Morphometric Analysis of the Rattan Calamus Javensis Complex (Arecaceae: Calamoideae) Author(S): Mega Atria, Harald Van Mil, William J

Total Page:16

File Type:pdf, Size:1020Kb

Morphometric Analysis of the Rattan Calamus Javensis Complex (Arecaceae: Calamoideae) Author(S): Mega Atria, Harald Van Mil, William J Morphometric Analysis of the Rattan Calamus javensis Complex (Arecaceae: Calamoideae) Author(s): Mega Atria, Harald van Mil, William J. Baker, John Dransfield, and Peter van Welzen Source: Systematic Botany, 42(3):494-506. Published By: The American Society of Plant Taxonomists URL: http://www.bioone.org/doi/full/10.1600/036364417X696168 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Systematic Botany (2017), 42(3): pp. 494–506 © Copyright 2017 by the American Society of Plant Taxonomists DOI 10.1600/036364417X696168 Date of publication August 25, 2017 Morphometric Analysis of the Rattan Calamus javensis Complex (Arecaceae: Calamoideae) Mega Atria,1,2,6 Harald van Mil,3 William J. Baker,4 John Dransfield,4 and Peter van Welzen1,5 1Naturalis Biodiversity Center, Research Group Biodiversity Discovery, P. O. Box 9517, 2300 RA Leiden, The Netherlands 2Department of Biology, E building, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok 16424, Indonesia 3Department of Mathematics, University of Leiden, P. O. Box 9512, 2300 RA Leiden, The Netherlands 4Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, U.K. 5Institute of Biology Leiden, University of Leiden, P.O. Box 9505, 2300 RA Leiden, The Netherlands 6Author for correspondence ([email protected]) Communicating Editor: Martin Wojciechowski Abstract—Calamus javensis (Calamoideae) is a slender rattan common in tropical rainforests. The species is very polymorphic and forms a species complex together with some undetermined forms and the species C. acuminatus, C. amplijugus, C. congestiflorus, C. corrugatus, C. elopurensis, C. hypertrichosus, C. impar,andC. tenompokensis. Within the complex, the morphological variation and similarities among the entities are too difficult to solve with traditional morphological observation. Therefore, two multivariate analyses, MDS (multidimensional scaling) and hierarchical cluster analysis (HCA) with UPGMA (unweighted pair group method with arithmetic mean) were used for two datasets, quantitative data only and in combination with qualitative data. The inclusion of qualitative characters did not make significant differences in the cluster results. Of all nine taxa included in the complex, only two clusters resulted from the analysis next to two forms based on few specimens. Only C. tenompokensis was recognized as a separate cluster, while all other taxa were combined into one typical C. javensis cluster. More material may result in the recognition of the two forms as distinct species. Keywords—Calamus tenompokensis, hierarchical cluster analysis, multivariate analysis, species complex, West Malesia. Calamus L. is the largest genus within the palms and belongs alternative rattan source for industrial needs. However, the fact to the rattans or climbing palms (Dransfield 1974). The genus is that C. javensis is a polymorphic species complex with variable characterized by the presence of fruit scales. Most Calamus quality of the cane makes it less valuable unless the complex is species are climbing, and may reach 150 m in length; however, taxonomically resolved. erect or stemless species/forms are also known. They climb Calamus javensis was first described by Blume (1847). He with a flagella or a cirrus. Other typical characters are scattered transferred his own Calamus equestris into the synonymy of C. leaf sheath spines, unisexual inflorescences, and solitary or javensis. He also noted morphological variation within C. javensis clumped stems (Furtado 1956). Within the genus Calamus, C. and distinguished three varieties based mainly on the variation javensis Blume is known as an extremely polymorphic species in the leaves and spines on the leaf sheaths (Table 1; var. a is (Dransfield 1992). Cronk (1988) stated that polymorphic considered to be the typical variety, and should according to species (or ochlospecies) are species with chaotic infraspecific modern