Hexaalkylguanidinium Salts As Ionic Liquids – New Applications In
Total Page:16
File Type:pdf, Size:1020Kb
Institut für Organische Chemie I Hexaalkylguanidinium Salts as Ionic Liquids – New Applications in Titanium and Aluminium Alcoholates Assisted Synthesis and as Electrolytes for Electrodeposition of Metals Dissertation zur Erlangung des Grades des Doktors Dr. rer. nat. der Fakultät für Naturwissenschaften der Universität Ulm vorgelegt von Dipl.-Ing. Maria Arkhipova aus Leningrad (St. Petersburg) Ulm 2014 Die vorliegende Arbeit entstand in der Zeit von Januar 2010 bis Januar 2014 in dem Institut für Organische Chemie I der Universität Ulm. Amtierender Dekan: Prof. Dr. Joachim Ankerhold 1. Gutachter: Prof. Dr. Gerhard Maas 2. Gutachter: Prof. Dr. Willi Kantlehner Tag der Promotion: 17.03.2014 Моим родителям List of abbreviations APIs Active Pharmaceutical Ingredients AES Auger Electron Spectroscopy BASIL Biphasic Acid Scavenging Utilising Ionic Liquids BINOL 1,1'-Bi-2-naphthol BMIm 1-Butyl-3-methylimidazolium BMPyr N-Butyl-N-methylpyrrolidinium Bn Benzyl Bu Butyl tBu tert-Butyl CHN Elemental analysis CI Chemical Ionisation CV Cyclic Voltammetry d day(s) DLS Dynamic Light Scattering DMC Dimethyl carbonate DMF Dimethylformamide DSC Differential Scanning Calorimetry DSSC Dye-Sensitised Solar Cell EC Ethylene carbonate EDX Energy-Dispersive X-ray analysis EIS Electrochemical Impedance Spectroscopy EMIm 1-Ethyl-3-methylimidazolium Et Ethyl FAP Tris(perfluoroalkyl)trifluorophosphate FSI Bis(fluorosulfonyl)imide GC Glassy Carbon Gu Guanidinium h hour(s) Hex Hexyl cHex Cyclohexyl HMBC Heteronuclear Multiple Bond Correlation HMMIm 1-Hexyl-2,3-dimethylimidazolium HOPG Highly Oriented Pyrolytic Graphite HSQC Heteronuclear Single Quantum Correlation IFP Institut Francais du Petrole IL(s) Ionic Liquid(s) IR Infrared Spectroscopy LAB Linear Alkylbenzenes LED Light-Emitting Diode LIB Lithium-Ion Batteries LSV Linear Sweep Voltammetry Me Methyl MPPip N-Methyl-N-propylpiperidinium MS Mass Spectrometry MEA Monoethanolamine MW microwave NAA Neutron Activation Analysis NHC N-Heterocyclic Carbene NMR Nuclear Magnetic Resonance NSAID Non-Steroidal Anti-Inflammatory Drug PenMeIm 1-Pentyl-3-methylimidazolium PEs Polymer Electrolytes PMIm 1-Propyl-3-methylimidazolium PMPyr N-Propyl-N-methylpyrrolidinium ppm parts per million Pr Propyl RTIL Room Temperature Ionic Liquid scCO2 supercritical carbon dioxide SEI Solid Electrolyte Interface SILP Supported Ionic Liquid Phase STM Scanning Tunnelling Microscope Tdec Decomposition temperature TEM Transmission Electron Microscopy analysis TFSI Bis(trifluoromethanesulfonyl)imide Tg Glass transition temperature TGA Thermal Gravimetric Analysis Tm Melting point temperature TSIL Task Specific Ionic Liquid XPS X-Ray Photoelectron Spectroscopy XRD X-Ray Diffraction Table of contents Table of contents 1. Introduction ........................................................................................................................ 1 2. Overview: synthesis, physicochemical properties and selected application fields of ionic liquids .................................................................................................................................... 3 2.1 Historical aspects of ionic liquids .............................................................................. 3 2.2 Methods of synthesis of hexaalkylguanidinium-based ILs ........................................ 7 2.3 Selected physical properties of the ILs ..................................................................... 10 2.3.1 Melting point ............................................................................................................ 11 2.3.2 Vapour pressure and thermal stability ...................................................................... 12 2.3.3 Viscosity ................................................................................................................... 13 2.3.4 Electrochemical stability .......................................................................................... 13 2.3.5 Conductivity ............................................................................................................. 15 2.3.6 Impact of the ILs on environment and living organisms .......................................... 16 2.4 ILs as reaction media ................................................................................................ 17 2.4.1 Heck reaction in ILs ................................................................................................. 18 2.4.2 Miscellaneous reactions in ILs ................................................................................. 21 2.4.3 Applications of ILs in chemical processes ............................................................... 