:0050698 GO:0008748 GO:0043738 GO:0043826 GO:0043883 GO:0052693 GO:0050694 GO:0017048 Page 9 Sheet1 GO:0043914 GO:0008045 GO:0042520 GO:0034334 GO:0008396 GO:0010040 GO:1901492 GO:0031959 GO:0055005 GO:0060421 GO:0045401 GO:0045425 GO:0051048 GO:0018542 GO:0018555 GO:0018556 GO:0018557 GO:0018558 GO:0018559 GO:0018560 GO:0018561 GO:0018562 GO:0018563 GO:0018564 GO:0018565 GO:0018566 GO:0018567 GO:0018568 GO:0018569 GO:0018570 GO:0018571 GO:0018572 GO:0018573 GO:0018574 GO:0018575 GO:0019114 GO:0019117 GO:0034543 GO:0034803 GO:0034806 GO:0034808 GO:0034810 GO:0034811 GO:0034812 GO:0034813 GO:0034814 GO:0034827 GO:0034834 GO:0034895 Page 10 Sheet1 GO:0034920 GO:0034922 GO:0034934 GO:0034935 GO:0034936 GO:0034955 GO:0034956 GO:0036403 GO:0047074 GO:0050954 GO:0032280 GO:0006568 GO:0019442 GO:0045726 GO:0051795 GO:0051891 GO:0021536 GO:0035373 GO:0036493 GO:0003415 GO:2000074 GO:0014829 GO:1904263 GO:0001827 GO:0001828 GO:0002125 GO:0098793 GO:0040001 GO:1903363 GO:0004465 GO:0051870 GO:0002752 GO:0003223 GO:0046005 GO:0036353 GO:0071535 GO:0015770 GO:0008506 GO:0000291 GO:0004109 GO:0005280 GO:0032765 GO:0008503 GO:0046666 GO:0022028 GO:0014819 GO:0070124 GO:0071502 GO:1900407 Page 11 Sheet1 GO:0048763 GO:2000195 GO:0097155 GO:1903826 GO:0018242 GO:0032439 GO:0071799 GO:0048769 GO:0051661 GO:0071492 GO:0001998 GO:0097254 GO:0044065 GO:0070129 GO:1904378 GO:0007343 GO:0033615 GO:1902667 GO:0004063 GO:0021828 GO:0090259 GO:0097374 GO:1903375 GO:0097443 GO:1901031 GO:0035022 GO:0019002 GO:0004508 GO:0016903 GO:0001915 GO:0050855 GO:0071394 GO:0038163 GO:0072092 GO:0071603 GO:0038161 GO:0004925 GO:0004771 GO:0048133 GO:0050780 GO:0071073 GO:0070538 GO:0003951 GO:0006285 GO:0008263 GO:0019153 GO:0000338 GO:0051584 GO:1900244 Page 12 Sheet1 GO:0006688 GO:0035910 GO:0042668 GO:0045608 GO:0046331 GO:0061626 GO:2000227 GO:2000974 GO:1903170 GO:0002407 GO:0050294 GO:0006896 GO:0004329 GO:0004477 GO:0010611 GO:0042991 GO:0038028 GO:0003955 GO:0033306 GO:0036195 GO:0051033 GO:0071677 GO:0086080 GO:0004911 GO:0006680 GO:0004348 GO:1900106 GO:1990698 GO:0003870 GO:1902109 GO:0010573 GO:0070996 GO:0060230 GO:0051797 GO:0051306 GO:0008187 GO:1904017 GO:0019471 GO:0015111 GO:0000087 GO:0055106 GO:0032483 GO:2001140 GO:0004825 GO:0018193 GO:0035851 GO:0071307 GO:0046600 GO:0007638 Page 13 Sheet1 GO:0016768 GO:0031281 GO:0038066 GO:0090400 GO:0016508 GO:2000360 GO:0001959 GO:0008105 GO:1902083 GO:0030423 GO:0001754 GO:0035609 GO:0032388 GO:0046677 GO:2000649 GO:0051000 GO:0007202 GO:0001517 GO:0021707 GO:0046010 GO:2000253 GO:0042582 GO:0048842 GO:0060373 GO:0031103 GO:0035999 GO:0035385 GO:0045687 GO:0097062 GO:0002115 GO:0001960 GO:0051127 GO:0051451 GO:0042136 GO:0031062 GO:0008113 GO:0051731 GO:0034504 GO:0001537 GO:0034113 GO:0007157 GO:0014049 GO:0061337 GO:0006112 GO:0016322 GO:0042577 GO:0016247 GO:0042403 GO:0021612 Page 14 Sheet1 GO:0055091 GO:0031017 GO:0032281 GO:0045792 GO:0018279 GO:0046641 GO:0003951 GO:0051443 GO:0060766 GO:0032420 GO:0008536 GO:0050698 GO:0050694 GO:0031225 GO:0016746 