Cephalotaxus: the Plum Yews

Total Page:16

File Type:pdf, Size:1020Kb

Cephalotaxus: the Plum Yews Cephalotaxus: The Plum Yews Kim E. Tripp The largest ~Japanese plum yews] I saw grow in the rich forests at the foot of Higashi-Kirishima ... I saw many trees from 8 to 10 m tall with ... wide-spreading branches forming broad rounded crowns. Such trees, with their dark-green leaves pale or glaucescent on the under side, are very beautiful.... E. H. Wilson, The Conifers and Taxads of Japan, 1916’ Wilson was describing the surprisingly large antecedents. Now the genus is restricted to specimens of Cephalotaxus harringtonia he had southern and eastern Asia-Japan, Korea, south, seen growing in Kyushu, Japan. Although it was central, and eastern China, Hainan, Taiwan, Wilson who introduced the plant into cultiva- India, Burma, Laos, and parts of Vietnam.4 tion in the United States, he was not the first Cephalotaxus was also found in Europe and Western plant explorer to collect it and extoll its northwestern North America in the Miocene beauties. Long before, around 1829, the promi- and Pliocene eras; moreover, during the Jurassic nent plant collector and principal author of era its antecedents extended into what is now Flora Japonica, Philipp Franz von Siebold, had Greenland.s sent Cephalotaxus to Europe where it was re- Because Japanese plum yew has been in culti- ceived with interest and appreciation.2 Siebold vation in Europe and the United States for grew five different Cephalotaxus in his own close to a century, many modern horticultur- garden in Japan, along with many other plants ists are familiar with the Japanese species he had discovered, cultivating them for their Cephalotaxus harringtonia, named in honor of beauty and for evaluation as garden plants. the Earl of Harrington, one of the first to grow Today, although plum yews are widely con- the plant in a European garden. Far fewer are sidered some of the most beautiful and useful of aware of other equally beautiful members of the evergreen conifers, their potential as ornamen- genus that were not found by Western explorers tal and medicinal plants has yet to be fully until the turn of the century. Six to twelve explored and utilized. The endangered status species and botanical varieties, depending on of Cephalotaxus in the wild-particularly in the taxonomist consulted, comprise an elegant China, its "distribution center and refuge,"3 genus with an inelegant name. where it is vulnerable to the increasing demands While today Cephalotaxus is most often con- of an exploding human population-lends a sidered the single genus of the coniferous sense of urgency to efforts to learn more Cephalotaxaceae, it was earlier included in the about this fascinating genus. At the Arnold Taxaceae with taxads like Torreya, Taxus, and Arboretum, we are working to help conserve Pseudotaxus.~ Distinctive aspects of the em- Cephalotaxus while continuing to study and bryogeny and development of Cephalotaxus set propagate the genus for use in cultivation. it apart from this group, however, in spite of shared adult morphological characteristics like Cephalotaxus fleshy seed coats, two-ranked needles of similar The modern natural range of Cephalotaxus has shape, and low shrub to small tree habits.’ A few diminished considerably from that of its early modern authors include Amentotaxus in the Cephalotaxus sinensis, seen here "d la mode" m last winter’s ice storm, is one of the most cold hardy of the Chmese plum-yew species. 26 The mature frmts of Cephalotaxus (C. sinensis is shown here) resemble olmes or small plums. Cephalotaxaceae, resulting in occasional refer- While the foliage of plum yews generally re- ences in the literature to two genera in the sembles that of true yews, the reproductive stro- Cephalotaxaceae.8 bili are quite distinct. Most of us are familiar Plum yew’s botanical name is apt. "Cephalo- with the bright red (or occasionally yellow), taxus" means "head-yew," from the Greek fleshy, nonpoisonous "aril" that incompletely "kephale" for head and the botanical name surrounds the yew’s very poisonous, small, "taxus" for the yew genus. "Head-yew" refers to rounded seed. Fewer are likely to be familiar the flowering structures that are borne in tight with the seed of plum yew, which is signifi- clusters or "heads" and to its needles, which re- cantly larger than that of yew, being about the semble those of yew. Another, more appealing size and shape of an olive or very small plum common name, plum yew, refers to the plum- (0.75 to 1.25 inches long and 0.25 to 0.75 inches like shape and color of the ripened fleshy wide) and completely enclosed by a thin, hard "cone." shell and an outer fleshy coat. As the seed Cephalotaxus is most often found growing as ripens, the fleshy coat changes color, maturing shrubs or small trees in soils rich in humus in from an attractive, glaucous blue-green, through moist subtropical or warm-temperate forests, a warm cinnamon-red (hence "plum yew"), and generally as understory plants in at least light finally to a dull tan or purple-brown before ab- shade. They are primarily low- to mid-altitude scission of the entire "cone" and/or degradation plants, but a few variant types are found at of the fleshy tissue. higher elevations and on chalky gravel cliffs. Male and female plum yew strobili are borne The entire range of the genus, however, extends on separate plants. Male strobili develop in flat- from tropical to cool temperate climates, and tened heads of numerous small clusters of cold hardiness of cultivated taxa corresponds to anthers, about 0.25 inches in diameter, regularly provenance. arranged in the axils of the needles along the 27 length of the branchlets. Female strobili develop useful materials, but as exquisitely beautiful as clusters of six to twelve ovules in pairs held evergreens for a variety of modern landscapes, on an odd-looking, oval, initially mauve-colored combining graceful habits and foliage with the head (or "cone"), that expands from about 0.5 tough stress resistance and ease of maintenance inches in length at first visibility to the mature required by modern gardeners and landscape length of 0.5-1.25 inches (depending on the spe- contractors. cies). Usually only one seed matures per head.9 Cephalotaxus are slow-growing conifers with Three to five female heads are borne on stalks at dark olive to black-green foliage. Because their or near the end of the current or previous year’s habits range from upright and shrubby to low branchlets.’° Female cones are wind pollinated. and informally mounding, they can serve as Seeds of Cephalotaxus have a relatively long hedges, masses, groundcovers, specimens, and period of development. Depending on species foundation or container plants. They thrive in and region, pollen cones require nine to eleven a variety of soils, including extremely dense months to mature (from initiation to pollen clays. They are not only tolerant of shade but- dispersal), while female cones can take as long with only one exception-perform well even as twenty-one months, generally maturing in heavy shade, an unusual trait for a needled at the end of the second growing season after evergreen. Indeed, most Cephalotaxus produce initiation." the best foliage when given at least some shade, Cephalotaxus is now rare and endangered in although some maintain excellent foliage color significant areas of its range.’2 Its lengthy seed in either full sun or shade. maturation period, combined with a dioecious Plum yews are extraordinarily heat tolerant reproductive habit and an often sparse natural in humid climates, another unusual trait for a distribution throughout much of its range, may needled evergreen. For this reason, they have contribute to the seemingly low frequency of been called "the yew of the south," although regeneration for the genus in the wild. Accord- they can serve as excellent landscape plants in ing to Huang, animals and birds may also eat the an area extending far beyond the Southeast. seed.’3 There is also pressure on Cephalotaxus Once established, they are tolerant of extended from human activity. It is harvested for timber dry periods such as those experienced during in various parts of its range as well as used most of our eastern summers. However, they for firewood and for medicinal purposes. The are not good choices for hot, dry climates like female cones are sometimes collected for the those in much of the southwestern United oil expressed from the seed. 14 States. Ironically, increasing awareness of the endan- Cephalotaxus are relatively deer resistant (I gered status of Cephalotaxus comes at a time have come to believe that no evergreen is totally when its potential value has expanded beyond deerproof). Deer feeding on plum yews have horticultural uses to include anticancer com- been reported in areas with very heavy deer pounds found in its seed and vegetative tissues. populations (for example, central New Jersey Experimental work with the ester alkaloids and Pennsylvania). Even in these cases, how- cephalotaxme, harringtonine, and allied chemi- ever, with only one exception, deer turned to cals has shown promise, although apparently no Cephalotaxus foliage only as a last resort. widespread therapeutic applications have yet Nomenclature and been introduced.’S Sadly, two of the three spe- Taxonomy cies that are especially rich sources of these Unfortunately, there is no current monograph alkaloids, C. hainanensis and C. oliveri, are on Cephalotaxus available. This is especially currently endangered, although the third, C. troublesome since the nomenclature of this fortunei, is less vulnerable.’6 genus is particularly confusmg and is likely to remain a challenge for the foreseeable future; to as a Garden Plant Cephalotaxus the best of my knowledge, no taxonomic mono- The various taxa of Cephalotaxus are of interest graph of the entire genus is currently underway.
