Preserving Instance State During Refactorings in Live Environments Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury Bouraqadi, Stéphane Ducasse
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Liste Von Programmiersprachen
www.sf-ag.com Liste von Programmiersprachen A (1) A (21) AMOS BASIC (2) A# (22) AMPL (3) A+ (23) Angel Script (4) ABAP (24) ANSYS Parametric Design Language (5) Action (25) APL (6) Action Script (26) App Inventor (7) Action Oberon (27) Applied Type System (8) ACUCOBOL (28) Apple Script (9) Ada (29) Arden-Syntax (10) ADbasic (30) ARLA (11) Adenine (31) ASIC (12) Agilent VEE (32) Atlas Transformatikon Language (13) AIMMS (33) Autocoder (14) Aldor (34) Auto Hotkey (15) Alef (35) Autolt (16) Aleph (36) AutoLISP (17) ALGOL (ALGOL 60, ALGOL W, ALGOL 68) (37) Automatically Programmed Tools (APT) (18) Alice (38) Avenue (19) AML (39) awk (awk, gawk, mawk, nawk) (20) Amiga BASIC B (1) B (9) Bean Shell (2) B-0 (10) Befunge (3) BANCStar (11) Beta (Programmiersprache) (4) BASIC, siehe auch Liste der BASIC-Dialekte (12) BLISS (Programmiersprache) (5) Basic Calculator (13) Blitz Basic (6) Batch (14) Boo (7) Bash (15) Brainfuck, Branfuck2D (8) Basic Combined Programming Language (BCPL) Stichworte: Hochsprachenliste Letzte Änderung: 27.07.2016 / TS C:\Users\Goose\Downloads\Softwareentwicklung\Hochsprachenliste.doc Seite 1 von 7 www.sf-ag.com C (1) C (20) Cluster (2) C++ (21) Co-array Fortran (3) C-- (22) COBOL (4) C# (23) Cobra (5) C/AL (24) Coffee Script (6) Caml, siehe Objective CAML (25) COMAL (7) Ceylon (26) Cω (8) C for graphics (27) COMIT (9) Chef (28) Common Lisp (10) CHILL (29) Component Pascal (11) Chuck (Programmiersprache) (30) Comskee (12) CL (31) CONZEPT 16 (13) Clarion (32) CPL (14) Clean (33) CURL (15) Clipper (34) Curry (16) CLIPS (35) -
A Metacircular Architecture for Runtime Optimisation Persistence Clément Béra
Sista: a Metacircular Architecture for Runtime Optimisation Persistence Clément Béra To cite this version: Clément Béra. Sista: a Metacircular Architecture for Runtime Optimisation Persistence. Program- ming Languages [cs.PL]. Université de Lille 1, 2017. English. tel-01634137 HAL Id: tel-01634137 https://hal.inria.fr/tel-01634137 Submitted on 13 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universit´edes Sciences et Technologies de Lille { Lille 1 D´epartement de formation doctorale en informatique Ecole´ doctorale SPI Lille UFR IEEA Sista: a Metacircular Architecture for Runtime Optimisation Persistence THESE` pr´esent´eeet soutenue publiquement le 15 Septembre 2017 pour l'obtention du Doctorat de l'Universit´edes Sciences et Technologies de Lille (sp´ecialit´einformatique) par Cl´ement B´era Composition du jury Pr´esident: Theo D'Hondt Rapporteur : Ga¨elThomas, Laurence Tratt Examinateur : Elisa Gonzalez Boix Directeur de th`ese: St´ephaneDucasse Co-Encadreur de th`ese: Marcus Denker Laboratoire d'Informatique Fondamentale de Lille | UMR USTL/CNRS 8022 INRIA Lille - Nord Europe Numero´ d’ordre: XXXXX i Acknowledgments I would like to thank my thesis supervisors Stéphane Ducasse and Marcus Denker for allowing me to do a Ph.D at the RMoD group, as well as helping and supporting me during the three years of my Ph.D. -
The Future: the Story of Squeak, a Practical Smalltalk Written in Itself
Back to the future: the story of Squeak, a practical Smalltalk written in itself Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay [Also published in OOPSLA ’97: Proc. of the 12th ACM SIGPLAN Conference on Object-oriented Programming, 1997, pp. 318-326.] VPRI Technical Report TR-1997-001 Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761 Back to the Future The Story of Squeak, A Practical Smalltalk Written in Itself by Dan Ingalls Ted Kaehler John Maloney Scott Wallace Alan Kay at Apple Computer while doing this work, now at Walt Disney Imagineering 1401 Flower Street P.O. Box 25020 Glendale, CA 91221 [email protected] Abstract Squeak is an open, highly-portable Smalltalk implementation whose virtual machine is written entirely in Smalltalk, making it easy to debug, analyze, and change. To achieve practical performance, a translator produces an equivalent C program whose