Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2013, № 5, p. 3-29. UDK 631.522/.524:[575+575.22/.23+575.16/.162 THIRD VARIABILITY, THE INHERITANCE TYPES AND SEED REPRODUCTION IN PLANTS S.I. Maletsky1, N.V. Roik2, V.A. Dragavtsev3 1Institute of Cytology and Genetics of Siberian Branch, Russian Academy of Sciences, 10, prosp. Lavrentieva, Novosibirsk, 630090 Russia, e-mail:
[email protected]; 2Isitute of Bioenergetic Crops and Sugar Beet, Ukrainian Academy of Agricultural Sciences, 25, Klinicheskaya ul., Kiev, 03321 Ukraine, e-mail:
[email protected]; 3Agrophysical Research Institute, Russian Academy of Agricultural Sciences, 14, Grazhdanskiy prosp., St. Petersburg, 195220 Russia, e-mail:
[email protected] Received April 25, 2013 The G. Mendel’s model for hereditary factors (genes) and appeared on its base the genecentric paradigm, which postulates that genes control not only inheritance of simple traits of plants and animals, but determine ontogenesis, morphogenesis and all cardinal tendencies of life evolution, are examined. In the article, it is indicated, that along with the discovery of discrete heredity forPisum sativum L., G. Mendel by fact described, in addition to well-known genotypic and paratypic variability, a one more variability for plants of generaHieracium L., which now is denominated as an epigenetic variability. Analysis of literature permits to evolve the idea, that the real distribution of genotypes is determined not only by the G. Mendel’s lows for inheritance, but by structure of genomes (a ploidy) and by a manner of plant seeds reproduction (uniparental or biparental). In particular, the facts about the manner of reproduction of seeds of different species and genera demonstrate, that very often the reproductive characters are difficultly dedicated as mendelian, and their inheritance usually has an epigenetic nature.