Recommended publications
  • Spatial Distribution and Historical Dynamics of Threatened Conifers of the Dalat Plateau, Vietnam
    SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM A thesis Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Arts By TRANG THI THU TRAN Dr. C. Mark Cowell, Thesis Supervisor MAY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM Presented by Trang Thi Thu Tran A candidate for the degree of Master of Arts of Geography And hereby certify that, in their opinion, it is worthy of acceptance. Professor C. Mark Cowell Professor Cuizhen (Susan) Wang Professor Mark Morgan ACKNOWLEDGEMENTS This research project would not have been possible without the support of many people. The author wishes to express gratitude to her supervisor, Prof. Dr. Mark Cowell who was abundantly helpful and offered invaluable assistance, support, and guidance. My heartfelt thanks also go to the members of supervisory committees, Assoc. Prof. Dr. Cuizhen (Susan) Wang and Prof. Mark Morgan without their knowledge and assistance this study would not have been successful. I also wish to thank the staff of the Vietnam Initiatives Group, particularly to Prof. Joseph Hobbs, Prof. Jerry Nelson, and Sang S. Kim for their encouragement and support through the duration of my studies. I also extend thanks to the Conservation Leadership Programme (aka BP Conservation Programme) and Rufford Small Grands for their financial support for the field work. Deepest gratitude is also due to Sub-Institute of Ecology Resources and Environmental Studies (SIERES) of the Institute of Tropical Biology (ITB) Vietnam, particularly to Prof.
    [Show full text]
  • Gymnosperms the MESOZOIC: ERA of GYMNOSPERM DOMINANCE
    Chapter 24 Gymnosperms THE MESOZOIC: ERA OF GYMNOSPERM DOMINANCE THE VASCULAR SYSTEM OF GYMNOSPERMS CYCADS GINKGO CONIFERS Pinaceae Include the Pines, Firs, and Spruces Cupressaceae Include the Junipers, Cypresses, and Redwoods Taxaceae Include the Yews, but Plum Yews Belong to Cephalotaxaceae Podocarpaceae and Araucariaceae Are Largely Southern Hemisphere Conifers THE LIFE CYCLE OF PINUS, A REPRESENTATIVE GYMNOSPERM Pollen and Ovules Are Produced in Different Kinds of Structures Pollination Replaces the Need for Free Water Fertilization Leads to Seed Formation GNETOPHYTES GYMNOSPERMS: SEEDS, POLLEN, AND WOOD THE ECOLOGICAL AND ECONOMIC IMPORTANCE OF GYMNOSPERMS The Origin of Seeds, Pollen, and Wood Seeds and Pollen Are Key Reproductive SUMMARY Innovations for Life on Land Seed Plants Have Distinctive Vegetative PLANTS, PEOPLE, AND THE Features ENVIRONMENT: The California Coast Relationships among Gymnosperms Redwood Forest 1 KEY CONCEPTS 1. The evolution of seeds, pollen, and wood freed plants from the need for water during reproduction, allowed for more effective dispersal of sperm, increased parental investment in the next generation and allowed for greater size and strength. 2. Seed plants originated in the Devonian period from a group called the progymnosperms, which possessed wood and heterospory, but reproduced by releasing spores. Currently, five lineages of seed plants survive--the flowering plants plus four groups of gymnosperms: cycads, Ginkgo, conifers, and gnetophytes. Conifers are the best known and most economically important group, including pines, firs, spruces, hemlocks, redwoods, cedars, cypress, yews, and several Southern Hemisphere genera. 3. The pine life cycle is heterosporous. Pollen strobili are small and seasonal. Each sporophyll has two microsporangia, in which microspores are formed and divide into immature male gametophytes while still retained in the microsporangia.
