Spectacular Changes Relationships. Dramatically to the Keeps Changing Very Annoying. If Actuopteridologists Palaeobotanists B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Spores of Serpocaulon (Polypodiaceae): Morphometric and Phylogenetic Analyses
Grana, 2016 http://dx.doi.org/10.1080/00173134.2016.1184307 Spores of Serpocaulon (Polypodiaceae): morphometric and phylogenetic analyses VALENTINA RAMÍREZ-VALENCIA1,2 & DAVID SANÍN 3 1Smithsonian Tropical Research Institute, Center of Tropical Paleocology and Arqueology, Grupo de Investigación en Agroecosistemas y Conservación de Bosques Amazonicos-GAIA, Ancón Panamá, Republic of Panama, 2Laboratorio de Palinología y Paleoecología Tropical, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia, 3Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia Caquetá, Colombia Abstract The morphometry and sculpture pattern of Serpocaulon spores was studied in a phylogenetic context. The species studied were those used in a published phylogenetic analysis based on chloroplast DNA regions. Four additional Polypodiaceae species were examined for comparative purposes. We used scanning electron microscopy to image 580 specimens of spores from 29 species of the 48 recognised taxa. Four discrete and ten continuous characters were scored for each species and optimised on to the previously published molecular tree. Canonical correspondence analysis (CCA) showed that verrucae width/verrucae length and verrucae width/spore length index and outline were the most important morphological characters. The first two axes explain, respectively, 56.3% and 20.5% of the total variance. Regular depressed and irregular prominent verrucae were present in derived species. However, the morphology does not support any molecular clades. According to our analyses, the evolutionary pathway of the ornamentation of the spores is represented by depressed irregularly verrucae to folded perispore to depressed regular verrucae to irregularly prominent verrucae. Keywords: character evolution, ferns, eupolypods I, canonical correspondence analysis useful in phylogenetic analyses of several other Serpocaulon is a fern genus restricted to the tropics groups of ferns (Wagner 1974; Pryer et al. -
New Jan16.2011
Spring 2011 Mail Order Catalog Cistus Nursery 22711 NW Gillihan Road Sauvie Island, OR 97231 503.621.2233 phone 503.621.9657 fax order by phone 9 - 5 pst, visit 10am - 5pm, fax, mail, or email: [email protected] 24-7-365 www.cistus.com Spring 2011 Mail Order Catalog 2 USDA zone: 2 Symphoricarpos orbiculatus ‘Aureovariegatus’ coralberry Old fashioned deciduous coralberry with knock your socks off variegation - green leaves with creamy white edges. Pale white-tinted-pink, mid-summer flowers attract bees and butterflies and are followed by bird friendly, translucent, coral berries. To 6 ft or so in most any normal garden conditions - full sun to part shade with regular summer water. Frost hardy in USDA zone 2. $12 Caprifoliaceae USDA zone: 3 Athyrium filix-femina 'Frizelliae' Tatting fern An unique and striking fern with narrow fronds, only 1" wide and oddly bumpy along the sides as if beaded or ... tatted. Found originally in the Irish garden of Mrs. Frizell and loved for it quirkiness ever since. To only 1 ft tall x 2 ft wide and deciduous, coming back slowly in spring. Best in bright shade or shade where soil is rich. Requires summer water. Frost hardy to -40F, USDA zone 3 and said to be deer resistant. $14 Woodsiaceae USDA zone: 4 Aralia cordata 'Sun King' perennial spikenard The foliage is golden, often with red stems, and dazzling on this big and bold perennial, quickly to 3 ft tall and wide, first discovered in a department store in Japan by nurseryman Barry Yinger. Spikes of aralia type white flowers in summer are followed by purple-black berries. -
Palaeocene–Eocene Miospores from the Chicxulub Impact Crater, Mexico