nomenclature be called var. javensis). Beccari (1884, variation intractable to formal taxonomic treatment. Calamus 1908) recognized Blume’s varieties and made modifications, javensis is an understory rattan belonging to the subtribe creating his own infraspecific taxonomy. Since then (Table 1), Calaminae, tribe Calameae of the palm subfamily Calamoi- many changes in the infraspecific taxa occurred; forms were deae (Dransfield et al. 2008). This slender, generally sparsely united, separated, etc. Also, at the species level many excep- spiny, climbing palm is widely distributed in Southeast Asia, tional forms were described as new species and synonymized ranging from southern Thailand and Peninsular Malaysia, to again, the latter especially by Dransfield (1992, 1999), who Sumatra, Java, Borneo, and Palawan. Characters are: stem mainly recognized one species without infraspecific taxa. As a with leaf sheath removed 2–6 mm in diameter; with sheaths to result, C. javensis is taxonomically the most difficult rattan 10 mm in diameter; internodes up to 30 cm long but usually species complex in the Southeast Asian region (Dransfield 1999). shorter; ocrea distinct, conspicuously deep crimson when Table 1 shows that no subdivision of the complex provided a young; leaves pinnate, ecirrate, up to 40 cm long; terminal satisfactory solution. Forms were described at various levels or leaflets flabellate, lowermost pair often swept back across the moved to different levels, which also shows that the characters stem; flagellum up to 75 cm long; inflorescence long, with red used for recognition were doubtful, too. Madulid (1981) treated crimson rachilla; ripe fruit ovoid (Dransfield 1992; Dransfield C. javensis as a species complex because of the extreme variation and Manokaran 1993). within the species and the relatively subtle differences among People make bindings, rope, and baskets from the cane. The morphologically similar groups of specimens. Cronk (1988) fruits are edible for small mammals and a few birds. The raw introduced the term ochlospecies for this phenomenon, but we cabbage can be eaten and is sometimes used to cure coughs. In prefer to use the term species complex. In species complexes Sarawak the cane is considered excellent because of its length variation is great, often showing complex patterns of disjunc- and strength, but it is only sold locally for baskets, cordage, tions in the ranges of variation (often recognised by separate and handicrafts (Mogea 1994). In Palawan, the cane is deemed names), some of which can be linked to ecological factors only second in quality to Calamus caesius Blume (a well-known or geography, others being apparently random (Cronk 1988, species in the rattan trade: Mogea 1994; Shim and Tan 1994). Dransfield 1999). To solve the problem, Dransfield (1999) According to the FAO, C. javensis is included in the major suggested two options: maintaining several varieties, or commercial species of rattan as identified for Asia by Dransfield blending them all into one species. He also suggested to add and Manokaran (1993). Thus, C. javensis may become a new comprehensive studies in the field along with phenetic and 494 2017] ATRIA ET AL.: MORPHOMETRIC ANALYSIS OF CALAMUS JAVENSIS 495 Table 1. The chronological history of names and taxa involved in the Calamus javensis Blume species complex (adapted from Madulid, 1981). Blume (1847) Beccari and Hook.f. (1892) Ridley (1907) Beccari (1908, 1913) Ridley (1925) Furtado (1956) Dransfield (1984, 1992) C. javensis C. javensis C. penicillatus C. javensis C. javensis C. javensis C. javensis var. a ‘forma typica’ (Dransfield and Manokaran 1993; var. b (firmus) Govaerts and Dransfield 2005) var. inermis var. inermis var. inermis var. laevis var. peninsularis subvar. var. purpurascens var. peninsularis subvar. var. purpurascens var. peninsularis purpurascens purpurascens var. purpurascens subvar. tenuissimus var. tenuissimus var. tenuissimus subvar. pinangianus var. pinangianus var. peninsularis var. pinangianus var. pinangianus var. pinangianus subvar. polyphyllus var. polyphyllus var. polyphyllus var. intermedius var. g (tetrastichus) var. tetrastichus subvar. mollispinus var. sublaevis var. acicularis var. exilis C. kemamanensis C. corrugatus C. corrugatus C. filiformis C. acuminatus C. acuminatus C. hypertrichosus C. hypertrichosus C. impar C. tenompokensis C. tenompokensis (Govaerts and Dransfield 2005) C. amplijugus C. congestiflorus C. elopurensis 496 SYSTEMATIC BOTANY [Volume 42 molecular-phylogenetic techniques to examine the circum- will be used as a preliminary framework for the molecular scription of C. javensis or subdivisions as an alternative. examination of the species complex in order to construct
