Practical-Electronic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Variable Stars Observer Bulletin
Amateurs' Guide to Variable Stars September-October 2013 | Issue #2 Variable Stars Observer Bulletin ISSN 2309-5539 Twenty new W Ursae Majoris-type eclipsing binaries from the Catalina Sky Survey Details for 20 new WUMa systems are presented, along with a preliminary The FU Orionis phenomenon model of the FU Orionis stars are pre-main-sequence totally eclipsing eruptive variables which appear to be a system GSC stage in the development of T Tauri 03090-00153. stars. Image: FU Orionis. Credit: ESO NSVS 5860878 = Dauban V 171 Carbon in the sky: A new Mira variable in Cygnus a few remarkable carbon stars The list of the most interesting and bright carbon stars for northern observers is presented. Right: TT Cygni. A carbon star. Credit & Copyright: H.Olofsson (Stockholm Nova Observatory) et al. Delphini 2013 Nova has reached magnitude 4.3 visual The "Heavenly Owl" on August 16 observatory: seeing above the Black Sea waterfront VS-COMPAS Project: variable stars research and data mining. More at http://vs-compas.belastro.net Variable Stars Observer Bulletin Amateurs' Guide to Variable Stars September-October 2013 | Issue #2 C O N T E N T S 04 NSVS 5860878 = Dauban V 171: a new Mira variable in Cygnus by Ivan Adamin, Siarhey Hadon A new Mira variable in the constellation of Cygnus is presented. The variability of the NSVS 5860878 source was detected in January of 2012. Lately, the object was identified as the Dauban V171. A revision is submitted to the VSX. 06 Twenty new W Ursae Majoris-type eclipsing binaries Credit: Justin Ng from the Catalina Sky Survey by Stefan Hümmerich, Klaus Bernhard, Gregor Srdoc 16 Nova Delphini 2013: a naked-eye visible flare in A short overview of eclipsing binary northern skies stars and their traditional by Andrey Prokopovich classification scheme is given, which concentrates on W Ursae Majoris On August 14, 2013 a new bright star (WUMa)-type systems. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Interstellarum 25 Schließen Wir Den Ersten Jahrgang Der Neuen Interstellarum-Hefte Ab
Liebe Leserinnen, liebe Leser, Meade gegen Celestron, das ist das große Duell der beiden Teleskopgiganten aus Amerika. Wir sind stolz darauf, als erste deutschsprachige Zeitschrift einen fairen Zweikampf der weltgröß- ten Fernrohrhersteller anbieten zu können; un- getrübt von wirtschaftlichen oder redaktionellen Vorbehalten. Dazu haben wir die neuen aufre- genden GPS-Teleskope von Meade und Celes- tron in einem Produktvergleich gegenüberge- stellt. Im ersten Teil in diesem Heft erfahren Sie mehr über Mechanik und Elektronik der beiden Computerteleskope (Seite 60); die Ergebnisse der Praxis unter den Sternen lesen Sie dann in einem kommenden Heft. Mit interstellarum 25 schließen wir den ersten Jahrgang der neuen interstellarum-Hefte ab. Ein Plus von 30% bei den Abonnentenzahlen spricht für unseren Weg, den wir konsequent fortsetzen Polarlichter in Deutschland (Foto: Thomas Jäger) werden. Dabei möchten wir verstärkt das Augen- merk auf hochqualitative Beiträge für praktisch tätige Amateurastronomen lenken. werden wir uns zusätzlich der Jupiterbeobach- tung und dem Merkurdurchgang vom 7.5.2003 2003 wird bei interstellarum zum Jahr der widmen. Schließlich stehen 2003 mit zwei Planetenbeobachtung ernannt. Auftakt ist der Mondfinsternissen und einer partiellen Sonnen- Beitrag zur Beobachtung der Saturnringe in die- finsternis drei weitere Großereignisse auf dem ser Ausgabe (Seite 34). Mit dem nächsten Heft Programm. beginnen wir zusätzlich eine intensive Vorberei- tung auf die große Mars-Opposition in diesem Was wir noch 2003 geplant haben, ist auf Sommer mit Beiträgen zu verschiedenen prakti- www.interstellarum.de nachzulesen. Ihren eige- schen Themenkreisen in jedem Heft. Verstärkt nen Bericht nehmen wir gerne entgegen. Mit interstellarum 25 endet die Comic-Serie Astromax (Seite 80), die Schöpfer Rainer Töpler aus Zeitgründen aufgeben muss – vielen Dank für die sechs kurzweiligen Geschichtchen. -
The ELODIE Survey for Northern Extra-Solar Planets IV. HD196885, A
