Ecological Environmental Baseline Report

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Environmental Baseline Report AUCKLAND INTERNATIONAL AIRPORT LIMITED PROPOSED SECOND RUNWAY ECOLOGICAL BASELINE ASSESSMENT JULY 2016 Auckland International Airport Limited Proposed Second Runway Ecological Baseline Assessment July 2016 FOR: Auckland International Airport Limited BY: BIORESEARCHES GROUP LIMITED M Delaney, MSc (Hons) J Feickert, MSc (Hons) J Shanks, MSc (Hons) C Wedding, MSc (Hons) D van Winkel, MSc (Hons) Reviewed By: G L Don, MSc (Hons) 3 C O N T E N T S Page No. 1 INTRODUCTION ......................................................................................................7 2 MARINE ..................................................................................................................9 2.1 Introduction ........................................................................................................ 9 2.2 Methods ............................................................................................................. 9 2.3 Northern Area of Influence ................................................................................ 9 2.4 Southern Area of Influence .............................................................................. 12 2.5 Pukaki Creek ..................................................................................................... 13 2.6 Conclusions ....................................................................................................... 14 3 AVIFAUNA ............................................................................................................ 14 3.1 Introduction ...................................................................................................... 14 3.2 Methods ........................................................................................................... 15 3.3 Northern Area of Influence .............................................................................. 17 3.3.1 Intertidal Area ...................................................................................... 17 3.3.2 Terrestrial Area ..................................................................................... 19 3.4 Southern Area of Influence .............................................................................. 20 3.4.1 Intertidal Area ...................................................................................... 20 3.4.2 Terrestrial Area ..................................................................................... 20 3.5 Pukaki Creek ..................................................................................................... 21 3.6 Conclusions ....................................................................................................... 22 4 TERRESTRIAL VEGETATION AND FLORA ................................................................. 22 4.1 Raupo Wetland ................................................................................................. 23 4.2 Botanical Assessment ....................................................................................... 23 4.3 Wetland Values ................................................................................................ 24 5 HERPETOFAUNA ................................................................................................... 26 4 5.1 Local Lizard Populations ................................................................................... 26 5.2 Herpetofauna Habitat ...................................................................................... 27 5.2.1 Northern Area of Influence (NAI) ......................................................... 27 5.2.2 Southern Area of Influence (SAI) .......................................................... 28 5.3 Conclusions ....................................................................................................... 28 6 LONG-TAILED BATS ............................................................................................... 29 6.1 Introduction ...................................................................................................... 29 6.1.1 Relevant Species Information .............................................................. 29 6.2 Methods ........................................................................................................... 30 6.3 Results and Discussion ..................................................................................... 30 6.3.1 Habitats within the Northern Area of Influence (NAI) ......................... 30 6.3.2 Habitats within the Southern Area of Influence (SAI) .......................... 31 6.4 Conclusions ....................................................................................................... 31 7 FRESHWATER........................................................................................................ 33 7.1 Introduction ...................................................................................................... 33 7.2 Methods ........................................................................................................... 33 7.3 Northern Area of Influence .............................................................................. 33 7.4 Southern Area of Influence .............................................................................. 35 8 REFERENCES ......................................................................................................... 37 9 APPENDICES ......................................................................................................... 40 Appendix I: SEA Marine Descriptions under the Proposed Auckland Unitary Plan (2013) ....................................................................................................... 