    [Show full text]
  • Cephalotaxus
    Reprinted from the Winter 1970 issue of t'he THE AMERICA HORTICULTURAL \t{AGAZIl\'E Copyright 1970 by The American Horticultural Society, Inc. Cephalotaxus­ Source of Harringtonine, A Promising New Anti..Cancer Alkaloid ROBERT E. PERDUE, JR.,l LLOYD A. SPETZMAN,l and RICHARD G. POWELL2 The plumyews (Cephalotaxus) are yew-like evergreen trees and shrubs. The genus includes seven species native to southeastern Asia from Japan and Korea to Taiwan and Hainan, and west through China to northeastern India. Two species are in cultivation in the United States, C. harringtoniaJ (Fig. 1 & 2) of which there are several varieties (one often listed as C. drupacea) , and C. fortunii (Fig. 3). The cultivars are shrubs up to about 20 feet in height; most have broad crowns. The linear and pointed leaves are spirally arranged or in two opposite ranks. The upper sur­ Fig. 1. Japanese plumyew (Cephalo­ face is dark shiny green with a conspicu­ taxus harringtonia var. drupacea), an ous mid-rib; the lower surface has a evergreen shrub about 6 ft. high, at broad silvery band on either side of the the USDA Plant Introduction Station, mid-rib. These bands are made up of Glenn Dale, Maryland. This photo­ conspicuous white stomata arranged in graph was made in 1955. The plant is numerous distinct lines. Leaf length is now about 7 ft. high, but the lower variable, from about one inch in varie­ branches have been severely pruned ties of C. harringtonia to three or four to provide material for chemical re­ inches in C. fortunii. The leaves are search.
    [Show full text]
  • Torreya Taxifolia
    photograph © Abraham Rammeloo Torreya taxifolia produces seeds in 40 Kalmthout Arboretum ABRAHAM RAMMELOO, Curator of the Kalmthout Arboretum, writes about this rare conifer that recently produced seed for the first time. Torreya is a genus of conifers that comprises four to six species that are native to North America and Asia. It is closely related to Taxus and Cephalotaxus and is easily confused with the latter. However, it is relatively easy to distinguish them apart by their leaves. Torreya has needles with, on the underside, two small edges with stomas giving it a green appearance; Cephalotaxus has different rows of stomas, and for this reason the underside is more of a white colour. It is very rare to find Torreya taxifolia in the wild; it is native to a small area in Florida and Georgia. It grows in steep limestone cliffs along the Apalachicola River. These trees come from a warm and humid climate where the temperature in winter occasionally falls below freezing. They grow mainly on north-facing slopes between Fagus grandifolia, Liriodendron tulipifera, Acer barbatum, Liquidambar styraciflua and Quercus alba. They can grow up to 15 to 20 m high. The needles are sharp and pointed and grow in a whorled pattern along the branches. They are 25 to 35 mm long and stay on the tree for three to four years. If you crush them, they give off a strong, sharp odour. The health and reproduction of the adult population of this species suffered INTERNATIONAL DENDROLOGY SOCIETY TREES Opposite Torreya taxifolia ‘Argentea’ growing at Kalmthout Arboretum in Belgium.