Palynology ISSN: 0191-6122 (Print) 1558-9188 (Online) Journal homepage: https://www.tandfonline.com/loi/tpal20 Palaeocene–Eocene miospores from the Chicxulub impact crater, Mexico. Part 1: spores and gymnosperm pollen Vann Smith, Sophie Warny, David M. Jarzen, Thomas Demchuk, Vivi Vajda & The Expedition 364 Science Party To cite this article: Vann Smith, Sophie Warny, David M. Jarzen, Thomas Demchuk, Vivi Vajda & The Expedition 364 Science Party (2019): Palaeocene–Eocene miospores from the Chicxulub impact crater, Mexico. Part 1: spores and gymnosperm pollen, Palynology, DOI: 10.1080/01916122.2019.1630860 To link to this article: https://doi.org/10.1080/01916122.2019.1630860 View supplementary material Published online: 22 Jul 2019. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tpal20 PALYNOLOGY https://doi.org/10.1080/01916122.2019.1630860 Palaeocene–Eocene miospores from the Chicxulub impact crater, Mexico. Part 1: spores and gymnosperm pollen Vann Smitha,b , Sophie Warnya,b, David M. Jarzenc, Thomas Demchuka, Vivi Vajdad and The Expedition 364 Science Party aDepartment of Geology and Geophysics, LSU, Baton Rouge, LA, USA; bMuseum of Natural Science, LSU, Baton Rouge, LA, USA; cCleveland Museum of Natural History, Cleveland, OH, USA; dSwedish Museum of Natural History, Stockholm, Sweden ABSTRACT KEYWORDS In the summer of 2016, the International Ocean Discovery Program (IODP) Expedition 364 cored Mexico; miospores; through the post-impact strata of the end-Cretaceous Chicxulub impact crater, Mexico. Core samples Palaeocene; Eocene; – were collected from the post-impact successions for terrestrial palynological analysis, yielding a rare Cretaceous Paleogene Danian to Ypresian high-resolution palynological assemblage. -
Wfs57 Southern Wet Ash Swamp Factsheet
WET FOREST SYSTEM WFs57 Southern Floristic Region Southern Wet Ash Swamp Wet hardwood forests on mucky or peaty soils in areas of groundwater seepage, most often on level stream or river terraces at bases of steep slopes. Community is uncommon and often present as small inclusions within larger forest areas. Vegetation Structure & Composition Description is based on summary of vegetation data from 32 plots (relevés) • Ground layer is characterized by raised peaty hummocks, with open pools and rivulets in seepage areas. Wetland species such as common marsh marigold (Caltha palustris), touch-me-nots (Impatiens spp.), and fowl manna grass (Glyceria striata) are common in wet areas, with Virginia creeper (Parthenocissus spp.), jack-in-the-pulpit (Ari- saema triphyllum), wood nettle (Laportea canadensis), wild geranium (Geranium mac- ulatum), common enchanter’s nightshade (Circaea lutetiana), tall coneflower (Rud- beckia laciniata), and other mesic or wet- mesic forest species present on hummocks. Skunk cabbage (Symplocarpus foetidus), false mermaid (Floerkea proserpinacoides), brome-like sedge (Carex bromoides), and smooth-sheathed sedge (C. laevivaginata) are sometimes abundant in seepage zones and in Minnesota are essentially restricted to this community. • Shrub layer is sparse (5-25% cover). Black ash seedlings or saplings are almost always present, often with wild black currant (Ribes americanum), chokecherry (Prunus virginiana), and nannyberry (Viburnum lentago). • Subcanopy, when present, is patchy to interrupted (25-75% cover) and generally not well differentiated from canopy. • Canopy is patchy to interrupted, with trees often absent from localized areas of groundwater discharge and in some instances limited to margins of the community around open peaty upwelling zones. -
Diversity and Distribution of Vascular Epiphytic Flora in Sub-Temperate Forests of Darjeeling Himalaya, India