41 Appendix II: Department of Conservation Wildlife Act Authority .............................. 43 Appendix III: Stream classification under the Proposed Auckland Unitary Plan (2013). ...................................................................................................... 45 10 PLATES ................................................................................................................. 46 5 EXECUTIVE SUMMARY Auckland International Airport Limited (AIAL) is seeking to construct a second runway (Proposed Second Runway) to complement the Existing Runway at Auckland International Airport. Two ‘areas of influence’ have been proposed for the purpose of assessing the environmental effects of constructing and operating the Proposed Second Runway, which occur within the Tamaki Ecological District, and have been termed the northern area of influence (NAI) and the southern area of influence (SAI). This report consolidates information from unpublished reports, literature reviews and limited field assessments to provide a baseline ecological valuation of these two areas. The marine environments within the NAI and SAI are of high ecological value because they encompass a variety of quality habitats that support dense populations of marine invertebrates. Diverse populations of both nationally threatened and internationally significant birds also use these intertidal areas to feed and adjacent coastal sites as roosts. Two major roosts are encompassed within the areas of influence, namely the market lettuce garden in the NAI and Wiroa Island in the SAI. The vegetation of the NAI and SAI is dominated by farmed or managed land and as such has low ecological value. There is however, a significant area of wetland located within the NAI of higher ecological value. The NAI and SAI are considered to be of potential value to herpetofauna. There are a number of suitable habitats available within these two sites that have not been surveyed, especially in the SAI, and protected lizard species are known to occur within the Tamaki Ecological District. The NAI and SAI are of low ecological value to long-tailed bats. There is very little suitable habitat available and no long-tailed bats have been recorded within the immediate area. 6 The NAI includes only a small area of permanent water course which is surrounded by intensive agricultural land and is thus considered to be of low to moderate ecological value. Wiroa Island is included within the SAI and could include areas of wetland that would be relatively undisturbed and therefore of moderate to high ecological value. 7 1 INTRODUCTION Auckland International Airport Limited (AIAL) is seeking to construct the Proposed Second Runway to complement the Existing Runway. The purpose of this report is to provide a baseline ecological assessment of the NAI and SAI for the future construction and operation of a Proposed Second Runway. This report describes the current ecological values of the terrestrial, freshwater and marine environments within these two areas of influence (Figure 1). It does so to inform the ecological baseline and the future determination of the preferred design for the Proposed Second Runway. The assessment of ecological values included both desktop analysis and limited field investigations. Data and information have been gathered from a number of sources, including published literature, unpublished reports (particularly from the Department of Conservation) and previous ecological assessments carried out by ecologists for projects located within the two areas of influence. This document also consolidates information from ecological assessments undertaken by Boffa Miskell Ltd and Bioresearches from 1989 to 2016. 8 Figure 1. Plan map showing northern and southern areas of influence within the Manukau Harbour. 9 2 MARINE 2.1 Introduction
Recommended publications
  • CHAPTER 1 General Introduction 1.1 Shorebirds in Australia Shorebirds
    CHAPTER 1 General introduction 1.1 Shorebirds in Australia Shorebirds, sometimes referred to as waders, are birds that rely on coastal beaches, shorelines, estuaries and mudflats, or inland lakes, lagoons and the like for part of, and in some cases all of, their daily and annual requirements, i.e. food and shelter, breeding habitat. They are of the suborder Charadrii and include the curlews, snipe, plovers, sandpipers, stilts, oystercatchers and a number of other species, making up a diverse group of birds. Within Australia, shorebirds account for 10% of all bird species (Lane 1987) and in New South Wales (NSW), this figure increases marginally to 11% (Smith 1991). Of these shorebirds, 45% rely exclusively on coastal habitat (Smith 1991). The majority, however, are either migratory or vagrant species, leaving only five resident species that will permanently inhabit coastal shorelines/beaches within Australia. Australian resident shorebirds include the Beach Stone-curlew (Esacus neglectus), Hooded Plover (Charadrius rubricollis), Red- capped Plover (Charadrius ruficapillus), Australian Pied Oystercatcher (Haematopus longirostris) and Sooty Oystercatcher (Haematopus fuliginosus) (Smith 1991, Priest et al. 2002). These species are generally classified as ‘beach-nesting’, nesting on sandy ocean beaches, sand spits and sand islands within estuaries. However, the Sooty Oystercatcher is an island-nesting species, using rocky shores of near- and offshore islands rather than sandy beaches. The plovers may also nest by inland salt lakes. Shorebirds around the globe have become increasingly threatened with the pressure of predation, competition, human encroachment and disturbance and global warming. Populations of birds breeding in coastal areas which also support a burgeoning human population are under the highest threat.