Recommended publications
  • Status of Research on Rattans: a Review
    http://sciencevision.info Sci Vis 10 (2), 51-56 Research Review April-June, 2010 ISSN 0975-6175 Status of research on rattans: a review Lalnuntluanga1*, L. K. Jha2 and H. Lalramnghinglova1 1 Department of Environmental Science, Mizoram University, Aizawl 796009, India 1 Department of Environmental Science, North-Eastern Hill University, Shillong 793022, India Received 20 July 2010 | Accepted 28 July 2010 ABSTRACT Rattan forms one of the major biotic components in tropical and sub -tropical forest ecosys- tem. Contributions made by the researchers on the distribution, taxonomy and uses of rattan species in the world with special reference to India are reviewed here. Key words: Rattan; distribution; taxonomy; utilisation; N.E. states. INTRODUCTION Argentina, the Caribbean, Africa and South-East Asian regions. Rattan diversity is rich in Malay- The name ‘cane’ (rattan) stands collectively sia, Indonesia, Philippines, China, Bangladesh, for the climbing members of a big group of Sri Lanka, Myanmar and India. Rattan is of palms known as Lepidocaryoideae, fruit bearing great economic importance in handicraft and scales. Rattans/canes are prickly climbing palms furniture making because of its richness in fibre, with solid stems, belonging to the family Areca- with suitable toughness and easy for processing. ceae and the sub-family Calamoideae. They are The innumerable pinnate leaves, which extend scaly-fruited palms. The rattans/canes comprise up to two metres in length, with their mosaic more than fifty per cent of the total palm taxa arrangement play a major role in intercepting found in India.1 They are distributed throughout the splash effect of rains and improve the water South-East Asia, the Western Pacific and in the holding capacity of the soil.
    [Show full text]
  • Revision of the Rattan Genus Daemonorops (Palmae: Calamoideae) in Sulawesi Using a Phenetic Analysis Approach
    Gardens’ Bulletin Singapore 63(1 & 2): 17–30. 2011 17 Revision of the rattan genus Daemonorops (Palmae: Calamoideae) in Sulawesi using a phenetic analysis approach H. Rustiami 1,2,3, J.P. Mogea 1 and S.S. Tjitrosoedirdjo 2 1 Herbarium Bogoriense, Botany Division, Research Center for Biology, Indonesian Institute of Sciences, Cibinong Science Center (CSC), Jl. Raya Jakarta-Bogor Km 46, Cibinong, Bogor 16911, Indonesia 2 Bogor Agricultural University, Bogor and South East Asian Regional Center for Tropical Biology (SEAMEO BIOTROP) P.O. Box 116, Bogor, Indonesia [email protected] (corresponding author) ABSTRACT. A phenetic analysis based on 27 morphometric characters of seven species of Daemonorops in Sulawesi recovered two groups with a similarity coefficient value of 0.51. Group A consists of D. takanensis and D. lamprolepis with a similarity coefficient value of 0.58. Group B is divided into subgroup B1 and subgroup B2, with a similarity coefficient value of 0.59. Group B1 consists of D. macroptera, D. mogeana and D. robusta. Group B2 consists of D. riedeliana and D. sarasinorum. An identification key to species and their descriptions are presented. Keywords. Calamoideae, Daemonorops, Palmae, phonetic analysis, rattans, Sulawesi Introduction The palm flora of Sulawesi is distinctive and combines elements in common with Sunda, Sahul, the Philippines, and the Papua New Guinea. In the case of Daemonorops, all seven species recognised are endemic to the island and their affinities are not yet clear – whether with Sunda, Philippines or East Malesia. The genus Daemonorops itself is not well collected and poorly represented further east. Until recently, five species of Daemonorops were recorded for Sulawesi.