performance is comparable to commercial Smalltalks. Other noteworthy aspects of Squeak include: a compact object format that typically requires only a single word of overhead per object; a simple yet efficient incremental garbage collector for 32-bit direct pointers; efficient bulk- mutation of objects; extensions of BitBlt to handle color of any depth and anti-aliased image rotation and scaling; and real-time sound and music synthesis written entirely in Smalltalk. Overview Squeak is a modern implementation of Smalltalk-80 that is available for free via the Internet, at http://www.research.apple.com/research/proj/learning_concepts/squeak/ and other sites. It includes platform-independent support for color, sound, and image processing. -
Towards Gradual Typing for Generics
Towards Gradual Typing for Generics Lintaro Ina and Atsushi Igarashi Graduate School of Informatics, Kyoto University {ina,igarashi}@kuis.kyoto-u.ac.jp Abstract. Gradual typing, proposed by Siek and Taha, is a framework to combine the benefits of static and dynamic typing. Under gradual typing, some parts of the program are type-checked at compile time, and the other parts are type-checked at run time. The main advantage of gradual typing is that a programmer can write a program rapidly without static type annotations in the beginning of development, then add type annotations as the development progresses and end up with a fully statically typed program; and all these development steps are carried out in a single language. This paper reports work in progress on the introduction of gradual typing into class-based object-oriented programming languages with generics. In previous work, we have developed a gradual typing system for Feather- weight Java and proved that statically typed parts do not go wrong. After reviewing the previous work, we discuss issues raised when generics are introduced, and sketch a formalization of our solutions. 1 Introduction Siek and Taha have coined the term “gradual typing” [1] for a linguistic sup- port of the evolution from dynamically typed code, which is suitable for rapid prototyping, to fully statically typed code, which enjoys type safety properties, in a single programming language. The main technical challenge is to ensure some safety property even for partially typed programs, in which some part is statically typed and the rest is dynamically typed. The framework of gradual typing consists of two languages: the surface lan- guage in which programmers write programs and the intermediate language into which the surface language translates. -
Safe, Fast and Easy: Towards Scalable Scripting Languages
Safe, Fast and Easy: Towards Scalable Scripting Languages by Pottayil Harisanker Menon A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy. Baltimore, Maryland Feb, 2017 ⃝c Pottayil Harisanker Menon 2017 All rights reserved Abstract Scripting languages are immensely popular in many domains. They are char- acterized by a number of features that make it easy to develop small applications quickly - flexible data structures, simple syntax and intuitive semantics. However they are less attractive at scale: scripting languages are harder to debug, difficult to refactor and suffers performance penalties. Many research projects have tackled the issue of safety and performance for existing scripting languages with mixed results: the considerable flexibility offered by their semantics also makes them significantly harder to analyze and optimize. Previous research from our lab has led to the design of a typed scripting language built specifically to be flexible without losing static analyzability. Inthis dissertation, we present a framework to exploit this analyzability, with the aim of producing a more efficient implementation Our approach centers around the concept of adaptive tags: specialized tags attached to values that represent how it is used in the current program. Our frame- work abstractly tracks the flow of deep structural types in the program, and thuscan ii ABSTRACT efficiently tag them at runtime. Adaptive tags allow us to tackle key issuesatthe heart of performance problems of scripting languages: the framework is capable of performing efficient dispatch in the presence of flexible structures. iii Acknowledgments At the very outset, I would like to express my gratitude and appreciation to my advisor Prof. -