Astronomy & Astrophysics manuscript no. hd196885 c ESO 2018 December 2, 2018 The ELODIE survey for northern extra-solar planets IV. HD 196885, a close binary star with a 3.7-year planet A.C.M. Correia1,2, S. Udry2, M. Mayor2, A. Eggenberger3,2, D. Naef4, J.-L. Beuzit3, C. Perrier3, D. Queloz2, J.-P. Sivan5, F. Pepe5, N.C. Santos6,2, and D. S´egransan5 1 Departamento de F´ısica da Universidade de Aveiro, Campus Universit´ario de Santiago, 3810-193 Aveiro, Portugal 2 Observatoire de Gen`eve, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland 3 Laboratoire d’Astrophysique de Grenoble, Universit´eJoseph Fourier, BP 53, 38041 Grenoble Cedex 9, France 4 European Southern Observatory, Casilla 19001, Santiago 19, Chile 5 Laboratoire d’Astrophysique de Marseille, Traverse du Siphon BP 8, 13376 Marseille Cedex 12, France 6 Centro de Astrof´ısica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal Received 01 October, 2006; accepted ?? ABSTRACT Aims. We aim significantly increase the number of detected extra-solar planets in a magnitude-limited sample to improve our knowl- edge of their orbital elements distributions and thus obtain better constraints for planet-formation models. Methods. Radial-velocity data were taken at Haute-Provence Observatory (OHP, France) with the ELODIE echelle spectrograph. Results. We report the presence of a planet orbiting HD 196885 A, with an orbital period of 1349 days. This star was previously sug- gested to host a 386-day planet, but we cannot confirm its existence. We also detect the presence of a stellar companion, HD 196885 B, and give some constraints on its orbit. -
Arxiv:2006.10868V2 [Astro-Ph.SR] 9 Apr 2021 Spain and Institut D’Estudis Espacials De Catalunya (IEEC), C/Gran Capit`A2-4, E-08034 2 Serenelli, Weiss, Aerts Et Al
Noname manuscript No. (will be inserted by the editor) Weighing stars from birth to death: mass determination methods across the HRD Aldo Serenelli · Achim Weiss · Conny Aerts · George C. Angelou · David Baroch · Nate Bastian · Paul G. Beck · Maria Bergemann · Joachim M. Bestenlehner · Ian Czekala · Nancy Elias-Rosa · Ana Escorza · Vincent Van Eylen · Diane K. Feuillet · Davide Gandolfi · Mark Gieles · L´eoGirardi · Yveline Lebreton · Nicolas Lodieu · Marie Martig · Marcelo M. Miller Bertolami · Joey S.G. Mombarg · Juan Carlos Morales · Andr´esMoya · Benard Nsamba · KreˇsimirPavlovski · May G. Pedersen · Ignasi Ribas · Fabian R.N. Schneider · Victor Silva Aguirre · Keivan G. Stassun · Eline Tolstoy · Pier-Emmanuel Tremblay · Konstanze Zwintz Received: date / Accepted: date A. Serenelli Institute of Space Sciences (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E- 08193, Spain and Institut d'Estudis Espacials de Catalunya (IEEC), Carrer Gran Capita 2, Barcelona, E-08034, Spain E-mail: [email protected] A. Weiss Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany C. Aerts Institute of Astronomy, Department of Physics & Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium and Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands G.C. Angelou Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany D. Baroch J. C. Morales I. Ribas Institute of· Space Sciences· (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E-08193, arXiv:2006.10868v2 [astro-ph.SR] 9 Apr 2021 Spain and Institut d'Estudis Espacials de Catalunya (IEEC), C/Gran Capit`a2-4, E-08034 2 Serenelli, Weiss, Aerts et al. -
The Circumstellar Environments of B-Emission Stars by Optical Interferometry
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 10-13-2016 12:00 AM The Circumstellar Environments of B-emission Stars by Optical Interferometry Bethany Grzenia The University of Western Ontario Supervisor C. E. Jones The University of Western Ontario Graduate Program in Astronomy A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Bethany Grzenia 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Grzenia, Bethany, "The Circumstellar Environments of B-emission Stars by Optical Interferometry" (2016). Electronic Thesis and Dissertation Repository. 