    [Show full text]
  • Seed Geometry in the Arecaceae
    horticulturae Review Seed Geometry in the Arecaceae Diego Gutiérrez del Pozo 1, José Javier Martín-Gómez 2 , Ángel Tocino 3 and Emilio Cervantes 2,* 1 Departamento de Conservación y Manejo de Vida Silvestre (CYMVIS), Universidad Estatal Amazónica (UEA), Carretera Tena a Puyo Km. 44, Napo EC-150950, Ecuador; [email protected] 2 IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain; [email protected] 3 Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1–4, 37008 Salamanca, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923219606 Received: 31 August 2020; Accepted: 2 October 2020; Published: 7 October 2020 Abstract: Fruit and seed shape are important characteristics in taxonomy providing information on ecological, nutritional, and developmental aspects, but their application requires quantification. We propose a method for seed shape quantification based on the comparison of the bi-dimensional images of the seeds with geometric figures. J index is the percent of similarity of a seed image with a figure taken as a model. Models in shape quantification include geometrical figures (circle, ellipse, oval ::: ) and their derivatives, as well as other figures obtained as geometric representations of algebraic equations. The analysis is based on three sources: Published work, images available on the Internet, and seeds collected or stored in our collections. Some of the models here described are applied for the first time in seed morphology, like the superellipses, a group of bidimensional figures that represent well seed shape in species of the Calamoideae and Phoenix canariensis Hort. ex Chabaud.
    [Show full text]
  • The Calamus Javensis (Arecaceae: Calamoideae) Complex in Historical Biogeographic Context
    REINWARDTIA Vol. 20. No. 1. pp: 1‒7 DOI: 10.14203/reinwardtia.v20i1.4068 THE CALAMUS JAVENSIS (ARECACEAE: CALAMOIDEAE) COMPLEX IN HISTORICAL BIOGEOGRAPHIC CONTEXT Received January 31, 2021; accepted March 1, 2021 MEGA ATRIA Departemen Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia (UI), Depok 16424, Indonesia. Naturalis Biodiversity Center, Research Group of Tropical Botany, P.O. Box 9517, 2300 RA Leiden, the Netherlands. Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands. Email: [email protected] PETER C. VAN WELZEN Naturalis Biodiversity Center, Research Group of Tropical Botany, P.O. Box 9517, 2300 RA Leiden, the Netherlands. Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands. Email: [email protected] ABSTRACT ATRIA, M. & VAN WELZEN, P. C. 2021. The Calamus javensis (Arecaceae: Calamoideae) complex in historical biogeographic context. Reinwardtia 20(1): 1−7. — Calamus javensis is a very polymorphic species with a number of recognisable forms (of which several were once even recognized at species level). A historical biogeographic analysis showed no historical distribution pattern in the diversification of these various forms. The forms are very likely the result of adaptation to local circumstances, whereby more or less identical forms can develop under similar niche circumstances in disjunct areas, exceptions are the ‘acuminatus-polyphyllus’ form and C. tenompokensis that are recognisable and present in a non-disjunct area. Key words: Arecaceae, Calamus javensis, historical biogeography, species complex, taxonomy. ABSTRAK ATRIA, M. & VAN WELZEN, P. C. 2021. Jenis Calamus javensis (Arecaceae: Calamoideae) kompleks dalam hubungan sejarah biogeografi.