    [Show full text]
  • Medicinal Plant Conservation
    MEDICINAL Medicinal Plant PLANT SPECIALIST GROUP Conservation Silphion Volume 11 Newsletter of the Medicinal Plant Specialist Group of the IUCN Species Survival Commission Chaired by Danna J. Leaman Chair’s note . 2 Sustainable sourcing of Arnica montana in the International Standard for Sustainable Wild Col- Apuseni Mountains (Romania): A field project lection of Medicinal and Aromatic Plants – Wolfgang Kathe . 27 (ISSC-MAP) – Danna Leaman . 4 Rhodiola rosea L., from wild collection to field production – Bertalan Galambosi . 31 Regional File Conservation data sheet Ginseng – Dagmar Iracambi Medicinal Plants Project in Minas Gerais Lange . 35 (Brazil) and the International Standard for Sus- tainable Wild Collection of Medicinal and Aro- Conferences and Meetings matic Plants (ISSC-MAP) – Eleanor Coming up – Natalie Hofbauer. 38 Gallia & Karen Franz . 6 CITES News – Uwe Schippmann . 38 Conservation aspects of Aconitum species in the Himalayas with special reference to Uttaran- Recent Events chal (India) – Niranjan Chandra Shah . 9 Conservation Assessment and Management Prior- Promoting the cultivation of medicinal plants in itisation (CAMP) for wild medicinal plants of Uttaranchal, India – Ghayur Alam & Petra North-East India – D.K. Ved, G.A. Kinhal, K. van de Kop . 15 Ravikumar, R. Vijaya Sankar & K. Haridasan . 40 Taxon File Notices of Publication . 45 Trade in East African Aloes – Sara Oldfield . 19 Towards a standardization of biological sustain- List of Members. 48 ability: Wildcrafting Rhatany (Krameria lap- pacea) in Peru – Maximilian
    [Show full text]
  • PHYLOGENETIC RELATIONSHIPS of TORREYA (TAXACEAE) INFERRED from SEQUENCES of NUCLEAR RIBOSOMAL DNA ITS REGION Author(S): Jianhua Li, Charles C
    PHYLOGENETIC RELATIONSHIPS OF TORREYA (TAXACEAE) INFERRED FROM SEQUENCES OF NUCLEAR RIBOSOMAL DNA ITS REGION Author(s): Jianhua Li, Charles C. Davis, Michael J. Donoghue, Susan Kelley and Peter Del Tredici Source: Harvard Papers in Botany, Vol. 6, No. 1 (July 2001), pp. 275-281 Published by: Harvard University Herbaria Stable URL: http://www.jstor.org/stable/41761652 Accessed: 14-06-2016 15:35 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/41761652?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Harvard University Herbaria is collaborating with JSTOR to digitize, preserve and extend access to Harvard Papers in Botany This content downloaded from 128.103.224.4 on Tue, 14 Jun 2016 15:35:14 UTC All use subject to http://about.jstor.org/terms PHYLOGENETIC RELATIONSHIPS OF TORREYA (TAXACEAE) INFERRED FROM SEQUENCES OF NUCLEAR RIBOSOMAL DNA ITS REGION Jianhua Li,1 Charles C. Davis,2 Michael J. Donoghue,3 Susan Kelley,1 And Peter Del Tredici1 Abstract. Torreya, composed of five to seven species, is distributed disjunctly in eastern Asia and the eastern and western United States.
    [Show full text]
  • Vietnamese Conifers and Some Problems of Their Sustainable Utilization Ke Loc Et Al
    Vietnamese conifers and some problems of their sustainable utilization Ke Loc et al. Vietnamese conifers and some problems of their sustainable utilization Phan Ke Loc 1, 2, Nguyen Tien Hiep 2, Nguyen Duc To Luu 3, Philip Ian Thomas 4, Aljos Farjon 5, L.V. Averyanov 6, J.C. Regalado, Jr. 7, Nguyen Sinh Khang 2, Georgina Magin 8, Paul Mathew 8, Sara Oldfield 9, Sheelagh O’Reilly 8, Thomas Osborn 10, Steven Swan 8 and To Van Thao 2 1 University of Natural Science, Vietnam National University, Hanoi; 2 Institute of Ecology and Biological Resources; 3 Vietnam Central Forest Seed Company; 4 Royal Botanic Garden Edinburgh; 5 Royal Botanic Gardens, Kew; 6 Komarov Botanical Institute; 7 Missouri Botanical Garden; 8 Fauna & Flora International; 9 Global Trees Campaign; 10 Independent Consultant Introduction Vietnam is now recognized as one of the top ten global conifer conservation ‘hotspots’, as defined by the Conifer Specialist Group of the World Conservation Union (IUCN). Vietnam’s conifer flora has approximately 34 species that are indigenous to the country, making up about 5% of conifers known worldwide. Although conifers represent only less than 0.3% of the total number of higher vascular plant species of Vietnam, they are of great ecological, cultural and economic importance. Most conifer wood is prized for its high value in house construction, furniture making, etc. The decline of conifer populations in Vietnam has caused serious concern among scientists. Threats to conifer species are substantial and varied, ranging from logging (both commercial and subsistence), land clearing for agriculture, and forest fire. Over the past twelve years (1995-2006), Vietnam Botanical Conservation Program (VBCP), a scientific cooperation between the Missouri Botanical Garden in Saint Louis and the Institute of Ecology and Biological Resources in Hanoi, has conducted various studies on this important group of plants in order to gather baseline information necessary to make sound recommendations for their conservation and sustainable use.