    [Show full text]
  • Summary of Native Bat, Reptile, Amphibian and Terrestrial Invertebrate Translocations in New Zealand
    Summary of native bat, reptile, amphibian and terrestrial invertebrate translocations in New Zealand SCIENCE FOR CONSERVATION 303 Summary of native bat, reptile, amphibian and terrestrial invertebrate translocations in New Zealand G.H. Sherley, I.A.N. Stringer and G.R. Parrish SCIENCE FOR CONSERVATION 303 Published by Publishing Team Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand Cover: Male Mercury Islands tusked weta, Motuweta isolata. Originally found on Atiu or Middle Island in the Mercury Islands, these were translocated onto six other nearby islands after being bred in captivity. Photo: Ian Stringer. Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Individual copies are printed, and are also available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright April 2010, New Zealand Department of Conservation ISSN 1173–2946 (hardcopy) ISSN 1177–9241 (PDF) ISBN 978–0–478–14771–1 (hardcopy) ISBN 978–0–478–14772–8 (PDF) This report was prepared for publication by the Publishing Team; editing by Amanda Todd and layout by Hannah Soult. Publication was approved by the General Manager, Research and Development Group, Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. CONTENTS Abstract 5 1. Introduction 6 2. Methods 7 3.
    [Show full text]
  • Haematopus Ostralegus
    Haematopus ostralegus -- Linnaeus, 1758 ANIMALIA -- CHORDATA -- AVES -- CHARADRIIFORMES -- HAEMATOPODIDAE Common names: Eurasian Oystercatcher; Pied Oystercatcher European Red List Assessment European Red List Status VU -- Vulnerable, (IUCN version 3.1) Assessment Information Year published: 2015 Date assessed: 2015-03-31 Assessor(s): BirdLife International Reviewer(s): Symes, A. Compiler(s): Ashpole, J., Burfield, I., Ieronymidou, C., Pople, R., Van den Bossche, W., Wheatley, H. & Wright, L. Assessment Rationale European regional assessment: Vulnerable (VU) EU27 regional assessment: Vulnerable (VU) This widespread shorebird is undergoing rapid population declines across the European part of its extremely large global range. It is therefore classified as Vulnerable (A2abc+3bc+4abc) in both Europe and the EU27. Occurrence Countries/Territories of Occurrence Native: Albania; Austria; Azerbaijan; Belarus; Belgium; Bosnia and Herzegovina; Bulgaria; Croatia; Cyprus; Czech Republic; Denmark; Faroe Islands (to DK); Estonia; Finland; France; Georgia; Germany; Greece; Hungary; Iceland; Ireland, Rep. of; Italy; Latvia; Lithuania; Macedonia, the former Yugoslav Republic of; Malta; Moldova; Montenegro; Netherlands; Norway; Svalbard and Jan Mayen (to NO); Poland; Portugal; Romania; Russian Federation; Serbia; Slovakia; Spain; Sweden; Switzerland; Turkey; Ukraine; United Kingdom; Gibraltar (to UK) Vagrant: Greenland (to DK); Luxembourg; Slovenia Population The European population is estimated at 284,000-354,000 pairs, which equates to 568,000-708,000 mature individuals. The population in the EU27 is estimated at 226,000-267,000 pairs, which equates to 453,000-533,000 mature individuals. For details of national estimates, see Supplementary PDF. Trend In Europe and the EU27 the population size is estimated to be decreasing by 30-49% in 41.1 years (three generations) both in the breeding season and in winter.