24 2.5 ILs as electrolytes ..................................................................................................... 26 2.5.1 Electrodeposition of metals from ILs ....................................................................... 26 2.5.1.1 Electrodeposition of aluminium from ILs ................................................................ 27 2.5.1.2 Electrodeposition of tantalum from ILs ................................................................... 29 2.5.1.3 Electrodeposition of chromium from ILs ................................................................. 30 2.5.2 Application of ILs in Li-ion batteries ....................................................................... 31 2.5.2.1 Conventional Li-ion batteries ................................................................................... 31 2.5.2.2 Li-ion batteries using ILs as electrolytes .................................................................. 33 2.6 Miscellaneous applications of ILs ............................................................................ 36 2.6.1 Application of ILs in biomass processing ................................................................ 36 2.6.2 Application of ILs in dye-sensitised solar cells ........................................................ 37 2.6.3 Other applications ..................................................................................................... 38 3. Motivation ........................................................................................................................ 39 4. Results and discussion ...................................................................................................... 42 I Table of contents 4.1 Synthesis of guanidinium-based ionic liquids .......................................................... 42 4.2 Restricted rotation in hexaalkylguanidinium salts ................................................... 49 4.3 Crystal structure of N-cyclohexyl-N,N’,N’,N”,N”-pentamethylguanidinium chloride .................................................................................................................................. 52 4.4 Selected physical properties of the synthesised guanidinium-based ILs ................. 53 4.5 Solubility of metal alcoholates in ionic liquids ........................................................ 56 4.6 Condensation reactions in guanidinium-based ionic liquids .................................... 60 4.6.1 Reaction of lactamisation ......................................................................................... 61 4.6.2 Reactions of lactonisation ........................................................................................ 70 4.6.3 Synthesis of oxazolines ............................................................................................ 71 4.6.4 Paal-Knorr synthesis ................................................................................................. 76 4.6.5 Friedel-Crafts acylation ............................................................................................ 80 4.7 Electrochemical properties and applications ............................................................ 82 4.7.1 Study of the electrochemical behaviour of guanidinium-based ILs ......................... 82 4.7.2 Electrodeposition from guanidinium-based ILs ....................................................... 84 4.7.2.1 Titanium electrodeposition ....................................................................................... 85 4.7.2.2 Dysprosium electrodeposition .................................................................................. 87 4.7.2.3 Iron electrodeposition ............................................................................................... 88 4.7.3 Application of guanidinium-based ILs in batteries .................................................. 89 4.7.3.1 Guanidinium ILs containing a piperidinium moiety ................................................ 89 4.7.3.2 Guanidinium ILs containing sterically more demanding substituents ..................... 95 5. Summary .......................................................................................................................... 97 6. Experimental part ........................................................................................................... 102 6.1 General remarks ..................................................................................................... 102 6.1.1 Analytic methods .................................................................................................... 103 6.1.2 Starting compounds ................................................................................................ 105 6.2 Synthetic procedures .............................................................................................