    [Show full text]
  • An Update to the African Palms (Arecaceae) Floristic and Taxonomic Knowledge, with Emphasis on the West African Region
    Webbia Journal of Plant Taxonomy and Geography ISSN: 0083-7792 (Print) 2169-4060 (Online) Journal homepage: http://www.tandfonline.com/loi/tweb20 An update to the African palms (Arecaceae) floristic and taxonomic knowledge, with emphasis on the West African region Fred W. Stauffer, Doudjo N. Ouattara, Didier Roguet, Simona da Giau, Loïc Michon, Adama Bakayoko & Patrick Ekpe To cite this article: Fred W. Stauffer, Doudjo N. Ouattara, Didier Roguet, Simona da Giau, Loïc Michon, Adama Bakayoko & Patrick Ekpe (2017): An update to the African palms (Arecaceae) floristic and taxonomic knowledge, with emphasis on the West African region, Webbia To link to this article: http://dx.doi.org/10.1080/00837792.2017.1313381 Published online: 27 Apr 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tweb20 Download by: [Université de Genève] Date: 27 April 2017, At: 06:09 WEBBIA: JOURNAL OF PLANT TAXONOMY AND GEOGRAPHY, 2017 https://doi.org/10.1080/00837792.2017.1313381 An update to the African palms (Arecaceae) floristic and taxonomic knowledge, with emphasis on the West African region Fred W. Stauffera, Doudjo N. Ouattarab,c, Didier Rogueta, Simona da Giaua, Loïc Michona, Adama Bakayokob,c and Patrick Ekped aLaboratoire de systématique végétale et biodiversité, Conservatoire et Jardin Botaniques de la Ville de Genève, Genève, Switzerland; bUFR des Sciences de la Nature (SN), Université Nangui Abrogoua, Abidjan, Ivory Coast; cDirection de Recherche et Développement (DRD), Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Ivory Coast; dDepartment of Botany, College of Basic & Applied Sciences, University of Ghana, Legon, Ghana ABSTRACT ARTICLE HISTORY The present contribution is the product of palm research on continental African taxa started Received 15 March 2017 7 years ago and represents an update to our taxonomic and floristic knowledge.
    [Show full text]
  • Phylogenetic Analysis of the <I>Calamus Javensis</I>
    Blumea 65, 2020: 205–211 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE https://doi.org/10.3767/blumea.2020.65.03.04 Phylogenetic analysis of the Calamus javensis complex (Arecaceae: Calamoideae) in Malesia M. Atria1,2,3,*, M. Eurlings1, W.J. Baker 4, J. Dransfield4, P.C. van Welzen1,3 Key words Abstract A phylogenetic analysis on specimen level was made in possible support of a multivariate analysis of the Calamus javensis complex. Nine species, at some time recognized within the complex, and several recognisable Calamoideae forms were included. The phylogenetic markers used were the nuclear 5S spacer (5S nrDNA) and the chloroplast Calamus javensis Maturase K (matK). The Bayesian analysis showed that only 5S provided some resolution. The 50 % majority rule chloroplast DNA consensus showed one major polytomy with a few supported groups, which were mainly morphologically unsup- intraspecific variation ported pairs of specimens. However, one group, the form C. tenompokensis (the only distinct group in a multivariate matK analysis) is morphologically distinct and phylogenetically monophyletic and can be recognized as a species. Of all molecular phylogeny other recognizable forms, we only consider C. acuminatus to be regarded as a variety as it was not supported in nuclear DNA the morphometric analysis. paraphyletic rattan Citation: Atria M, Eurlings M, Baker WJ, et al. 2020. Phylogenetic analysis of the Calamus javensis complex (Arecaceae: Calamoideae) in Malesia. Blumea 65 (3): 205–211. https://doi.org/10.3767/blumea.2020.65.03.04. Effectively published online: 22 December 2020. INTRODUCTION be found in Barfod & Dransfield 2013). The distribution of the species complex ranges from Southern Thailand and Peninsular Calamus L.
    [Show full text]
  • Systematics and Evolution of the Rattan Genus Korthalsia Bl
    SYSTEMATICS AND EVOLUTION OF THE RATTAN GENUS KORTHALSIA BL. (ARECACEAE) WITH SPECIAL REFERENCE TO DOMATIA A thesis submitted by Salwa Shahimi For the Degree of Doctor of Philosophy School of Biological Sciences University of Reading February 2018 i Declaration I can confirm that is my own work and the use of all material from other sources have been properly and fully acknowledged. Salwa Shahimi Reading, February 2018 ii ABSTRACT Korthalsia is a genus of palms endemic to Malesian region and known for the several species that have close associations with ants. In this study, 101 new sequences were generated to add 18 Korthalsia species from Malaysia, Singapore, Myanmar and Vietnam to an existing but unpublished data set for calamoid palms. Three nuclear (prk, rpb2, and ITS) and three chloroplast (rps16, trnD-trnT and ndhF) markers were sampled and Bayesian Inference and Maximum Likelihood methods of tree reconstruction used. The new phylogeny of the calamoids was largely congruent with the published studies, though the taxon sampling was more thorough. Each of the three tribes of the Calamoideae appeared to be monophyletic. The Eugeissoneae was consistently resolved as sister to Calameae and Lepidocaryeae, and better resolved, better supported topologies below the tribal level were identified. Korthalsia is monophyletic, and novel hypotheses of species level relationships in Korthalsia were put forward. These hypotheses of species level relationships in Korthalsia served as a framework for the better understanding of the evolution of ocrea. The morphological and developmental study of ocrea in genus Korthalsia included detailed study using Light and Scanning Electron Microscopy for seven samples of 28 species of Korthalsia, in order to provide understanding of ocrea morphological traits.
