Pan-Genome Analysis of the Genus Finegoldia Identifies Two Distinct Clades, Strain-Specific Heterogeneity, and Putative Virulence Factors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ligand-Induced Conformational Rearrangements Promote Interaction Between The
Ligand-Induced Conformational Rearrangements Promote Interaction between the Escherichia coli Enterobactin Biosynthetic Proteins EntE and EntB† †This work was supported by Discovery Grant 341983-07 from the Natural Sciences and Engi- neering Research Council of Canada to PDP Sofia Khalil and Peter D. Pawelek* Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St., W., Montreal, Quebec, Canada, H4B 1R6 *Correspondence should be addressed to: Peter D. Pawelek, Tel: 514-848-2424 ext. 3118; Fax: 514-848-2868; E-mail: [email protected] Running title: Efficient EntE-EntB interaction requires 2,3-dihydroxybenzoic acid Abbreviations The following abbreviations are used in this manuscript: 2,3-DHB: 2,3-dihydroxybenzoic acid; 2,5-DHB: 2,5-dihydroxybenzoic acid; 3,5-DHB: 3,5-dihydroxybenzoic acid; AMP: adenosine monophosphate; ArCP: aryl carrier protein; ATP: adenosine triphosphate; CD: circular dichro- ism; DTT: dithiothreitol; FRET: fluorescence resonance energy transfer; H6-EntB: purified, re- combinant hexahistidine-tagged E. coli EntB; H6-EntE: purified, recombinant hexahistidine- tagged E. coli EntE; ICL: isochorismate lyase; ITC: isothermal titration calorimetry; NRPS: non- ribosomal peptide synthesis; PDB: Protein Data Bank; RMSD: root mean square deviation; SDS- PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; TCEP: tris(2- carboxyethyl)phosphine. 2 Abstract Siderophores are small-molecule iron chelators that many bacteria synthesize and secrete in or- der to survive in iron-depleted environments. Biosynthesis of enterobactin, the E. coli catecho- late siderophore, requires adenylation of 2,3-DHB by the cytoplasmic enzyme EntE. The DHB- AMP product is then transferred to the active site of holo-EntB subsequent to formation of an EntE-EntB complex. -
POTENTIAL MICROBIAL DETOXIFIERS of Mehg in BARCELONA CITY CONTINENTAL SHELF
POTENTIAL MICROBIAL DETOXIFIERS OF MeHg IN BARCELONA CITY CONTINENTAL SHELF TREBALL REALITZAT PER Marina Pérez García PER OBTENIR EL TÍTOL DE Màster en Microbiologia Avançada 2017-2018 Treball de Final de Màster realitzat sota la supervisió la Dra Silvia González-Acinas i la Dra Andrea García Bravo a l’Institut de Ciències del Mar (ICM-CSIC) Barcelona, 03 de Setembre de 2018 POTENTIAL MICROBIAL DETOXIFIERS OF MeHg IN BARCELONA CITY CONTINENTAL SHELF TREBALL REALITZAT PER Marina Pérez García PER OBTENIR EL TÍTOL DE Màster en Microbiologia Avançada 2017-2018 Treball de Final de Màster realitzat sota la supervisió la Dra Silvia González-Acinas i la Dra Andrea García Bravo a l’Institut de Ciències del Mar (ICM-CSIC) Barcelona, 03 de Setembre de 2018 Silvia González-Acinas Marina Pérez García Andrea García Bravo Abstract Mercury specially in the form of Methylmercury (MeHg) is a big concern because affects human and wildlife health and accumulates and biomagnified in the aquatics systems through the food chain. Some Bacteria and Archaea have evolved resistance mechanisms to mercury compounds, this resistance is encoded in the mer operon. So, the microorganisms that have merA and merB genes can completely transform the neurotoxic form of MeHg in the volatile form of mercury. Despite the persistence of mercury there is no information about the mercury detoxification processes in Barcelona continental shelf. Therefore, the aim of this study is to detect the presence of merA and merB in past (1987 and 2008) and present (from two months April and May 2018) sediment samples from the Barcelona continental shelf. -
Curriculum Vitae