    [Show full text]
  • IUCN Red List of Threatened Species™ to Identify the Level of Threat to Plants
    Ex-Situ Conservation at Scott Arboretum Public gardens and arboreta are more than just pretty places. They serve as an insurance policy for the future through their well managed ex situ collections. Ex situ conservation focuses on safeguarding species by keeping them in places such as seed banks or living collections. In situ means "on site", so in situ conservation is the conservation of species diversity within normal and natural habitats and ecosystems. The Scott Arboretum is a member of Botanical Gardens Conservation International (BGCI), which works with botanic gardens around the world and other conservation partners to secure plant diversity for the benefit of people and the planet. The aim of BGCI is to ensure that threatened species are secure in botanic garden collections as an insurance policy against loss in the wild. Their work encompasses supporting botanic garden development where this is needed and addressing capacity building needs. They support ex situ conservation for priority species, with a focus on linking ex situ conservation with species conservation in natural habitats and they work with botanic gardens on the development and implementation of habitat restoration and education projects. BGCI uses the IUCN Red List of Threatened Species™ to identify the level of threat to plants. In-depth analyses of the data contained in the IUCN, the International Union for Conservation of Nature, Red List are published periodically (usually at least once every four years). The results from the analysis of the data contained in the 2008 update of the IUCN Red List are published in The 2008 Review of the IUCN Red List of Threatened Species; see www.iucn.org/redlist for further details.
    [Show full text]
  • Complete Chloroplast Genome of Fokienia Hodginsii (Dunn) Henry Et Thomas: Insights Into Repeat Regions Variation and Phylogenetic Relationships in Cupressophyta
    Article Complete Chloroplast Genome of Fokienia hodginsii (Dunn) Henry et Thomas: Insights into Repeat Regions Variation and Phylogenetic Relationships in Cupressophyta Mingyue Zang 1 , Qian Su 1, Yuhao Weng 1, Lu Lu 1, Xueyan Zheng 2, Daiquan Ye 2, Renhua Zheng 3, Tielong Cheng 1,4, Jisen Shi 1 and Jinhui Chen 1,4,* 1 Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; [email protected] (M.Z.); [email protected] (Q.S.); [email protected] (Y.W.); [email protected] (L.L.); [email protected] (T.C.); [email protected] (J.S.) 2 National Germplasm Bank of Chinese fir at Fujian Yangkou Forest Farm, Shunchang 353211, China; [email protected] (X.Z.); [email protected] (D.Y.) 3 The Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, State Forestry Administration Engineering Research Center of Chinese Fir, Fujian Academy of Forestry, Fuzhou 350012, China; [email protected] 4 College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China * Correspondence: [email protected]; Tel./Fax: +86-25-85428948 Received: 24 May 2019; Accepted: 21 June 2019; Published: 26 June 2019 Abstract: Fokienia hodginsii (Dunn) Henry et Thomas is a relic gymnosperm with broad application value. It is a fit candidate when choosing species for the construction of artificial forests. We determined the complete chloroplast genome sequence of F. hodginsii, which is 129,534 bp in length and encodes 83 protein genes, 33 transfer RNA (tRNA) genes, as well as four ribosomal RNA genes.
    [Show full text]
  • Environmental Impact Analysis in This Report
    Environmental Impacts Assessment Report on Project Construction Project name: European Investment Bank Loan Hunan Camellia Oil Development Project Construction entity (Seal): Foreign Fund Project Administration Office of Forestry Department of Hunan Province Date of preparation: July 1st, 2012 Printed by State Environmental Protection Administration of China Notes for Preparation of Environmental Impacts Assessment Report on Project Construction An Environmental Impacts Assessment (EIA) Report shall be prepared by an entity qualified for conducting the work of environmental impacts assessment. 1. Project title shall refer to the name applied by the project at the time when it is established and approved, which shall in no case exceed 30 characters (and every two English semantic shall be deemed as one Chinese character) 2. Place of Construction shall refer to the detailed address of project location, and where a highway or railway is involved, names of start station and end station shall be provided. 3. Industry category shall be stated according to the Chinese national standards. 4. Total Investment Volume shall refer to the investment volume in total of the project. 5. Principal Targets for Environment Protection shall refer to centralized residential quarters, schools, hospitals, protected culture relics, scenery areas, water sources and ecological sensitive areas within certain radius of the project area, for which the objective, nature, size and distance from project boundary shall be set out as practical as possible. 6. Conclusion and suggestions shall include analysis results for clean production, up-to-standard discharge and total volume control of the project; a determination on effectiveness of pollution control measures; an explanation on environmental impacts by the project, and a clear-cut conclusion on feasibility of the construction project.