    [Show full text]
  • Pied Oystercatcher Haematopus Longirostris Review of Current Information in NSW May 2008
    NSW SCIENTIFIC COMMITTEE Pied Oystercatcher Haematopus longirostris Review of Current Information in NSW May 2008 Current status: The Pied Oystercatcher Haematopus longirostris is currently listed as Rare in South Australia under the National Parks and Wildlife Act 1972 (NPW Act), but is not listed under Commonwealth legislation. The NSW Scientific Committee recently determined that the Pied Oystercatcher meets criteria for listing as Endangered in NSW under the Threatened Species Conservation Act 1995 (TSC Act), based on information contained in this report and other information available for the species. Species description: The Pied Oystercatcher is a medium-sized (45 cm), sturdy, strikingly black and white shorebird with a long orange-red bill, red eyes and stout red-pink legs. It has distinctive loud, piping calls. A similar species, the Sooty Oystercatcher Haematopus fuliginosus, has the same red bill, eyes and legs but is wholly black. Taxonomy: Haematopus longirostris Vieillot 1817, is monotypic (i.e. no subspecies) and an Australasian endemic species in a cosmopolitan genus. Distribution and number of populations: In NSW the Pied Oystercatcher occupies beaches and inlets along the entire coast, the northern and southern populations having possible interchange with the Queensland and Victorian populations, respectively. It occurs and breeds around the Australian and Tasmanian coastlines, but has declined throughout much of its range and is of conservation concern in south-eastern Australia because it is vulnerable to habitat destruction
    [Show full text]
  • Hybridisation by South Island Pied Oystercatcher (Haematopus Finschi) and Variable Oystercatcher (H
    27 Notornis, 2010, Vol. 57: 27-32 0029-4470 © The Ornithological Society of New Zealand, Inc. Hybridisation by South Island pied oystercatcher (Haematopus finschi) and variable oystercatcher (H. unicolor) in Canterbury TONY CROCKER* 79 Landing Drive, Pyes Pa, Tauranga 3112, New Zealand SHEILA PETCH 90a Balrudry Street, Christchurch 8042, New Zealand PAUL SAGAR National Institute of Water & Atmospheric Research, P.O. Box 8602, Christchurch 8011, New Zealand Abstract We document hybridisation between South I pied oystercatcher (Haematopus finschi) and variable oystercatcher (H. unicolor) in Canterbury from 1989 to 2005. From 2 observations of hybridisation between South I pied oystercatcher x variable oystercatcher when first discovered, the hybrid swarm has increased to around 17 pairs, including South I pied oystercatcher pairs, variable oystercatcher pairs, hybrid pairs, and mixed pairs. We present data on the birds and their offspring and speculate on possible causes and implications of hybridisation for conservation of the taxa. Crocker, T.; Petch, S.; Sagar, P. 2010. Hybridisation by South Island pied oystercatcher (Haematopus finschi) and variable oystercatcher (H. unicolor) in Canterbury. Notornis 57(1): 27-32. Keywords South Island pied oystercatcher; Haematopus finschi; variable oystercatcher; Haematopus unicolor; hybridisation; conservation management INTRODUCTION species. Hybridisation between these 2 species South I pied oystercatchers (Haematopus finschi) of oystercatchers has not been documented in (hereafter SIPO) and variable oystercatchers (H. detail previously. Here, we outline the discovery unicolor) (hereafter VOC) are taxa of uncertain and monitoring of an initial 2 hybridising pairs of affinities endemic to New Zealand’s main islands SIPO/VOC, leading to the establishment of a small (Banks & Paterson 2007).