Characterization of Heme Transport in Pseudomonas aeruginosa and the Preferential Pathway for Heme Uptake Item Type dissertation Authors Smith, Aaron Dennison Publication Date 2015 Abstract Bacterial pathogens require iron for their survival and virulence and have evolved multiple mechanisms to acquire this scarce micro-nutrient. The Gram-negative opportunistic pathogen Pseudomonas aeruginosa acquires heme as an iron source through the ... Keywords ABC transporter; iron acquisition; outer membrane receptor; transporter; ATP-Binding Cassette Transporters; Heme; Pseudomonas aeruginosa Download date 24/09/2021 16:37:31 Link to Item http://hdl.handle.net/10713/4622 Curriculum Vitae Aaron Dennison Smith Education: University of Maryland, Baltimore (2008-present) Department of Pharmaceutical Sciences School of Pharmacy GPA: 3.92 Degree: Ph.D. Expected Date of Degree: May 2015 Dissertation: Characterization of Heme Transport in Pseudomonas aeruginosa and the Preferential Pathway for Heme Uptake University of Maryland Baltimore County (2002-2007) Department of Biochemistry and Molecular Biology GPA: 3.1 Degree: B.S. Date of Degree: July 2007 Employment: Graduate Research Assistant (2008-present) Department of Pharmaceutical Sciences School of Pharmacy, University of Maryland, Baltimore Technical Director (2006-2008) Chemspec, Inc. Baltimore, MD Teaching Experience: Teaching Assistant (2008-2009) School of Pharmacy, University of Maryland, Baltimore PharmD courses: Medicinal Chemistry, Microbiology, Pharmacokinetics Resource Teacher (2006) Vertically Integrated Partnerships K-16 Internship University of Maryland Baltimore County Leadership Opportunities: Graduate Recruitment Strategies Taskforce Committee (2012-2013) President: Pharmacy Graduate Student Association (2009-2010) Team Captain: PSC Race for the Cure (2008-2010) Presentations: Characterization of the outer membrane heme receptors and the preferential pathway for heme uptake in Pseudomonas aeruginosa. -
Structure of the Entb Multidomain Nonribosomal Peptide Synthetase and Functional Analysis of Its Interaction with the Ente Adenylation Domain
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Chemistry & Biology 13, 409–419, April 2006 ª2006 Elsevier Ltd All rights reserved DOI 10.1016/j.chembiol.2006.02.005 Structure of the EntB Multidomain Nonribosomal Peptide Synthetase and Functional Analysis of Its Interaction with the EntE Adenylation Domain Eric J. Drake,1,2 David A. Nicolai,1 a downstream domain. Additional catalytic domains and Andrew M. Gulick1,2,* that exist in NRPSs include N-methylation and epimeri- 1 Hautpman-Woodward Medical Research Institute zation domains [1, 5]. The NRPS carrier protein domains 700 Ellicott Street contain a conserved serine that is posttranslationally Buffalo, New York 14203 modified by holo-ACP synthases with a PPant cofactor 2 Department of Structural Biology [6] and are similar to acyl carrier proteins involved in The State University of New York at Buffalo other cellular processes, including fatty acid biosynthe- Buffalo, New York 14260 sis and metabolism and polyketide biosynthesis. E. coli contains a single NRPS system that is used in the synthesis of the siderophore enterobactin (Fig- Summary ure 1A). The enterobactin molecule contains three cop- ies of a dipeptide of 2,3-dihydroxybenzoic acid (DHB) Nonribosomal peptide synthetases are modular pro- and serine [7]. The serine molecules form a trilactone teins that operate in an assembly line fashion to ring between the carboxylate of one residue and the bind, modify, and link amino acids. In the E. coli entero- side chain hydroxyl of the next. Produced and secreted bactin NRPS system, the EntE adenylation domain during iron-limiting conditions, the enterobactin mole- catalyzes the transfer of a molecule of 2,3-dihydroxy- cule chelates an Fe3+ ion and is then taken up into the benzoic acid to the pantetheine cofactor of EntB. -
Quantum Chemical Cluster Modeling of Enzymatic Reactions Rong-Zhen
Quantum Chemical Cluster Modeling of Enzymatic Reactions Rong-Zhen Liao 1 Rong-Zhen Liao, Stockholm, 2010 ISBN 978-91-7447-129-8 Printed in Sweden by US-AB, Stockholm 2010 Distributor: Department of Organic Chemistry, Stockholm University 2 3 4 Abstract The Quantum chemical cluster approach has been shown to be quite powerful and efficient in the modeling of enzyme active sites and reaction mechanisms. In this thesis, the reaction mechanisms of several enzymes have been investigated using the hybrid density functional B3LYP. The enzymes studied include four dinuclear zinc enzymes, namely dihydroorotase, N-acyl-homoserine lactone hydrolase, RNase Z, and human renal dipeptidase, two trinuclear zinc enzymes, namely phospholipase C and nuclease P1, two tungstoenzymes, namely formaldehyde ferredoxin oxidoreductase and acetylene hydratase, aspartate α-decarboxylase, and mycolic acid cyclopropane