4216. https://ir.lib.uwo.ca/etd/4216 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Thesis advisor: Professor C. E. Jones Bethany Grzenia Abstract A series of B-emission (Be) stars was observed interferometrically and numerically mod- elled to be consistent with the observations. Uniform geometrical disks were used to make first-order inferences about the configuration of the disk systems’ extended structures and their extent on the sky. Later, the Bedisk-Beray-2dDFTpipeline was used to make sophis- ticated non-local thermodynamic equilibrium (LTE) calculations of the conditions within the disks. In the first instance, sixteen stars were observed in the near-infrared (K-band, 2.2µm) with the Palomar Testbed Interferometer (PTI). The Bedisk portion of the pipeline was used to model disk temperature and density structures for B0, B2, B5 and B8 spectral types, which were then compared to observations of stars most closely matching one of these types. -
00E the Construction of the Universe Symphony
The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope -
GEORGE HERBIG and Early Stellar Evolution
GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study. -
Ann16 17.Pdf
Front cover page: A system of channels (centered at 20.53◦N, -118.49◦E) emanated from the graben near to Jovis Tholus region, Mars. MRO-CTX stereo pair derived DTM draped over the CTX image. Presence of multiple channels, braided-like channel network at the downstream end, and terraces suggests their plausible fluvial origin. Lava flow into the channels termini hindered the real extent of the channel network, b) an example of a streamlined island form ed within the channel and c) an example of a curvilinear island suggesting the possible flow direction. Inside back cover pages: Events at PRL Back cover page: Top Panel: Alpha Particle X-ray Spectrometer on-board Chandrayaan-2 rover [Mechanical Configuration] Middle Panel: AMS Laboratory Bottom Panels: Pre-monsoon and post-monsoon δ18O & d-excess maps of shallow groundwater in India. Compilation and Layout by: Office of the Dean, PRL. Published by: Physical Research Laboratory, Ahmedabad. Contact: Physical Research Laboratory Navrangpura Ahmedabad - 380 009, India Phone: +91-79-2631 4000 / 4855 Fax: +91-79-2631 4900 Cable: RESEARCH Email: [email protected] Website: https://www.prl.res.in/ PRL Annual Report 2016 { 2017 PRL Council of Management Three nominees from Govt. of India Professor U.R. Rao, Former Chairman, ISRO Chairman Antariksh Bhavan, New BEL Road Bengaluru-560231 Shri A. S. Kiran Kumar, Secretary, Member Department of Space, Govt. of India & Chairman, ISRO Antariksh Bhavan, Bengaluru-560231 Shri A. Vijay Anand, IRS, Additional Secretary & FA Member Department of Space, Govt. of India (Up to 31.08.2016) Antariksh Bhavan, Bengaluru-560231 Shri S. -
TRUE MASSES of RADIAL-VELOCITY EXOPLANETS Robert A
APP Template V1.01 Article id: apj513330 Typesetter: MPS Date received by MPS: 19/05/2015 PE: CE : LE: UNCORRECTED PROOF The Astrophysical Journal, 00:000000 (28pp), 2015 Month Day © 2015. The American Astronomical Society. All rights reserved. TRUE MASSES OF RADIAL-VELOCITY EXOPLANETS Robert A. Brown Space Telescope Science Institute, USA; [email protected] Received 2015 January 12; accepted 2015 April 14; published 2015 MM DD ABSTRACT We study the task of estimating the true masses of known radial-velocity (RV) exoplanets by means of direct astrometry on coronagraphic images to measure the apparent separation between exoplanet and host star. Initially, we assume perfect knowledge of the RV orbital parameters and that all errors are due to photon statistics. We construct design reference missions for four missions currently under study at NASA: EXO-S and WFIRST-S, with external star shades for starlight suppression, EXO-C and WFIRST-C, with internal coronagraphs. These DRMs reveal extreme scheduling constraints due to the combination of solar and anti-solar pointing restrictions, photometric and obscurational completeness, image blurring due to orbital motion, and the “nodal effect,” which is the independence of apparent separation and inclination when the planet crosses the plane of the sky through the host star. Next, we address the issue of nonzero uncertainties in RV orbital parameters by investigating their impact on the observations of 21 single-planet systems. Except for two—GJ 676 A b and 16 Cyg B b, which are observable only by the star-shade missions—we find that current uncertainties in orbital parameters generally prevent accurate, unbiased estimation of true planetary mass. -