GO:0008021 GO:0004702 GO:0032947 GO:0046578 GO:0048278 GO:0070290 GO:0002159 GO:0016264 GO:0010954 GO:0030240 GO:0048845 GO:0055009 GO:0060414 GO:0070309 GO:0001820 GO:0019767 GO:0046010 GO:0090394 GO:2000253 GO:0002051 GO:0006569 GO:0004833 GO:0031952 GO:0034241 GO:0034653 GO:0018586 GO:0018588 GO:0018589 GO:0018590 GO:0018591 GO:0018592 GO:0018593 GO:0018594 GO:0018595 Page 15 Sheet1 GO:0018596 GO:0018597 GO:0018598 GO:0018599 GO:0018600 GO:0034559 GO:0034562 GO:0034786 GO:0034816 GO:0034857 GO:0034858 GO:0034859 GO:0034862 GO:0034870 GO:0034873 GO:0034874 GO:0034888 GO:0034893 GO:0034897 GO:0034903 GO:0034925 GO:0034927 GO:0034928 GO:0034929 GO:0034950 GO:0043823 GO:1903053 GO:0010693 GO:0042637 GO:0002043 GO:0042634 GO:0030485 GO:0060761 GO:0060179 GO:0048659 GO:0007621 GO:0031394 GO:0032849 GO:0043084 GO:0008061 GO:0071294 GO:0031232 GO:2000821 GO:0021533 GO:0005250 GO:0010155 GO:0015180 GO:0021747 GO:0060219 Page 16 Sheet1 GO:0033563 GO:0048495 GO:1990111 GO:0031579 GO:0008535 GO:0018230 GO:0051152 GO:0014033 GO:0046033 GO:0016011 GO:0005219 GO:0034138 GO:0034162 GO:0048672 GO:0004687 GO:0004645 GO:0072687 GO:0070324 GO:0060385 GO:0060978 GO:0034629 GO:0006900 GO:0006405 GO:0043237 GO:0060763 GO:0021891 GO:0035385 GO:0070100 GO:0030157 GO:0014816 GO:0051057 GO:0016202 GO:0021615 GO:0035412 GO:0031826 GO:0006475 GO:0017076 GO:1990246 GO:0001842 GO:0005774 GO:0072321 GO:0060628 GO:0002091 GO:0060164 GO:0061009 GO:0032876 GO:0046825 GO:0000055 GO:0031103 Page 17 Sheet1 GO:0009396 GO:0005111 GO:0006207 GO:0019166 GO:0050672 GO:0019976 GO:0008568 GO:0016139
Recommended publications
  • WO 2018/009838 Al 11 January 2018 (11.01.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/009838 Al 11 January 2018 (11.01.2018) W !P O PCT (51) International Patent Classification: Declarations under Rule 4.17: C12N 5/075 (2010.01) — as to applicant's entitlement to apply for and be granted a (21) International Application Number: patent (Rule 4.1 7(H)) PCT/US2017/041 155 — as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(Hi)) (22) International Filing Date: 07 July 2017 (07.07.2017) Published: — with international search report (Art. 21(3)) (25) Filing Language: English — before the expiration of the time limit for amending the (26) Publication Langi English claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) (30) Priority Data: — with sequence listing part of description (Rule 5.2(a)) 62/359,416 07 July 2016 (07.07.2016) US (71) Applicant: RUBIUS THERAPEUTICS, INC. [US/US]; 620 Memorial Dr #100W, Cambridge, MA 02139 (US). (72) Inventors; and (71) Applicants: HARANDI, Omid [US/US]; 39 Rowena Road, Newton, MA 02459 (US). KHANWALKAR, Ur- jeet [IN/US]; 2 11 Elm Street, Apt. 3, Cambridge, MA 02139 (US). HARIHARAN, Sneha [IN/US]; 18 Hamilton Road, Apt. 407, Arlington, MA 02472 (US). (72) Inventors: KAHVEJIAN, Avak; 2 Beverly Road, Arling ton, MA 02474 (US). MATA-FINK, Jordi; 8 Windsor Rd #1, Somerville, MA 02144 (US).DEANS, Robert, J.; 1609 Ramsgate Court, Riverside, CA 92506 (US).