Strongtalk Plan Prezentacji
Elżbieta Bajkowska Strongtalk Plan prezentacji Czym jest Strongtalk Historia Strongtalk System typów w Strongtalk Podsumowanie Źródła Czym jest Strongtalk Składnia i semantyka Smalltalk’a-80 plus: Większa wydajność – najszybsza implementacja Smalltalk System typów – opcjonalny i przyrostowy; silny, statyczny system typów działający niezależnie od metody kompilacji (nie typowany kod Smalltalka wykonuje się równie szybko) Typowana biblioteka klas według Smalltalk Blue Book Historia Strongtalk Dwa równoległe i niezależne wątki rozwoju przyszłego systemu Strongtalk Zachodnie wybrzeże – prace grupy związanej z językiem Self nad innowacyjną maszyną wirtualną Wschodnie wybrzeże – prace nad systemem typów dla języka Smalltalk Historia Strongtalk Zachód – maszyna wirtualna Cel – poprawienie wydajności czysto obiektowego języka Self Satysfakcjonujące odśmiecanie Problem efektywnej kompilacji dla dynamicznie typowanego języka, używającego konstrukcji bloku gdzie wszystkie dane są obiektami (analogia do Smalltalk’a) - Urs Hoelzle Historia Strongtalk Wschód – system typów Dave Griswold i Gilad Bracha opracowują Strongtalk - (nazwa systemu wywodzi się od systemu typów) – konferencja OOPSLA ’93 Baza – biblioteki ParcPlace Smalltalk, nie odzwierciedlające w pełni hierarchii typów Strongtalka Zainteresowanie technologią grupy pracującej nad kompilatorem Self dla poprawienia wydajności Historia Strongtalk Połączenie technologii Animorphic Systems - Dave Griswold zaczyna współpracę z Urs’em Hoelzle (reszta grupy: Lars Bak, Gilad Bracha, -
Type Feedback for Bytecode Interpreters Position Paper ICOOOLPS 2007
Type Feedback for Bytecode Interpreters Position Paper ICOOOLPS 2007 Michael Haupt1, Robert Hirschfeld1, and Marcus Denker2 1 Software Architecture Group Hasso-Plattner-Institut University of Potsdam, Germany 2 Software Composition Group Institute of Computer Science and Applied Mathematics University of Berne, Switzerland michael.haupt,hirschfeld @hpi.uni-potsdam.de, [email protected] { } Abstract. This position paper proposes the exploitation of type feed- back mechanisms, or more precisely, polymorphic inline caches, for purely interpreting implementations of object-oriented programming languages. Using Squeak’s virtual machine as an example, polymorphic inline caches are discussed as an alternative to global caching. An implementation proposal for polymorphic inline caches in the Squeak virtual machine is presented, and possible future applications for online optimization are outlined. 1 Introduction Bytecode interpreters are small in size and comparatively easy to implement, but generally execute programs much less efficiently than just-in-time (JIT) compilers. Techniques like threaded interpretation [9, 11, 2] focus on speeding up bytecode interpretation itself, and caching [4, 5, 1] improves the performance of message sends—the most common operation in object-oriented software [7]. It is interesting to observe that, while threading mechanisms are used natu- rally to a varying degree in bytecode interpreter implementations, such systems usually employ only global caching to speed up dynamic method dispatch. A global cache is clearly beneficial with respect to overall performance. Still, it does not provide optimal support for polymorphic message send sites, and it does not allow for exploiting type information (we provide details on these issues in the following section). In our opinion, the employment of polymorphic inline caches (PICs) [5] instead can provide means for achieving significant speedups in bytecode interpreters while exhibiting only a moderate increase in memory footprint and implementation complexity. -
A Tour of the Squeak Object Engine