    [Show full text]
  • Characterization of 15 Polymorphic Microsatellite Loci for Cephalotaxus Oliveri (Cephalotaxaceae), a Conifer of Medicinal Importance
    Int. J. Mol. Sci. 2012, 13, 11165-11172; doi:10.3390/ijms130911165 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Short Note Characterization of 15 Polymorphic Microsatellite Loci for Cephalotaxus oliveri (Cephalotaxaceae), a Conifer of Medicinal Importance Yingchun Miao 1,2, Xuedong Lang 2, Shuaifeng Li 2, Jianrong Su 2,* and Yuehua Wang 1,* 1 Department of Botany, School of Life Sciences, Yunnan University, Kunming 650091, China; E-Mail: [email protected] 2 Research Institute of Resource Insects, Chinese Academy of Forest (CAF), Kunming 650224, China; E-Mails: [email protected] (X.L.); [email protected] (S.L.) * Authors to whom correspondence should be addressed; E-Mails: [email protected] (J.S.); [email protected] (Y.W.); Tel.: +86-871-3860017; Fax: +86-871-3860017. Received: 7 August 2012; in revised form: 28 August 2012 / Accepted: 2 September 2012 / Published: 7 September 2012 Abstract: Cephalotaxus oliveri is a scarce medicinal conifer endemic to the south central region of China and Vietnam. A small fragmented population presently exists due to anthropogenic disturbance. C. oliveri has been used for its alkaloids harringtonine and homoharringtonine, which are effective against leucocythemia and lymphadenosarcoma. Monoecious plants have been detected in nature, although they were understood to be dioecious. In order to study the mating system, population genetics and the genetic effects of habitat fragmentation on C. oliveri, 15 polymorphic and 12 monomorphic microsatellite loci were developed for C. oliveri by using the Fast Isolation by AFLP of Sequences Containing repeats (FIASCO) protocol. The polymorphisms were assessed in 96 individuals from three natural populations (32 individuals per population).
    [Show full text]
  • A Comparative Study of the Primary Vascular System Of
    ArneI'. J. Bot. 5.5(4): 447-457. 1968. A COMPARATIVE STUDY OF THE PRIMARY VASCULAR SYSTElVI OF CONIFERS. 1. GENERA WITH HELICAL PHYLLOTAXISl KADAMBARI K. N AMBOODIRI2 AND CHARLES B. BECK Department of Botany, University of Michigan, Ann Arbor ABSTRACT The primary vascular system of 23 species belonging to 18 genera of conifers with helical phyllotaxis has been investigated with the intent of determining the architecture .f the system. Special attention has been given to nodal and subnodal relations of the vascular bundles. The vascular system seems to be composed solely of relatively discrete sympodia, that is, axial vascu­ lar bundles from which leaf traces branch unilaterally. Although the discreteness of the syrn­ podia is not immediately apparent because of their undulation and lateral contacts with neigh­ boring ones, close examination, including a statistical analysis of the tangential contacts, seems to reveal that each sympodium maintains its identity throughout. Although two traces may be apparent at nodal levels, the trace supply to a leaf originates, in all species, as a single bundle. An analysis is made of the relationship between the vasculature and the phyllotaxis. It is ob­ served that the direction of trace divergence can be accurately predicted when the direction of the ontogenetic spiral, the angle of divergence of leaf traces, and the number of syrnpodia are known. THE ORIGIN and evolution of gymnosperms that of the ferns by reduction (Jeffrey, 1902, are significant problems that deserve increased 1917). Consequently, he considered the leaf gap attention. There have been few modern compara­ of seed plants to be homologous with that of tive studies of extant gymnosperms, and most the ferns.
    [Show full text]