    [Show full text]
  • Rhodococcus Jostii Strain 8
    Functional characterisation of alkane-degrading monooxygenases in Rhodococcus jostii strain 8 Jindarat Ekprasert A thesis submitted to the School of Environmental Sciences in fulfilment of the requirements for the degree of Doctor of Philosophy September 2014 University of East Anglia Norwich, UK i Contents List of figures viii List of tables xiii Declaration xv Acknowledgements xvi Abbreviations xvii Abstract xxi Chapter 1 introduction 1 1.1. Significance of alkanes in the environment 2 1.1.1. Chemistry of alkanes 2 1.2. The Rhodococcus genus 3 1.2.1. Common characteristics of Rhodococcus spp. 3 1.2.2. Rhodococcus spp. are capable of degrading gaseous alkanes 4 1.2.3. Potential applications of Rhodococcus in biotechnology 5 1.3. Bacterial enzymes responsible for alkane degradation 6 1.3.1. Integral membrane, non-heme iron alkane hydroxylases (AlkB) 6 1.3.2. Soluble di-iron monooxygenases (SDIMO) 8 1.3.2.1. SDIMO classification 10 1.3.2.2. Molecular genetics of SDIMOs 13 1.3.2.3. Mutagenesis of soluble methane monooxygenase 13 1.3.3. Cytochrome P450 alkane hydroxylases 14 3.3.1. Class I P450 14 3.3.2. Class II P450 (CYP52) 15 3.3.3. Class II P450 (CYP2E, CYP4B) 15 1.3.4. Membrane bound copper-containing (and possibly iron-containing) monooxygenases 15 1.4. Alkane metabolisms in Rhodococcus spp. 16 1.4.1. Aerobic metabolism of C2-C4 gaseous alkanes in bacteria 16 1.4.1.1. Ethane (C2H6) metabolism 16 1.4.1.2. Propane (C3H8) metabolism 17 ii 1.4.1.3.
    [Show full text]
  • KEGG Orthology-Based Annotation of the Predicted
    Dunlap et al. BMC Genomics 2013, 14:509 http://www.biomedcentral.com/1471-2164/14/509 DATABASE Open Access KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome Walter C Dunlap1,2, Antonio Starcevic4, Damir Baranasic4, Janko Diminic4, Jurica Zucko4, Ranko Gacesa4, Madeleine JH van Oppen1, Daslav Hranueli4, John Cullum5 and Paul F Long2,3* Abstract Background: Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. Description: Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of
    [Show full text]
  • Modelling of the Melissa Artificial Ecosystem
    ESTEC/CONTRACT 8125/88/NL/‘FG PRF 141315 Modelling of the MELiSSA artificial ecosystem Toward a structured model of the nitrifying compartment - Description of the respiratory chain of nitrifying organisms - Development of assumptions for the reverse electron flow in the respiratory electron transport chain - Stoichiometric description of the nitrification - Determination of KL~ for oxygen transfer limitation TECHNICAL NOTE 23.2 L. Poughon Laboratoire de Genie Chimique Biologique 63177 AUBIERE Cedex, FRANCE April 1995 Technical note 23.2 Toward a structured model of the nitrifying compartment T.N. 23.2: Modelling of the MELiSSA artificial ecosystem TOWARD A STRUCl-URJZD MODEL OF THE NITRIFYING COMPARTMENT L. Poughon. Laboratoire de Genie Chimique Biologique 63177 AUBIERE Cedex. France. INTRODUCTION In the MELiSSA loop the nitrifying compartment has the same function than the nitrifying process in the terrestrial ecosystem (figure 1) which is to provide an edible N-source for plants or micro-organisms (as Spirulines in the case of the MELiSSA loop). The ammoniflcation processes from organic waste (as for example the human waste faeces and urea) are performed in the MELiSSA loop by the 2 first compartments (liquefying and anoxygenic phototrophs compartments). It must be noted that there are some structural differences between the MELiSSA N-loop and the terrestrial ecosystem: l- the MELiSSA loop represent a very simplified part of the N loop encountered on earth; 2- the denitrification process (N mineral -> N2) or the N2 removing (N2 -> N mineral) are not considered 3- the sole N - source is N03- for Spirulina, it is NlQ+ for phototrophs and it is organic N for the crew.