A Tour of the Squeak Object Engine A Tour of the Squeak Object Engine Tim Rowledge, [email protected] Introduction This chapter is intended to explain some basics of how a Virtual Machine (VM) works, why a VM is useful, what it does for the Squeak programmer and user, and how the Squeak VM might develop in the future. What is a Virtual Machine and why do we need one? A Virtual Machine provides us with a pretense of being a machine other than the actual hardware in use. Using one allows systems that behave differently than the host hardware to run as if on hardware designed for them. The term Object Engine is less commonly used but is a useful concept that includes the lowest system areas of the langauge environment running on the VM. Since there is often some flux in the definition of which components are within the actual VM and which are part of the supported environment, Object Engine is useful as a more inclusive term. The term Virtual Machine is used in several ways. When IBM refer to VM/CMS they are referring to a way of making a mainframe behave as if it is many machines, so that programs can assume they have total control even though they do not. Intel provide a somewhat similar facility in the x86 architecture(?), referred to as Virtual Mode. This sort of VM is a complete hardware simulation, often supported at the lowest level by the hardware. Another sort of VM is the emulator - SoftWindows for the Mac, Acorn's !PC, Linux's WINE are good examples - where another machine and/or OS is simulated to allow a Mac user to run Windows programs, an Acorn RiscPC or a Linux machine to run Windows98 programs and so on. -
Sindarin: a Versatile Scripting API for the Pharo Debugger
Sindarin: A Versatile Scripting API for the Pharo Debugger Thomas Dupriez Guillermo Polito Steven Costiou Univ. Lille, CNRS, Centrale Lille, CNRS - UMR 9189 - CRIStAL, Univ. Inria, Univ. Lille, CNRS, Centrale Inria, UMR 9189 - CRIStAL Lille, Centrale Lille, Inria Lille, UMR 9189 - CRIStAL France France France [email protected] [email protected] [email protected] Vincent Aranega Stéphane Ducasse Univ. Lille, CNRS, Centrale Lille, Inria, Univ. Lille, CNRS, Centrale Inria, UMR 9189 - CRIStAL Lille, UMR 9189 - CRIStAL France France [email protected] [email protected] Abstract Studies and work on debugging acknowledge that main- Debugging is one of the most important and time consuming stream debuggers are not well adapted to several debugging activities in software maintenance, yet mainstream debuggers scenarios [3, 27, 31]. This has led to the appearance of new de- are not well-adapted to several debugging scenarios. This bugging techniques proposing to augment traditional interac- has led to the research of new techniques covering specific tive debuggers with, e.g., stateful breakpoints [4], control-flow families of complex bugs. Notably, recent research proposes aware breakpoints [5], object-centric breakpoints [10, 34], the to empower developers with scripting DSLs, plugin-based and automatic insertion of breakpoints based on dynamic execu- moldable debuggers. However, these solutions are tailored to tions [45], or declarative statements from the developer [21]. specific use-cases, or too costly for one-time-use scenarios. A line of research has also started to study scripting APIs to In this paper we argue that exposing a debugging scripting empower developers to implement debugging scripts adapted interface in mainstream debuggers helps in solving many chal- to their needs. -
CONFERENCE COMPANION ESUG 2008 - 16Th International Smalltalk Conference
ESUG-2008 CONFERENCE COMPANION ESUG 2008 - 16th International Smalltalk Conference CONTENTS Platinum Sponsors.......................................................................................................... 3 Gold Sponsors................................................................................................................ 4 Conference Location....................................................................................................... 5 Program Overview........................................................................................................... 8 Saturday, August 23...................................................................................................... 10 Sunday, August 24......................................................................................................... 