synthase. The potential energy profiles for various mechanistic scenarios have been calculated and analyzed. The role of the metal ions as well as important active site residues has been discussed. In the cluster approach, the effects of the parts of the enzyme that are not explicitly included in the model are taken into account using implicit solvation methods. With aspartate α-decarboxylase as an example, systematic evaluation of the solvation effects with the increase of the model size has been performed. At a model size of 150-200 atoms, the solvation effects almost vanish and the choice of the dielectric constant becomes rather insignificant. For all six zinc-dependent enzymes studied, the di-zinc bridging hydroxide has been shown to be capable of performing nucleophilic attack on the substrate. In addition, one, two, or even all three zinc ions participate in the stabilization of the negative charge in the transition states and intermediates, thereby lowering the barriers. -
Iron Transport Machinery: a Potential Therapeutic Target in Escherichia Coli Clorissa L
University of South Carolina Scholar Commons Theses and Dissertations 2018 Iron Transport Machinery: A Potential Therapeutic Target In Escherichia Coli Clorissa L. Washington – Hughes University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Chemistry Commons Recommended Citation Washington – Hughes, C. L.(2018). Iron Transport Machinery: A Potential Therapeutic Target In Escherichia Coli. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/4885 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. IRON TRANSPORT MACHINERY: A POTENTIAL THERAPEUTIC TARGET IN ESCHERICHIA COLI by Clorissa L. Washington – Hughes Bachelor of Science Benedict College, 2009 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Chemistry College of Arts and Sciences University of South Carolina 2018 Accepted by: F. Wayne Outten, Major Professor John H. Dawson, Committee Member Sheryl L. Wiskur, Committee Member Beth Krizek, Committee Member Cheryl L. Addy, Vice Provost and Dean of the Graduate School © Copyright Clorissa L. Washington-Hughes, 2018 All Rights Reserved ii DEDICATION Dedicated to my father, Billy Wayne Washington, Sr. and my great – grandfather, Bishop Wallace Snow iii ACKNOWLEDGEMENTS First, I would like to thank my Lord and Savior Jesus Christ for allowing me to start and complete my PhD journey. I would like to thank my research advisor, Dr. F. Wayne Outten for accepting me into his laboratory. When I first started in the lab, I had no idea what I was in for. -
(Roll No. 107Bt006) Santosh Kumar Nayak (Roll No
IN SILICO ANNOTATION OF UN-CHARACTERIZED PROTEINS OF MYCOBACTERIUM TUBERCULOSIS A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF Bachelor of Technology in Biotechnology Engineering By KIRAN SOY MURUM (ROLL NO. 107BT006) SANTOSH KUMAR NAYAK (ROLL NO. 107BT009) Department of Biotechnology & Medical Engineering National Institute of Technology Rourkela-769008 1 IN SILICO ANNOTATION OF UN-CHARACTERIZED PROTEINS OF MYCOBACTERIUM TUBERCULOSIS A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF Bachelor of Technology In Biotechnology Engineering By KIRAN SOY MURUM (ROLL NO. 107BT006) SANTOSH KUMAR NAYAK (ROLL NO. 107BT009) Under the Guidance of Prof. G.R.Sathpathy Department of Biotechnology & Medical Engineering National Institute of Technology Rourkela-769008 2 National Institute of Technology Rourkela CERTIFICATE This is to certify that the thesis entitled, “Insilico Annotation of Un-characterized proteins of Mycobacterium Tuberculosis “submitted by Santosh Kumar Nayak and Kiran Soy Murum in partial fulfillment of the requirement for the award of bachelor of technology degree in Biotechnology Engineering at National Institute of Technology, Rourkela (Deemed University) is an authentic work carried out by them under my supervision and guidance. To the best of my knowledge the matter embodied in the thesis has not been submitted to any other University/Institute for award of any Degree/Diploma. Date: Prof.G.R. Satpathy Dept. Of Biotechnology & Medical Engg. National Institute of Technology Rourkela-769008 3 Acknowledgement We express our sincere gratitude to Dr. G.R.Satpathy, Professor of the Department of Biotechnology Engineering, National Institute of Technology, Rourkela, for giving us this great opportunity to work under his guidance throughout the course of this work. -