    [Show full text]
  • And Endoparasites of New Zealand Reptiles
    An annotated checklist This article lists the internal and external parasites recorded in or on tuataras and lizards in New Zealand of ecto- and endoparasites and includes brief notes about them. of New Zealand reptiles Tuataras and lizards are New Zealand’s only land-based native reptiles. Currently these comprise two species of tuatara, 16 geckos divided into the major groups of Nematoda, Cestoda, Trematoda and 28 skinks although the exact number of lizards is undecided and Protozoa whereas all ectoparasite records are included in the and is likely to increase as more research is done(1). In this article order Acari. In the annotated list, the parasites are not only attempts are made to catalogue all those ecto- and endoparasites identified according to the phylum or order to which they belong, that have been recorded on, or in, these hosts. but also to family level. In the latter list, each parasite record is also The parasite checklist is presented in three parts. The first two parts supported by a reference, but these are omitted in parts one and simply list these records alphabetically by common host name two. While these data are primarily concerned with parasites of according to Gill and Whitaker(1) and by parasite group, respectively. New Zealand’s native reptile fauna, for the sake of completeness, The third comprises an annotated catalogue of the parasites those that have been recorded from two non-naturalised captive arranged alphabetically according to their scientific names. In the lizards in this country (the Indian blood sucker lizard and the former two parts, and as appropriate, the endoparasite groups are bluetongue skink) are included as well.
    [Show full text]
  • Assessment of Terrestrial Ecological Effects
    Choose a building block. Northern Corridor Improvements Assessment of Terrestrial Ecological Effects Project No: 250310 Document Ref: NCI-3PRE-2ENV-RPT-0030 Revision: 1 9 December 2016 This report has been prepared for the benefit of the NZ Transport Agency. No liability is accepted by this company or any employee or sub-consultant of this company with respect to its use by any other person. This disclaimer shall apply notwithstanding that the report may be made available to other persons for an application for permission or approval or to fulfil a legal requirement. Quality Assurance Statement Prepared by: Chris Wedding, Jennifer Shanks (Bioresearches Group) Reviewed by: Graham Don (Bioresearches Group) NZTA Reviewer: Carol Bannock Approved for issue by Aurecon: Jon Hind Approved for use by NZTA: Deepak Rama File NCI-3PLA-2ENV-RPT-0030 Project No. 250310 Executive summary Purpose of Report This report identifies and assesses the potential effects of the Northern Corridor Improvements Project (the Project) on terrestrial ecological values. The values assessed include vegetation and flora, lizards, avifauna and long-tailed bats within the Project area. Where values are identified and are potentially affected by the construction or operation of the Project, recommendations are provided to avoid or mitigate those effects. Assessments Undertaken The assessments were undertaken across the Project area and include desktop and database reviews, site visits and formal surveys for flora and fauna. Results of Assessments The majority of the vegetation and potential fauna habitat values within the Project area are low, being predominantly planted areas. While vegetation clearance is proposed within the Project area, the overall value of this vegetation is low.
    [Show full text]
  • Technical Report I
    REPORT Watercare Services Limited Northern Interceptor - Phase 1 Ecological Assessment Prepared for: Watercare Services Limited Prepared by: Tonkin & Taylor Ltd Distribution: Watercare Services Limited electronic copy Tonkin & Taylor Ltd (FILE) 1 copy June 2015 Job No: 28773.300 Tonkin & Taylor Ltd June 2015 Northern Interceptor - Phase 1 - Ecological Assessment Job No: 28773.300 Watercare Services Limited Table of contents 1 Introduction 1 1.1 Background 1 1.2 Overview of proposed works 1 2 Methods 3 2.1 Desktop assessment 3 2.2 Field assessment 3 2.2.1 Terrestrial ecosystems 3 2.2.2 Freshwater and wetland ecosystems 4 2.2.3 Coastal marine ecosystems 4 3 Ecological characteristics and values 6 3.1 Ecological context 6 3.2 Ecological characteristics overview 6 3.3 Habitat/vegetation characteristics 7 3.3.1 Hobsonville Pump Station 7 