Proazaphosphatrane and Bench-Stable Carbon-Based Lewis Acids in Frustrated Lewis Pair Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Proazaphosphatrane and Bench-Stable Carbon-Based Lewis Acids in Frustrated Lewis Pair Chemistry by Gabriel Nicholas Jun Hao Wee A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Chemistry University of Toronto © Copyright by Gabriel N. J. H. Wee 2019 Proazaphosphatrane and Bench-Stable Carbon-Based Lewis Acids in Frustrated Lewis Pair Chemistry Gabriel Nicholas Jun Hao Wee Master of Science Department of Chemistry University of Toronto 2019 Abstract B(C6F5)3 and P(MeNCH2CH2)3N form a classical Lewis adduct, (C6F5)3BP(MeNCH2CH2)3N. Although the adduct does not exhibit spectroscopic evidence of dissociation into its constituent Lewis acid and base, products of frustrated Lewis pair (FLP) addition reactions are observed with PhNCO, PhCH2N3, PhNSO, and CO2. Recently, a bench-stable trityl cation and P(MeNCH2CH2)3N were also found to form a classical Lewis adduct that does not exhibit spectroscopic evidence of dissociation. This adduct was able to carry out the heterolytic splitting of H2. Interestingly, when this and other newly synthesized bench-stable trityl cations were combined with phosphine bases such as P(t-Bu)3 and P(o-tol)3, FLPs capable of heterolytic splitting of H2 were generated and, in at least one case, reversible activation of H2 was observed. These recent findings open avenues towards the application of bench-stable carbon-based Lewis acids for FLP mediated hydrogenation. ii Acknowledgments I would like to express my sincere gratitude to my research supervisor, Prof. Douglas Stephan for his patience, support, guidance and giving me the opportunity to work and be a part of such a wonderful research group. Thank you for taking me on as a student and providing directions for me to grow as a researcher. I am very grateful for the opportunity to work in your lab. My time in your lab has undoubtedly made me a better scientist. I would also like to thank Prof. Datong Song for taking the time to review this thesis. I am also incredibly fortunate to have had the opportunity to work with some amazing collaborators in the group. I would like to thank Dr. Timothy Johnstone (now Prof.) for helping me get started and established in the lab. I am very grateful for your patience and willingness to help me with chemistry and provide feedback. My experience working closely with you has taught me how to be a better scientist. I would also like to thank Eliar Mosaferi (now Dr.) for his help on solving structures and helpful discussions. Your advice and inputs are truly appreciated. I would also like to extend my gratitude to all members of the Stephan research group for their support and encouragement throughout this degree, especially Karlee Bamford, Alex Waked, Ryan Andrews, Christopher Major, James LaFortune, Jolie Lam and Alvaro Briceno-Strocchia. Thank you for making my time in the lab immensely enjoyable. Last but not least, I would like to thank my family and friends for their support and encouragement throughout this degree. This would not have been possible without your love and support. iii Table of Contents Abstract ........................................................................................................................................... ii Acknowledgments ......................................................................................................................... iii Table of Contents ........................................................................................................................... iv List of Figures ................................................................................................................................. vi List of Schemes ............................................................................................................................ vii List of Symbols and Abbreviations ................................................................................................ ix Chapter 1 ......................................................................................................................................... 1 Introduction ..................................................................................................................................... 1 1.1 Frustrated Lewis Pair Chemistry ........................................................................................... 1 1.2 Group 14 Lewis Acids ........................................................................................................... 7 1.3. Scope of Thesis ................................................................................................................... 11 Chapter 2 ....................................................................................................................................... 13 Accessing Frustrated Lewis Pair Chemistry from a Spectroscopically Stable and Classical Lewis Adduct ........................................................................................................................................... 13 2.1 Introduction ......................................................................................................................... 13 2.2 Results and Discussion ........................................................................................................ 15 2.3 Conclusion ........................................................................................................................... 24 2.4 Experimental Section ........................................................................................................... 24 2.4.1 General Consideration .................................................................................................. 24 2.4.3 X-ray crystallography ................................................................................................... 31 Chapter 3 ....................................................................................................................................... 33 Bench-Stable Carbon-Based Lewis Acids in Frustrated Lewis Pair Chemistry ........................... 33 3.1 Introduction ......................................................................................................................... 33 3.2 Results and Discussion ........................................................................................................ 39 3.2.1 Reactivity of Bench-Stable Trityl Cations with Proazaphosphatrane .......................... 39 3.2.2 Reactivity of Bench-Stable Trityl Cations with Phosphines ........................................ 49 3.3 Conclusion ........................................................................................................................... 55 3.4 Experimental Section ........................................................................................................... 56 3.4.1 General Consideration .................................................................................................. 56 3.4.2 Synthesis of Starting Materials ..................................................................................... 57 3.4.3 X-ray crystallography ................................................................................................... 60 References ..................................................................................................................................... 62 iv List of Tables Table 1: X-ray crystallographic data for 2-1 – 2-5. ....................................................................... 32 Table 2. X-ray crystallographic data for 3-1 ................................................................................. 61 v List of Figures Figure 1: Frontier molecular orbital depiction of a classical Lewis pair reactivity resulting in adduct formation .............................................................................................................................. 1 Figure 2: Frontier molecular orbital depiction of a frustrated Lewis pair reactivity resulting in no adduct formation .............................................................................................................................. 3 Figure 3: Transannular distance in a proazaphosphatrane-electrophile adduct ............................. 15 Figure 4: Crystal structure of 2-1 .................................................................................................. 16 19 1 19 19 Figure 5: F{ H} NMR and F- F EXSY NMR spectrum of a 1:1 mixture of 2-1 and B(C6F5)3 ....................................................................................................................................................... 17 Figure 6: Solid-state structure of 2-2. C: grey, N: blue, O: red, B: green, F: pink, P: orange, S: yellow, H: white ............................................................................................................................ 19 Figure 7: Solid-state structure of 2-3. C: grey, N: blue, O: red, B: green, F: pink, P: orange, S: yellow, H: white ............................................................................................................................ 20 Figure 8: Solid-state structure of 2-4. C: grey, N: blue, O: red, B: green, F: pink, P: orange, S: yellow, H: white ............................................................................................................................ 21 Figure 9: Solid-state structure of 2-5. C: grey, N: blue, O: red, B: green, F: pink, P: orange, S: yellow, H: white ...........................................................................................................................