Proceedings of the Royal Society of Edinburgh, 141A, 65–76, 2011 On the distributional divergence of vector fields vanishing at infinity Thierry De Pauw Institut de Recherches en Math´ematiques et Physique, Universit´e Catholique de Louvain, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium (
[email protected]) Monica Torres Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, USA (
[email protected]) (MS received 31 August 2009; accepted 1 April 2010) The equation div v = F has a solution v in the space of continuous vector fields m vanishing at infinity if and only if F acts linearly on BVm/(m−1)(R ) (the space of functions in Lm/(m−1)(Rm) whose distributional gradient is a vector-valued measure) and satisfies the following continuity condition: F (uj ) converges to zero for each sequence {uj } such that the measure norms of ∇uj are uniformly bounded and m/(m−1) m uj 0 weakly in L (R ). 1. Introduction The equation ∆u = f ∈ Lm(Rm) need not have a solution u ∈ C1(Rm). In this paper we prove that, to each f ∈ Lm(Rm), there corresponds a continuous vector m m field, vanishing at infinity, v ∈ C0(R ; R ) such that div v = f weakly. In fact, we characterize those distributions F on Rm such that the equation div v = F admits m m a weak solution v ∈ C0(R ; R ). Related results have been obtained in [1–4, 6]. Our first proof, contained in §§ 3–6, follows the same pattern as [2].