UNIVERSITY of EMBU EDWARD NDERITU KARANJA Phd 2020
UNIVERSITY OF EMBU EDWARD NDERITU KARANJA PhD 2020 MICROBIAL COMMUNITY DIVERSITY AND STRUCTURE WITHIN ORGANIC AND CONVENTIONAL FARMING SYSTEMS IN CENTRAL HIGHLANDS OF KENYA EDWARD NDERITU KARANJA (MSc) A THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN APPLIED MICROBIOLOGY IN THE UNIVERSITY OF EMBU NOVEMBER, 2020 DECLARATION This thesis is my original work and has not been presented for a degree in any other University Signature……………………………. Date………….……….. Edward Nderitu Karanja Department of Biological Science B801/147/2015 This thesis has been submitted for examination with our approval as the University Supervisors Signature……………………………. Date………….………. Prof. Romano Mwirichia Department of Biological science University of Embu (UoEm), Kenya Signature………. …………………………. Date………….…………. Dr. Andreas Fliessbach Department of Soil Science Research Institute of Organic Agriculture - FIBL, Switzerland i DEDICATION I dedicated to my family; my wife Anne Kelly Kambura, my children; Shawn Karanja, Melissa Wangithi, Joseph Munyuithia, Shayne Koome and Ann Wanjiku, my parents; Mr. Samuel Karanja and Mrs. Agnes Wangithi, my siblings, Ruth Wairimu, Juliet Muthoni, Alex Ngochi, James Karuma and Nelly Njoki. I appreciate the support you have accorded me during my studies. Your inspiration and backing in this journey made it easier to manage all challenges encountered. ii ACKNOWLEDGEMENT I express gratitude toward Almighty God for his mercies from the beginning of this long and thought-provoking journey. This was conducted in the framework of long-term systems comparison program, with financial support from Biovision Foundation, Coop Sustainability Fund, Liechtenstein Development Service (LED) and the Swiss Agency for Development and Cooperation (SDC). I acknowledge icipe core funding for the kind contribution provided by UK-Aid from UK Government, Swedish International Development Cooperation Agency, Swiss Agency for Development and Cooperation, Federal Democratic Republic of Ethiopia and the Kenyan Government. -
Structural Investigations of the Cancer-Associated
STRUCTURAL INVESTIGATIONS OF THE CANCER-ASSOCIATED LAMININ BINDING PROTEIN AND NOS L, A NOVEL COPPER BINDING PROTEIN by Lara Marie Taubner A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry MONTANA STATE UNIVERSITY Bozeman, Montana October 2005 COPYRIGHT by Lara Marie Taubner 2005 All Rights Reserved ii APPROVAL of a dissertation submitted by Lara Marie Taubner This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies. Dr. Valérie Copié Approved for the Department of Chemistry and Biochemistry Dr. David Singel Approved for the College of Graduate Studies Dr. Joseph J. Fedock iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a doctorate’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this dissertation should be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted “the exclusive right to reproduce and distribute my dissertation in and from microform along with the non-exclusive right to reproduce and distribute my abstract in any format in whole or in part.” Lara Marie Taubner October 2005 iv DEDICATION I would like to thank my mother, my father, and my sisters Kathleen and Sarah, for their unconditional love and support throughout these last years that has made this dissertation possible. -
Copyright by Nicola Mary Lisa Davies 2006
Copyright by Nicola Mary Lisa Davies 2006 The Dissertation Committee for Nicola Mary Lisa Davies Certifies that this is the approved version of the following dissertation: Iron Acquisition by Shigella dysenteriae and Shigella flexneri Committee: Shelley M. Payne, Supervisor Charles F. Earhart Richard J. Meyer Ian J. Molineux Martin Poenie Iron Acquisition by Shigella dysenteriae and Shigella flexneri by Nicola Mary Lisa Davies, B.Sc.H. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2006 Dedication To Dad and Mark Acknowledgements I would like to thank Shelley Payne for her patience, support and guidance over the last five years. I would also like to acknowledge the support and assistance of all of the members of the Payne lab. I am especially grateful to Erin Murphy and Alexandra Mey for many scientific discussions and excellent suggestions, and to Keren Hilgendorf for technical assistance. v Iron Acquisition by Shigella dysenteriae and Shigella flexneri Publication No._____________ Nicola Mary Lisa Davies, PhD The University of Texas at Austin, 2006 Supervisor: Shelley M. Payne Shigella dysenteriae and Shigella flexneri are Gram-negative facultative intracellular pathogens that cause bacillary dysentery. Iron is an essential micronutrient for these pathogens and they have evolved several systems to obtain iron. The Feo and Sit systems are involved in acquisition of ferrous iron and the TonB-dependant systems transport ferric iron and heme. In S. flexneri, a strain with a defect in the Sit system exhibited decreased fitness in the intracellular environment compared to the wild type. -
Fermentation of Acetylene by an Obligate Anaerobe, Pelobacter Acetylenicus Sp
Archives of Arch Microbiol (1985) 142: 295- 301 Microbiology Springer-Verlag 1985 Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. * Bernhard Schink Fakult/it ffir Biologie, Universit/it Konstanz, Postfach 5560, D-7750 Konstanz, Federal Republic of Germany Abstract. Four strains of strictly anaerobic Gram-negative tion reactions (Schink 1985a). No significant anaerobic rod-shaped non-sporeforming bacteria were enriched and degradation could be observed with ethylene (ethene), the isolated from marine and freshwater sediments with acety- most simple unsaturated hydrocarbon (Schink 1985 a, b). lene (ethine) as sole source of carbon and energy. Acetylene, It was reported recently that also acetylene can be metab- acetoin, ethanolamine, choline, 1,2-propanediol, and glyc- olized in the absence of molecular oxygen (Watanabe and erol were the only substrates utilized for growth, the latter de Guzman 1980). Enrichment cultures with acetylene as two only in the presence of small amounts of acetate. Sub- sole carbon source were obtained in mineral media with strates were fermented by disproportionation to acetate and sulfate as electron acceptor, and acetate could be identified ethanol or the respective higher acids and alcohols. No as an intermediary metabolite (Culbertson et al. 1981). How- cytochromes were detectable; the guanine plus cytosine ever, these enrichment cultures were difficult to maintain, content of the DNA was 57.1 _+ 0.2 tool%. Alcohol dehy- and the acetylene-degrading bacteria could not be identified drogenase, aldehyde dehydrogenase, phosphate acetyl- (C. W. Culbertson and R. S. Oremland, Abstr. 3rd Int. transferase, and acetate kinase were found in high activities Syrup. -
ATP-Dependent Substrate Reduction at an [Fe8s9] Double-Cubane Cluster
ATP-dependent substrate reduction at an [Fe8S9] double-cubane cluster Jae-Hun Jeounga and Holger Dobbeka,1 aInstitut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany Edited by Amy C. Rosenzweig, Northwestern University, Evanston, IL, and approved February 2, 2018 (received for review November 23, 2017) Chemically demanding reductive conversions in biology, such as the We have characterized the two components of a widespread reduction of dinitrogen to ammonia or the Birch-type reduction of system of the third type and find that the electron-accepting – aromatic compounds, depend on Fe/S-cluster containing ATPases. component features a double-cubane [Fe8S9]-cluster. This [Fe8S9]- These reductions are typically catalyzed by two-component systems, cluster, so far unknown to biology, catalyzes reductive reactions in which an Fe/S-cluster–containing ATPase energizes an electron to otherwise associated only with the complex iron–sulfur clusters reduce a metal site on the acceptor protein that drives the reductive of nitrogenases. Our results reveal several parallels between the reaction. Here, we show a two-component system featuring a double-cubane cluster-containing enzymes and nitrogenases μ double-cubane [Fe8S9]-cluster [{Fe4S4(SCys)3}2( 2-S)]. The double- and suggest that an unexplored biochemical reactivity space cubane–cluster-containing enzyme is capable of reducing small mol- may be hidden among the diverse ATP-dependent two-component − ecules, such as acetylene (C2H2), azide (N3 ), and hydrazine (N2H4). enzymes. We thus present a class of metalloenzymes akin in fold, metal clus- ters, and reactivity to nitrogenases. Results Distribution of Double-Cubane Cluster Protein-Like Proteins.