    [Show full text]
  • Relating Metatranscriptomic Profiles to the Micropollutant
    1 Relating Metatranscriptomic Profiles to the 2 Micropollutant Biotransformation Potential of 3 Complex Microbial Communities 4 5 Supporting Information 6 7 Stefan Achermann,1,2 Cresten B. Mansfeldt,1 Marcel Müller,1,3 David R. Johnson,1 Kathrin 8 Fenner*,1,2,4 9 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, 10 Switzerland. 2Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 11 Zürich, Switzerland. 3Institute of Atmospheric and Climate Science, ETH Zürich, 8092 12 Zürich, Switzerland. 4Department of Chemistry, University of Zürich, 8057 Zürich, 13 Switzerland. 14 *Corresponding author (email: [email protected] ) 15 S.A and C.B.M contributed equally to this work. 16 17 18 19 20 21 This supporting information (SI) is organized in 4 sections (S1-S4) with a total of 10 pages and 22 comprises 7 figures (Figure S1-S7) and 4 tables (Table S1-S4). 23 24 25 S1 26 S1 Data normalization 27 28 29 30 Figure S1. Relative fractions of gene transcripts originating from eukaryotes and bacteria. 31 32 33 Table S1. Relative standard deviation (RSD) for commonly used reference genes across all 34 samples (n=12). EC number mean fraction bacteria (%) RSD (%) RSD bacteria (%) RSD eukaryotes (%) 2.7.7.6 (RNAP) 80 16 6 nda 5.99.1.2 (DNA topoisomerase) 90 11 9 nda 5.99.1.3 (DNA gyrase) 92 16 10 nda 1.2.1.12 (GAPDH) 37 39 6 32 35 and indicates not determined. 36 37 38 39 S2 40 S2 Nitrile hydration 41 42 43 44 Figure S2: Pearson correlation coefficients r for rate constants of bromoxynil and acetamiprid with 45 gene transcripts of ECs describing nucleophilic reactions of water with nitriles.
    [Show full text]
  • Comparison of Physiology and Genome-Wide Expression in Two Nitrosomonas Spp
    Comparison of physiology and genome-wide expression in two Nitrosomonas spp. under batch cultivation By Mohammad Ghashghavi A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science In Microbiology and Biotechnology Department of Biological Sciences University of Alberta © Mohammad Ghashghavi, 2014 Abstract: Ammonia oxidizing bacteria (AOB) play a central role in the nitrogen cycle by oxidizing ammonia to nitrite. Nitrosomonas europaea ATCC 19718 has been the single most studied AOB that has contributed to our understanding of chemolithotrophic ammonia oxidation. As a closely related species, Nitrosomonas eutropha C91 has also been extensively studied. Both of these bacteria are involved in wastewater treatment systems and play a crucial part in major losses of ammonium-based fertilizers globally. Although comparative genome analysis studies have been done before, change in genome-wide expression between closely related organisms are scarce. In this study, we compared these two organisms through physiology and transcriptomic experiments during exponential and early stationary growth phase. We found that under batch cultivation, N. europaea produces more N2O while N. eutropha consumes more nitrite. From transcriptomic analysis, we also found that there are selections of motility genes that are highly expressed in N. eutropha during early stationary growth phase and such observation was completely absent in N. europaea. Lastly, principle homologous genes that have been well studied had different patterns of expression in these strains. This study not only gives us a better understanding regarding physiology and genome-wide expression of these two AOB, it also opens a wide array of opportunities to further our knowledge in understanding other closely related species with regards to their evolution, physiology and niche preference.
    [Show full text]
  • A Mass Balance Field Study of the Phytoremediation of Trichloroethylene with Transgenic Poplars Genetically Modified with Cytochrome P450 2E1
    A Mass Balance Field Study of the Phytoremediation of Trichloroethylene with Transgenic Poplars Genetically Modified with Cytochrome P450 2E1 Emily K. Legault A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering University of Washington 2013 Committee: Stuart Strand Dave Stahl Sharon Doty Program Authorized to Offer Degree: Civil and Environmental Engineering ©Copyright 2013 Emily K. Legault Table of Contents 1 Abstract .................................................................................................................................... 1 2 Introduction ............................................................................................................................. 2 3 Materials and Methods ............................................................................................................ 6 3.1 Field Site Description ....................................................................................................... 6 3.2 Water Management and Chemical Dosing....................................................................... 7 3.3 Water Sampling and Analysis .......................................................................................... 7 3.4 Soil Sampling and Analysis ............................................................................................. 9 3.5 Soil and Stem Volatilization .......................................................................................... 10 3.6 Evapotranspiration ........................................................................................................