    [Show full text]
  • Palmtraits 1.0, a Species-Level Functional Trait Database of Palms Worldwide
    www.nature.com/scientificdata OPEN PalmTraits 1.0, a species-level Data Descriptor functional trait database of palms worldwide Received: 3 June 2019 W. Daniel Kissling 1, Henrik Balslev2, William J. Baker 3, John Dransfeld3, Bastian Göldel2, Accepted: 9 August 2019 Jun Ying Lim1, Renske E. Onstein4 & Jens-Christian Svenning2,5 Published: xx xx xxxx Plant traits are critical to plant form and function —including growth, survival and reproduction— and therefore shape fundamental aspects of population and ecosystem dynamics as well as ecosystem services. Here, we present a global species-level compilation of key functional traits for palms (Arecaceae), a plant family with keystone importance in tropical and subtropical ecosystems. We derived measurements of essential functional traits for all (>2500) palm species from key sources such as monographs, books, other scientifc publications, as well as herbarium collections. This includes traits related to growth form, stems, armature, leaves and fruits. Although many species are still lacking trait information, the standardized and global coverage of the data set will be important for supporting future studies in tropical ecology, rainforest evolution, paleoecology, biogeography, macroecology, macroevolution, global change biology and conservation. Potential uses are comparative eco- evolutionary studies, ecological research on community dynamics, plant-animal interactions and ecosystem functioning, studies on plant-based ecosystem services, as well as conservation science concerned with the loss and restoration of functional diversity in a changing world. Background & Summary Most ecosystems are composed of a large number of species with diferent characteristics. Tese characteristics (i.e. traits) refect morphological, reproductive, physiological, phenological, or behavioural measurements of spe- cies that are usually collected to study intraspecifc trait variation (i.e.
    [Show full text]
  • Plant Resources of South-East Asia Is a Multivolume Handbook That Aims
    Plant Resources of South-East Asia is a multivolume handbook that aims to summarize knowledge about useful plants for workers in education, re­ search, extension and industry. The following institutions are responsible for the coordination ofth e Prosea Programme and the Handbook: - Forest Research Institute of Malaysia (FRIM), Karung Berkunci 201, Jalan FRI Kepong, 52109 Kuala Lumpur, Malaysia - Indonesian Institute of Sciences (LIPI), Widya Graha, Jalan Gatot Subroto 10, Jakarta 12710, Indonesia - Institute of Ecology and Biological Resources (IEBR), Nghia Do, Tu Liem, Hanoi, Vietnam - Papua New Guinea University of Technology (UNITECH), Private Mail Bag, Lae, Papua New Guinea - Philippine Council for Agriculture, Forestry and Natural Resources Re­ search &Developmen t (PCARRD), Los Banos, Laguna, the Philippines - Thailand Institute of Scientific and Technological Research (TISTR), 196 Phahonyothin Road, Bang Khen, Bangkok 10900, Thailand - Wageningen Agricultural University (WAU), Costerweg 50, 6701 BH Wage- ningen, the Netherlands In addition to the financial support of the above-mentioned coordinating insti­ tutes, this book has been made possible through the general financial support to Prosea of: - the Finnish International Development Agency (FINNIDA) - the Netherlands Ministry ofAgriculture , Nature Management and Fisheries - the Netherlands Ministry of Foreign Affairs, Directorate-General for Inter­ national Cooperation (DGIS) - 'Yayasan Sarana Wanajaya', Ministry of Forestry, Indonesia This work was carried out with the aid of a specific grant from : - the International Development Research Centre (IDRC), Ottawa, Canada 3z/s}$i Plant Resources ofSouth-Eas t Asia No6 Rattans J. Dransfield and N. Manokaran (Editors) Droevendaalsesteeg 3a Postbus 241 6700 AE Wageningen T r Pudoc Scientific Publishers, Wageningen 1993 VW\ ~) f Vr Y DR JOHN DRANSFIELD is a tropical botanist who gained his first degree at the University of Cambridge.