Annual Research & Review in Biology 35(5): 63-81, 2020; Article no.ARRB.57913 ISSN: 2347-565X, NLM ID: 101632869 Diversity and Distribution of Vascular Epiphytic Flora in Sub-temperate Forests of Darjeeling Himalaya, India Preshina Rai1 and Saurav Moktan1* 1Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 700 019, West Bengal, India. Authors’ contributions This work was carried out in collaboration between both authors. Author PR conducted field study, collected data and prepared initial draft including literature searches. Author SM provided taxonomic expertise with identification and data analysis. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2020/v35i530226 Editor(s): (1) Dr. Rishee K. Kalaria, Navsari Agricultural University, India. Reviewers: (1) Sameh Cherif, University of Carthage, Tunisia. (2) Ricardo Moreno-González, University of Göttingen, Germany. (3) Nelson Túlio Lage Pena, Universidade Federal de Viçosa, Brazil. Complete Peer review History: http://www.sdiarticle4.com/review-history/57913 Received 06 April 2020 Accepted 11 June 2020 Original Research Article Published 22 June 2020 ABSTRACT Aims: This communication deals with the diversity and distribution including host species distribution of vascular epiphytes also reflecting its phenological observations. Study Design: Random field survey was carried out in the study site to identify and record the taxa. Host species was identified and vascular epiphytes were noted. Study Site and Duration: The study was conducted in the sub-temperate forests of Darjeeling Himalaya which is a part of the eastern Himalaya hotspot. The zone extends between 1200 to 1850 m amsl representing the amalgamation of both sub-tropical and temperate vegetation. -
Morphological and Anatomical Adaptations to Dry, Shady Environments in Adiantum Reniforme Var
Morphological and anatomical adaptations to dry, shady environments in Adiantum reniforme var. sinense (Pteridaceae) Di Wu1, Linbao Li1, Xiaobo Ma1, Guiyun Huang1 and Chaodong Yang2 1 Rare Plants Research Institute of Yangtze River, Three Gorges Corporation, Yichang, China 2 Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China ABSTRACT The natural distribution of the rare perennial fern Adiantum reniforme var. sinense (Pteridaceae), which is endemic to shady cliff environments, is limited to small areas of Wanzhou County, Chongqing, China. In this study, we used brightfield and epifluorescence microscopy to investigate the anatomical structures and histochemical features that may allow this species to thrive in shady, dry cliff environments. The A. reniforme var. sinense sporophyte had a primary structure and a dictyostele. The plants of this species had an endodermis, sclerenchyma layers and hypodermal sterome, reflecting an adaption to dry cliff environments. Blades had a thin cuticle and isolateral mesophyll, suggesting a tolerance of shady environments. These characteristics are similar to many sciophyte ferns such as Lygodium japonicum and Pteris multifida. Thus, the morphological and anatomical characteristics of A. reniforme var. sinense identified in this study are consistent with adaptations to shady, dry cliff environments. Subjects Conservation Biology, Plant Science Keywords Endodermis, Dictyostele, Sclerenchyma layer, Suberin lamellae, Thin cuticle Submitted 14 April 2020 Accepted 24 August 2020 INTRODUCTION Published 30 September 2020 Adiantum reniforme var. sinense (Pteridaceae, subfamily Vittarioideae) is a rare Corresponding authors Guiyun Huang, cliff-dwelling perennial pteridophyte, with a natural distribution limited to small areas of [email protected] Wanzhou County, Chongqing, China. -
American Fern Journal
AMERICAN FERN JOURNAL QUARTERLY JOURNAL OF THE AMERICAN FERN SOCIETY Broad-Scale Integrity and Local Divergence in the Fiddlehead Fern Matteuccia struthiopteris (L.) Todaro (Onocleaceae) DANIEL M. KOENEMANN Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, CA 91711-3157, e-mail: [email protected] JACQUELINE A. MAISONPIERRE University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] DAVID S. BARRINGTON University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] American Fern Journal 101(4):213–230 (2011) Broad-Scale Integrity and Local Divergence in the Fiddlehead Fern Matteuccia struthiopteris (L.) Todaro (Onocleaceae) DANIEL M. KOENEMANN Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, CA 91711-3157, e-mail: [email protected] JACQUELINE A. MAISONPIERRE University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] DAVID S. BARRINGTON University of Vermont, Department of Plant Biology, Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, e-mail: [email protected] ABSTRACT.—Matteuccia struthiopteris (Onocleaceae) has a present-day distribution across much of the north-temperate and boreal regions of the world. Much of its current North American and European distribution was covered in ice or uninhabitable tundra during the Pleistocene. Here we use DNA sequences and AFLP data to investigate the genetic variation of the fiddlehead fern at two geographic scales to infer the historical biogeography of the species. Matteuccia struthiopteris segregates globally into minimally divergent (0.3%) Eurasian and American lineages. -