    [Show full text]
  • 9. Effects on Other Organisms in the Laboratory and Field
    9. EFFECTS ON OTHER ORGANISMS IN THE LABORATORY AND FIELD 9.1 Laboratory experiments VC has been shown to be mutagenic in several in vitro and in vivo test systems derived from organisms belonging to different taxonomic levels. The details referring to bacterial, fungal and mammalian cell lines or to whole organisms like insects or plants are discussed in section 7.6. The carcinogenic effects of VC are addressed in section 7.7. The following chapter focuses on investigations of other signs of toxicity relevant to organisms that may be exposed to VC in the environment. Standard tests on survival and reproduction were not available. Care must be taken when interpreting the toxicity results available as many were obtained from static tests using nominal exposure concentrations. Such tests will have large losses of VC due to volatilization, thus reducing the actual exposure to VC. 9.1.1 Microorganisms 9.1.1.1 Water A consortium of anaerobic microorganisms (species not identified; initially obtained from municipal sludge) was used for testing VC toxicity. Both batch and semi-continuous assays were conducted. VC had an inhibitory effect on the total gas production, beginning at a concentration of 5.4 mg/litre and resulting in an EC50 value of approximately 40 mg/litre, as seen in the batch assay over 3.5 days. In the semi-continuous assay lasting 15 days, the threshold was greater than 64 mg/litre (the highest concentration tested), probably due to volatilization of VC (Stuckey et al., 1980). The growth of five mixed bacterial populations (isolated from natural aquatic systems) was not affected, as compared to controls, in liquid cultures (closed flasks; 21 °C; over 5 weeks) containing up to 900 mg VC/litre (Hill et al., 1976b).
    [Show full text]
  • Genome-Wide Transcriptome Profiling of Mycobacterium Smegmatis MC2
    International Journal of Molecular Sciences Article Genome-Wide Transcriptome Profiling of Mycobacterium smegmatis MC2 155 Cultivated in Minimal Media Supplemented with Cholesterol, Androstenedione or Glycerol Qun Li †, Fanglan Ge †, Yunya Tan, Guangxiang Zhang and Wei Li * College of Life Sciences, Sichuan Normal University, Chengdu 610101, China; [email protected] (Q.L.); [email protected] (F.G.); [email protected] (Y.T.); [email protected] (G.Z.) * Correspondence: [email protected]; Tel.: +86-28-8448-0854 † These authors equally contributed to this work. Academic Editor: Patrick C. Y. Woo Received: 24 February 2016; Accepted: 28 April 2016; Published: 7 May 2016 Abstract: Mycobacterium smegmatis strain MC2 155 is an attractive model organism for the study of M. tuberculosis and other mycobacterial pathogens, as it can grow well using cholesterol as a carbon resource. However, its global transcriptomic response remains largely unrevealed. In this study, M. smegmatis MC2 155 cultivated in androstenedione, cholesterol and glycerol supplemented media were collected separately for a RNA-Sequencing study. The results showed that 6004, 6681 and 6348 genes were expressed in androstenedione, cholesterol and glycerol supplemented media, and 5891 genes were expressed in all three conditions, with 237 specially expressed in cholesterol added medium. A total of 1852 and 454 genes were significantly up-regulated by cholesterol compared with the other two supplements. Only occasional changes were observed in basic carbon and nitrogen metabolism, while almost all of the genes involved in cholesterol catabolism and mammalian cell entry (MCE) were up-regulated by cholesterol, but not by androstenedione. Eleven and 16 gene clusters were induced by cholesterol when compared with glycerol or androstenedione, respectively.