10 Monday, August 25....................................................................................................... 11 Tuesday, August 26....................................................................................................... 16 Wednesday, August 27.................................................................................................. 20 Thursday, August 28...................................................................................................... 23 Friday, August 29........................................................................................................... 27 Program Overview........................................................................................................ -
Smalltalk Language Mapping Specification
Smalltalk Language Mapping Specification New Edition: June 1999 Copyright 1995, 1996 BNR Europe Ltd. Copyright 1998, Borland International Copyright 1991, 1992, 1995, 1996 Digital Equipment Corporation Copyright 1995, 1996 Expersoft Corporation Copyright 1996, 1997 FUJITSU LIMITED Copyright 1996 Genesis Development Corporation Copyright 1989, 1990, 1991, 1992, 1995, 1996 Hewlett-Packard Company Copyright 1991, 1992, 1995, 1996 HyperDesk Corporation Copyright 1998 Inprise Corporation Copyright 1996, 1997 International Business Machines Corporation Copyright 1995, 1996 ICL, plc Copyright 1995, 1996 IONA Technologies, Ltd. Copyright 1996, 1997 Micro Focus Limited Copyright 1991, 1992, 1995, 1996 NCR Corporation Copyright 1995, 1996 Novell USG Copyright 1991,1992, 1995, 1996 by Object Design, Inc. Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc. Copyright 1996 Siemens Nixdorf Informationssysteme AG Copyright 1991, 1992, 1995, 1996 Sun Microsystems, Inc. Copyright 1995, 1996 SunSoft, Inc. Copyright 1996 Sybase, Inc. Copyright 1998 Telefónica Investigación y Desarrollo S.A. Unipersonal Copyright 1996 Visual Edge Software, Ltd. The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified ver- sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason of having used the specification set forth herein or having con- formed any computer software to the specification. PATENT The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of an invention covered by patent rights. -
CS 535 Object-Oriented Programming & Design Fall Semester, 2008 Doc
CS 535 Object-Oriented Programming & Design Fall Semester, 2008 Doc 4 Starting VisualWorks Sept 9 2008 Copyright ©, All rights reserved. 2008 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http:// www.opencontent.org/openpub/) license defines the copyright on this document. Reference VisualWorks Application Developer’s Guide, doc/AppDevGuide.pdf in the VisualWorks installation. Chapter 1 The VisualWorks Environment. Reading VisualWorks Application Developer’s Guide, doc/AppDevGuide.pdf in the VisualWorks installation. Chapter 1 The VisualWorks Environment. Chapter 2 Programming in VisualWorks (minus the sections Loading Code Libraries & Paintng a GUI) 2 Learning Smalltalk Smalltalk language syntax Smalltalk Programming Environment Smalltalk Class Library Object-oriented thinking This is the hardest part Smalltalk culture 3 Versions of Smalltalk VisualWorks VisualAge for Smalltalk Squeak Dolphin Smalltalk X Smallscript (.NET Smalltalk) 4 Bytecode & VMs Smalltalk is compiled to a bytecode for a virtual machine VisualWorks has VM's for: Windows Macintosh Unix/Linux VisualWork’s virtual machine (VM) uses a JIT to compile bytecodes 5 Parts of VisualWorks Executable Virtual Machine (visual, visual.exe) This is the VM that interprets Smalltalk bytecode visual.sou Source code for most of class library visual.cha Source code for changes & new classes Does not exist until after you first use VisualWorks visual.im Bytecode of sources that are executed At first the image will appear to be an IDE for Smalltalk 6 Before Starting VisualWorks Make a copy of visual.im You will need it later 7 Starting VisualWorks on Windows Method 1 Drag and drop the image file on the Visual application or visual.exe Method 2 Double click on the image file The first time you do this you may get a dialog asking for the application to run the image.