Palaeogeograph Y, Palaeoclimatology, Palaeoecology , 17(1975): 157--172 © Elsevier Scientific Publishing Company, Amsterdam -- Printed in the Netherlands
Palaeogeograph y, Palaeoclimatology, Palaeoecology , 17(1975): 157--172 © Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands CLIMATIC CHANGES IN EASTERN ASIA AS INDICATED BY FOSSIL FLORAS. II. LATE CRETACEOUS AND DANIAN V. A. KRASSILOV Institute of Biology and Pedology, Far-Eastern Scientific Centre, U.S.S.R. Academy of Sciences, Vladivostok (U.S.S.R.) (Received June 17, 1974; accepted for publication November 11, 1974) ABSTRACT Krassilov, V. A., 1975. Climatic changes in Eastern Asia as indicated by fossil floras. II. Late Cretaceous and Danian. Palaeogeogr., Palaeoclimatol., Palaeoecol., 17:157--172. Four Late Cretaceous phytoclimatic zones -- subtropical, warm--temperate, temperate and boreal -- are recognized in the Northern Hemisphere. Warm--temperate vegetation terminates at North Sakhalin and Vancouver Island. Floras of various phytoclimatic zones display parallel evolution in response to climatic changes, i.e., a temperature rise up to the Campanian interrupted by minor Coniacian cooling, and subsequent deterioration of cli- mate culminating in the Late Danian. Cooling episodes were accompanied by expansions of dicotyledons with platanoid leaves, whereas the entire-margined leaf proportion increased during climatic optima. The floristic succession was also influenced by tectonic events, such as orogenic and volcanic activity which commenced in Late Cenomanian--Turonian times. Major replacements of ecological dominants occurred at the Maastrichtian/Danian and Early/Late Danian boundaries. INTRODUCTION The principal approaches to the climatic interpretation of fossil floras have been outlined in my preceding paper (Krassilov, 1973a). So far as Late Creta- ceous floras are concerned, extrapolation (i.e. inferences from tolerance ranges of allied modern taxa) is gaining in importance and the entire/non-entire leaf type ratio is no less expressive than it is in Tertiary floras. -
Part I Chinese Plant Names Index 2010-2017
This Book is Sponsored by Shanghai Chenshan Botanical Garden 上海辰山植物园 Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences 中国科学院上海辰山植物科学研究中心 Special Fund for Scientific Research of Shanghai Landscaping & City Appearance Administrative Bureau (G182415) 上海市绿化和市容管理局科研专项 (G182415) National Specimen Information Infrastructure, 2018 Special Funds 中国国家标本平台 2018 年度专项 Shanghai Sailing Program (14YF1413800) 上海市青年科技英才扬帆计划 (14YF1413800) Chinese Plant Names Index 2010-2017 DU Cheng & MA Jin-shuang Chinese Plant Names Index 2010-2017 中国植物名称索引 2010-2017 DU Cheng & MA Jin-shuang Abstract The first two volumes of Chinese Plant Names Index (CPNI) cover the years 2000 through 2009, with entries 1 through 5,516, and 2010 through 2017, with entries 5,517 through 10,795. A unique entry is generated for the specific name of each taxon in a specific publication. Taxonomic treatments cover all novelties at the rank of family, genus, species, subspecies, variety, form and named hybrid taxa, new name changes (new combinations and new names), new records, new synonyms and new typifications for vascular plants reported or recorded from China. Detailed information on the place of publication, including author, publication name, year of publication, volume, issue, and page number, are given in detail. Type specimens and collects information for the taxa and their distribution in China, as well as worldwide, are also provided. The bibliographies were compiled from 182 journals and 138 monographs or books published worldwide. In addition, more than 400 herbaria preserve type specimens of Chinese plants are also listed as an appendix. This book can be used as a basic material for Chinese vascular plant taxonomy, and as a reference for researchers in biodiversity research, environmental protection, forestry and medicinal botany. -