Annual Report 1979
ANNUAL REPORT 1979 EUROPEAN SOUTHERN OBSERVATORY Cover Photograph This image is the result 0/ computer analysis through the ESO image-processing system 0/ the interaeting pair 0/galaxies ES0273-JG04. The spiral arms are disturbed by tidal/orces. One 0/ the two spirals exhibits Sey/ert characteristics. The original pfate obtained at the prime/ocus 0/ the 3.6 m telescope by S. Laustsen has been digitized with the new PDS machine in Geneva. ANNUAL REPORT 1979 presented to the Council by the Director-General, Prof. Dr. L. Woltjer Organisation Europeenne pour des Recherehes Astronomiques dans I'Hemisphere Austral EUROPEAN SOUTHERN OBSERVATORY TABLE OF CONTENTS INTRODUCTION ............................................ 5 RESEARCH................................................. 7 Schmidt Telescope; Sky Survey and Atlas Laboratory .................. 8 Joint Research with Chilean Institutes 9 Conferences and Workshops .................................... 9 FACILITIES Telescopes 11 Instrumentation 12 Image Processing ............................................. 13 Buildings and Grounds 15 FINANCIAL AND ORGANIZATIONAL MATTERS ................ 17 APPENDIXES AppendixI-UseofTeiescopes 22 Appendix II - Programmes 33 Appendix III - Publications ..................................... 47 Appendix IV - Members of Council, Committees and Working Groups for 1980. ................................................... 55 3 INTRODUCTION Several instruments were completed during ihe year, while others progressed weIl. Completed and sent to La Silla for installation -
PHILIP STEVEN MUIRHEAD, PHD Boston University 725 Commonwealth Ave
PHILIP STEVEN MUIRHEAD, PHD Boston University 725 Commonwealth Ave. Rm. 403 Boston, MA 02215 [email protected]; T: 617-353-6553 Education Doctor of Philosophy, Cornell University, Ithaca, NY, USA, August 2011 Major Field: Astronomy, Minor Field: Applied Engineering in Physics Dissertation: Externally Dispersed Interferometry for Terrestrial Exoplanet Detection https://ecommons.cornell.edu/handle/1813/29454 Master of Science, Cornell University, Ithaca, NY, USA, August 2008 Major Field: Astronomy, Minor Field: Applied Engineering in Physics Bachelor of Science, University of Michigan, Ann Arbor, MI, USA, April 2005 Concentrations: Astronomy & Astrophysics, General Physics Programs: The LSA Honors Program, The Residential College Primary Appointments Assistant Professor, Department of Astronomy, Boston University, July 2014-present NASA Hubble Postdoctoral Fellow, Department of Astronomy, Boston University, funds awarded by the Space Telescope Science Institute, September 2013-June 2014 Postdoctoral Scholar, Division of Physics, Math, and Astronomy, California Institute of Technology, July 2011 to August 2013 Secondary Appointments Special Member of the Graduate Faculty, University of Toledo, Toledo, OH, Dec. 2018 to May 2021 CfA Collaborator, Solar, Stellar and Planetary Sciences Division, Smithsonian Astrophysical Observatory, Cambridge, MA, June 2018 to June 2021 Natural Sciences Faculty, The Core Curriculum, Boston University, September 2016-present Visiting Scientist, Kavli Institute for Theoretical Physics, Santa Barbara, CA, April-June 2019 Affiliated Astronomer, The Maria Mitchell Association, Nantucket, MA, Summer 2018, Summer 2019 Anacapa Scholar, The Thacher School, Ojai, CA, October 2015, April 2019 Awards and Distinctions Scialog Fellow, Research Corporation for the Advancement of Science, Tucson, AZ, May 2019 Templeton Award for Excellence in Undergraduate Advising and Mentoring, College of Arts and Sciences, Boston University, May 2018 Hubble Postdoctoral Fellowship, Space Telescope Science Institute, Baltimore, MD, September 2013 Z.