3.3.2 State Highway 18 crossing 7 3.3.3 SH18 to Causeway widening 7 3.3.4 Upper Waitemata Harbour crossing 7 3.3.5 Rahui Rd to Greenhithe Rd 9 3.3.6 Greenhithe Road to Wainoni Park 9 3.3.7 Wainoni Park South & North 10 3.3.8 Te Wharau Creek crossing 11 3.3.9 North Shore Memorial Park 11 3.3.10 North Shore Memorial Park to North Shore Golf Club 11 3.3.11 North Shore Golf Club 11 3.3.12 Albany Highway to William Pickering Drive 12 3.3.13 Piermark Road to Bush Road 12 3.3.14 Rosedale Park to Rosedale WWTP 12 3.4 Fauna 12 3.4.1 Birds 12 3.4.2 Herpetofauna 13 3.4.3 Marine benthic invertebrates 14 3.4.4 Fish 14 4 Assessment of significance 16 4.1 New Zealand Coastal Policy Statement 16 4.2 Auckland Council Regional
    [Show full text]
  • New Zealand Threat Classification System (NZTCS)
    NEW ZEALAND THREAT CLASSIFICATION SERIES 17 Conservation status of New Zealand reptiles, 2015 Rod Hitchmough, Ben Barr, Marieke Lettink, Jo Monks, James Reardon, Mandy Tocher, Dylan van Winkel and Jeremy Rolfe Each NZTCS report forms part of a 5-yearly cycle of assessments, with most groups assessed once per cycle. This report is the first of the 2015–2020 cycle. Cover: Cobble skink, Oligosoma aff.infrapunctatum “cobble”. Photo: Tony Jewell. New Zealand Threat Classification Series is a scientific monograph series presenting publications related to the New Zealand Threat Classification System (NZTCS). Most will be lists providing NZTCS status of members of a plant or animal group (e.g. algae, birds, spiders). There are currently 23 groups, each assessed once every 3 years. After each three-year cycle there will be a report analysing and summarising trends across all groups for that listing cycle. From time to time the manual that defines the categories, criteria and process for the NZTCS will be reviewed. Publications in this series are considered part of the formal international scientific literature. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Series. © Copyright December 2016, New Zealand Department of Conservation ISSN 2324–1713 (web PDF) ISBN 978–1–98–851400–0 (web PDF) This report was prepared for publication by the Publishing Team; editing and layout by Lynette Clelland. Publication was approved by the Director, Terrestrial Ecosystems Unit, Department of Conservation, Wellington, New Zealand. Published by Publishing Team, Department of Conservation, PO Box 10420, The Terrace, Wellington 6143, New Zealand.
    [Show full text]
  • Gecko Monitoring FIELD GUIDE for Motuihe Island Copyright © 2017 Motuihe Island Restoration Trust April 2017
    Gecko Monitoring FIELD GUIDE for Motuihe Island Copyright © 2017 Motuihe Island Restoration Trust April 2017 All rights reserved. No part of this publication is to be reproduced other than for educational or non- commercial purposes without the prior approval of the copyright owner. Prepared by Dylan van Winkel Acknowledgements Thanks to the Motuihe Island Restoration Trust Inc. for funding the development of this programme and production of this Field Guide, and thanks to Dr. Matt Baber, Art Polkanov (DOC) and Mark Delaney for constructive comments on the Gecko Monitoring Programme. Front cover Duvaucel’s gecko (Hoplodactylus duvaucelii) Photo – Dylan van Winkel Photo & Illustration credits Dylan van Winkel, Marleen Baling, Dr. Dave Towns, Dr. Brian Gill, and Dhahara Ranatunga Cited as: van Winkel D. (2017) Gecko Monitoring Field Guide for Motuihe Island. Motuihe Island Restoration Trust, Auckland. 1 Contents Page Introduction 4 Preparing for Monitoring 5 Monitoring Equipment 6 Step-by-step Procedure 7 Monitoring Methods Tracking Tunnel (TT) 8 Cell Foam Cover (CFC) 9 Artificial Cover Object (ACO) 10 Species Identification Raukawa Gecko (Woodworthia maculata) 11 Pacific Gecko (Dactylocnemis pacificus) 12 Duvaucel’s Gecko (Hoplodactylus duvaucelii) 13 2 Contents Page Quick Guides Gecko Footprint Comparison 14 Size Guide – Raukawa Gecko 15 Size Guide – Pacific Gecko 16 Size Guide – Duvaucel’s Gecko 17 Other Reptile Species 18 Plague Skink (Lampropholis delicata) 19 Gecko Gender 20 General Observations 21 Frequently Asked Questions 22 Contact Details 23 3 Introduction This Field Guide was developed to aid the Motuihe Island Restoration Trust volunteers while undertaking gecko monitoring surveys on the island. The Guide focuses on three species of native gecko, including Duvaucel’s gecko (Hoplodactylus duvaucelii), raukawa gecko (Woodworthia maculata) and pacific gecko (Dactylocnemis pacificus).