(Polypodiales) Plastomes Reveals Two Hypervariable Regions Maria D
Logacheva et al. BMC Plant Biology 2017, 17(Suppl 2):255 DOI 10.1186/s12870-017-1195-z RESEARCH Open Access Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions Maria D. Logacheva1, Anastasiya A. Krinitsina1, Maxim S. Belenikin1,2, Kamil Khafizov2,3, Evgenii A. Konorov1,4, Sergey V. Kuptsov1 and Anna S. Speranskaya1,3* From Belyaev Conference Novosibirsk, Russia. 07-10 August 2017 Abstract Background: Ferns are large and underexplored group of vascular plants (~ 11 thousands species). The genomic data available by now include low coverage nuclear genomes sequences and partial sequences of mitochondrial genomes for six species and several plastid genomes. Results: We characterized plastid genomes of three species of Dryopteris, which is one of the largest fern genera, using sequencing of chloroplast DNA enriched samples and performed comparative analysis with available plastomes of Polypodiales, the most species-rich group of ferns. We also sequenced the plastome of Adianthum hispidulum (Pteridaceae). Unexpectedly, we found high variability in the IR region, including duplication of rrn16 in D. blanfordii, complete loss of trnI-GAU in D. filix-mas, its pseudogenization due to the loss of an exon in D. blanfordii. Analysis of previously reported plastomes of Polypodiales demonstrated that Woodwardia unigemmata and Lepisorus clathratus have unusual insertions in the IR region. The sequence of these inserted regions has high similarity to several LSC fragments of ferns outside of Polypodiales and to spacer between tRNA-CGA and tRNA-TTT genes of mitochondrial genome of Asplenium nidus. We suggest that this reflects the ancient DNA transfer from mitochondrial to plastid genome occurred in a common ancestor of ferns. -
Polypodiaceae (PDF)
This PDF version does not have an ISBN or ISSN and is not therefore effectively published (Melbourne Code, Art. 29.1). The printed version, however, was effectively published on 6 June 2013. Zhang, X. C., S. G. Lu, Y. X. Lin, X. P. Qi, S. Moore, F. W. Xing, F. G. Wang, P. H. Hovenkamp, M. G. Gilbert, H. P. Nooteboom, B. S. Parris, C. Haufler, M. Kato & A. R. Smith. 2013. Polypodiaceae. Pp. 758–850 in Z. Y. Wu, P. H. Raven & D. Y. Hong, eds., Flora of China, Vol. 2–3 (Pteridophytes). Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. POLYPODIACEAE 水龙骨科 shui long gu ke Zhang Xianchun (张宪春)1, Lu Shugang (陆树刚)2, Lin Youxing (林尤兴)3, Qi Xinping (齐新萍)4, Shannjye Moore (牟善杰)5, Xing Fuwu (邢福武)6, Wang Faguo (王发国)6; Peter H. Hovenkamp7, Michael G. Gilbert8, Hans P. Nooteboom7, Barbara S. Parris9, Christopher Haufler10, Masahiro Kato11, Alan R. Smith12 Plants mostly epiphytic and epilithic, a few terrestrial. Rhizomes shortly to long creeping, dictyostelic, bearing scales. Fronds monomorphic or dimorphic, mostly simple to pinnatifid or 1-pinnate (uncommonly more divided); stipes cleanly abscising near their bases or not (most grammitids), leaving short phyllopodia; veins often anastomosing or reticulate, sometimes with included veinlets, or veins free (most grammitids); indument various, of scales, hairs, or glands. Sori abaxial (rarely marginal), orbicular to oblong or elliptic, occasionally elongate, or sporangia acrostichoid, sometimes deeply embedded, sori exindusiate, sometimes covered by cadu- cous scales (soral paraphyses) when young; sporangia with 1–3-rowed, usually long stalks, frequently with paraphyses on sporangia or on receptacle; spores hyaline to yellowish, reniform, and monolete (non-grammitids), or greenish and globose-tetrahedral, trilete (most grammitids); perine various, usually thin, not strongly winged or cristate.