bioRxiv preprint doi: https://doi.org/10.1101/2020.08.27.270314; this version posted August 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Disproportionate presence of adenosine in mitochondrial and chloroplast DNA of Chlamydomonas reinhardtii Waleed M. M. El-Sayed1,2,3, Alli L. Gombolay1,5, Penghao Xu1,5, Taehwan Yang1,5, Youngkyu Jeon1,5, Sathya Balachander1,5, Gary Newnam1, Sijia Tao4, Nicole E. Bowen4, Raymond F. Schinazi4, Baek Kim4, Yongsheng Chen2 and Francesca Storici1,* 1School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; 2School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; 3Marine Microbiology Department, National Institute of Oceanography and Fisheries, Red Sea, 84517, Egypt; 4Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30309, USA; 5These authors contributed equally: Alli Gombolay, Penghao Xu, Taehwan Yang, Youngkyu Jeon and Sathya Balachander. *Correspondence to Francesca Storici, email:
[email protected] Summary Ribonucleoside monophosphates (rNMPs) represent the most common non-standard nucleotides found in the genomic DNA of cells. The distribution of rNMPs in DNA has been studied only in limited genomes, such as yeast nuclear and mitochondrial DNA, as well as human mitochondrial DNA. In this study, we used the ribose-seq protocol and the Ribose-Map bioinformatics toolkit to reveal the distribution of rNMPs incorporated into the whole genome of a photosynthetic unicellular green alga, Chlamydomonas reinhardtii. The study presents the discovery of a disproportionate incorporation of adenosine in the mitochondrial and chloroplast DNA, in contrast to the nuclear DNA, relative to the nucleotide content of these C.