    [Show full text]
  • Hoplodactylus Duvaucelii), and the Use of Cell-Foam Retreats by Lizards and Invertebrates
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Anchoring techniques for translocated Duvaucel’s geckos (Hoplodactylus duvaucelii), and the use of cell-foam retreats by lizards and invertebrates A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Conservation Biology Massey University, Albany, New Zealand. Alaine Holdom 2015 “You cannot get through a single day without having an impact on the world around you. What you do makes a difference, and you have to decide what kind of difference you want to make.” Jane Goodall I Abstract Conservation management often requires translocations to isolated habitats, and determining the success of such events is reliant on the use of effective post-translocation monitoring (PTM) techniques. Many reptile populations are already difficult to monitor, and post-release dispersal often increases this difficulty. Effective monitoring techniques for nocturnal, semi-arboreal, cryptic lizards are consequently still lacking. Furthermore, very little research has been conducted on the use of anchoring techniques for improving the PTM of lizards by reducing post-release dispersal behaviour. In early 2013, two populations of Duvaucel’s geckos (Hoplodactylus duvaucelii) were translocated to two offshore islands. This provided an excellent opportunity to investigate several aspects relating to the improvement of PTM techniques for this species. I investigated whether two anchoring techniques, i.e. temporary food provision and release into cell-foam retreats (CFRs), can reduce post-release dispersal and encourage CFR usage.
    [Show full text]
  • Supplementary Table 1. List of Demonstrated Beneficiaries
    Supplementary Table 1. List of demonstrated beneficiaries. IUCN Red List Island Country Common Scientific Animal status Event Citation Petroica New australis Adele Zealand South Island robin australis Landbird LC reintroduction (1) Branta United Aleutian cackling hutchinsii Agattu States goose leucopareia Landbird LC reintroduction (2) United Evermann's rock Lagopus muta Agattu States ptarmigan evermanni Landbird LC reintroduction (2) United unassisted Ailsa Craig Kingdom Black guillemot Cepphus grylle Seabird LC colonization (3) United Fratercula unassisted Ailsa Craig Kingdom Atlantic puffin arctica Seabird LC recolonization (4) United Oenanthe unassisted Ailsa Craig Kingdom Northern wheatear oenanthe Landbird LC colonization (4) United Tadorna unassisted Ailsa Craig Kingdom Common shelduck tadorna Landbird LC colonization (3) Philesturnus New South Island carunculatus Allports Zealand saddleback carunculatus Landbird NT reintroduction (2) Bettongia Alpha Australia Burrowing bettong lesueur Mammal NT introduction (5) Branta (6; Steve Amchitka United Aleutian cackling hutchinsii unassisted Ebbert, pers. Island States goose leucopareia Landbird LC recolonization comm.) Amukta United Aleutian cackling Branta Landbird LC unassisted (7) IUCN Red List Island Country Common Scientific Animal status Event Citation States goose hutchinsii recolonization leucopareia Sally Amy Poncet, Island/Outer United Cinclodes unassisted unpublished Knob Kingdom Tussacbird antarcticus Landbird LC recolonization data Sally Amy Poncet, Island/Outer United unpublished
    [Show full text]