    [Show full text]
  • Structural Study of Soluble Ammonia Monooxygenase
    Structural study of soluble ammonia monooxygenase Trevor Obrinsky1, Alex McGurk1, Hasan DeMirci1,2 1PULSE Institute. 2Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. +Contact: [email protected] Introduction 0.16 What makes Nitrosomonas europaea (N.e.) so 0.14 unique is its ability to generate all it’s required 0.12 energies from the two step conversion of 0.1 ammonia into nitrite. Ammonia monooxygenase (AMO) is the first of two enzymes in N.europaea 0.08 responsible for the oxidation of ammonia into nitrite. AMO catalyzes the conversion of ammonia 0.06 Absorbance Absorbance at 600 nm (Au) into the hydroxylamine intermediate. 0.04 AMO + - 0.02 NH3 + O2 + 2H + 2e NH2OH + H2O Fig. 3: Graph of absorbance, salt 0 0 20 40 60 80 100 120 concentration, and conductance during the Ammonia is useless to most organisms but this -0.02 elution of protein in a strong anion conversion into nitrite (part of the nitrogen cycle) Time (Hours) makes it accessible to other organisms that need exchange column. Absorbance peaks it for macromolecular synthesis. We are Fig. 1: Growth curve of represent potential subunits of AMO. interested in Nitrosomonas europaea and the Nitrosomonas europaea used to Bound protein was eluted across a 100 mL structure of ammonia monooxygenase due to its salt gradient from 0-1 M. crucial role in the nitrogen cycle. determine ideal time to harvest Keywords: Nitrosomonas europaea, ammonia N. europaea cells for maximum A B monooxygenase, nitrogen cycle AMO concentration Research Lee, et al. 150 mL N.e.
    [Show full text]
  • Effects of Ammonia, Ph, and Nitrite on the Physiology of Nitrosmonas
    AN ABSTRACT OF THE THESIS OF Lisa Yael Stein for the degree of Doctor of Philosophy in Molecular and Cellular Bioloav presented on May 14, 1998. Title: Effects of Ammonia, pH, and Nitrite on the Physioloav of Nitrosomonas europaea, an Obligate Ammonia-Oxidizing Bacterium. Redacted for Privacy Abstract approved: Daniel J. Arp Nitrosomonas europaea is a soil bacterium that derives energy solely from the oxidation of ammonia to nitrite. The first enzyme in ammonia metabolism, ammonia monooxygenase (AMO), is regulated transcriptionally and translationally by NH3. When cells of N. europaea were incubated with 50 mM ammonium, molecules of AMO were synthesized and the ammonia- oxidizing activity doubled over a 3 h period. In the same incubation, the activity decreased over the next 5 h to about the initial level. The decrease in activity was correlated to a decrease in the pH of the medium, from 8 to 5.6, which lowered the availability of the substrate for AMO, NH3, by favoring the formation of NH4+. Approximately half of the ammonium was oxidized in the incubations before reaching the limiting pH for ammonia oxidation. When cells were incubated in concentrations of ammonium that were consumed to completion, 15 mM, about 80% of the total ammonia oxidation activity was lost after 24 h. In cells incubated without ammonium or with a non- limiting amount, 50 mM, that was not consumed to completion due to acidification of the medium, only about 20-30% of the activity was lost after 24 h. The 80% loss of ammonia oxidation activity in the presence of limiting ammonium concentrations was specific and was not due to differences in AMO transcription or protein degradation.
    [Show full text]
  • The NIH Shift Is a Chemical Shift of Substituents in Aromatic
    NIH SHIFT LITERATURE RESEARCH BY: NICOLE OWENS UNDER THE DIRECTION OF DR. S. KUMAR AT GOVERNORS STATE UNIVERSITY IN UNIVERSITY PARK ILLINOIS May 16, 2012 Report Summary: The National Institute of Health (NIH shift) is a chemical shift of substituents in chemical reactions named after the founders who first observed and reported this 1, 2 rearrangement. This chemical shift of substituents usually involves aromatic compounds but has also been observed in nonaromatic hydroxylation reactions. The substituents that undergo this shift are hydrogen, deuterium, halogens, acyl, aryl and alkyl groups. It is an important aspect that is a requirement in the hydroxylation of aromatic compounds by monooxygenase enzymes. In the hydroxylation of aromatic compounds the substituents undergo a 1, 2 migration reaction also known as the NIH shift, where the transfer of an oxygen atom in the monooxygenase enzyme catalyzed reaction is electrophilic, and the substituents that participate in this mechanism activate the aromatic ring toward an electrophilic attack. Deactivating groups consist of electron withdrawing groups that activate the aromatic ring towards an electrophilic attack. These groups are classified as weak, moderate, and strong deactivating groups that attach to a ring and allows for the removal of electron density from the aromatic ring. The weak deactivating groups direct the electrophiles to attack the benzene molecule at the ortho and para positions on the ring. On the other hand, strongly and moderately deactivating groups direct attacks to the meta position of the aromatic ring. Dr. Kumar has shown an acyl migration in an intramolecular NIH shift study at Governors State University. In this literature search I have examine the NIH shift in different aspects in order to build on and give insight into Dr.
    [Show full text]