    [Show full text]
  • 1 INTRODUCTION Growth Habit
    Tropical Palms 1 1 INTRODUCTION Palms are monocots, included in the section of Angiosperms characterized by bearing a single seed leaf. Scientifically, palms are classified as belonging to the family Palmae (the alternative name is Arecaceae), are perennial and distinguished by having woody stems. According to Dransfield1 et al (2008), the palm family consists of five subfamilies, each representing a major line of evolution. The Calamoideae is the subfamily with the most unspecialized characters. It is followed by the, Nypoideae, Coryphoideae, Ceroxyloideae and Arecoideae; subfamilies; the last exhibiting the greatest number of specialized characters. The foregoing names are based on the genus originally thought to be most characteristic of each subfamily, all of which have species of economic importance. These are: the rattan palm (Calamus), nipa palm (Nypa), talipot palm (Corypha), Andean wax palm (Ceroxylon) and betel nut palm (Areca). About 183 palm genera are currently recognized. The number of palm species is much less precise because of conflicting concepts by palm taxonomists as to what constitutes a distinct species, and the need to revise a number of genera. According to Govaerts and Dransfield (2005), incorporating on-line updates (www.kew.org/monocotchecklist/) there are about 2,450 palm species. Natural history information on the palm family can be found in Corner (1966). Palm anatomy and structural biology have been the subjects of studies by Tomlinson (1961; 1990). Palm horticulture is treated in detail by Broschat and Meerow (2000). Illustrated books which provide general information on the more common palms of the world include McCurrach (1960), Langlois (1976), Blombery and Rodd (1982), Lötschert (1985), Del Cañizo (1991), Stewart (1994), Jones (1995), Riffle and Craft (2003) and Squire (2007).
    [Show full text]
  • A New Species of Korthalsia from Laos and Vietnam Is Described and Illustrated, and Compared with Similar Species
    PALM S Henderson & Nguyen: New Korthalsia Vol. 57(3) 2013 ANDREW HENDERSON Institute of Systematic A New Botany New York Botanical Garden Species of Bronx, NY 10458 USA Korthalsia [email protected] AND (Palmae) NGUYEN QUOC DUNG Forest Inventory and from Laos Planning Institute Thanh Tri Hanoi and Vietnam Vietnam dung@[email protected] A new species of Korthalsia from Laos and Vietnam is described and illustrated, and compared with similar species. Korthalsia contains 27 species (Govaerts & in Laos, and referred to the smaller-sized Dransfield 2005), widely distributed specimens as Korthalsia sp. A. to distinguish throughout the Asian tropics from Myanmar them from K. laciniosa . in the west to New Guinea in the east. The Larger-sized specimens from Laos and Vietnam most widely distributed species is Korthalsia correspond to Korthalsia laciniosa as laciniosa (Griff.) Mart., which occurs in represented by the type (which we have seen Myanmar, the Andaman and Nicobar Islands, in the Brussels herbarium) and many Thailand, Cambodia, Laos, Vietnam, Malaysia, specimens in other herbaria. One possible Sumatra, Java, and the Philippines (Henderson name for the smaller-sized specimens is K. 2009). bejaudii Gagnepain, a little known species from During our field work in Vietnam we have Cambodia. We have now examined the type noticed that there is great variation in size of of this in the Paris herbarium. There are two pinnae within Korthalsia laciniosa, and in sheets. The leaf and ocreas on one sheet appear herbaria there appear to be two groups of to be from an apical leaf and this would specimens present from the country, one with account for their small size.
    [Show full text]
  • Stem Anatomy of Climbing Palms in Relation to Long-Distance Water Transport P
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 22 2006 Stem Anatomy of Climbing Palms in Relation to Long-distance Water Transport P. Barry Tomlinson Harvard University; National Tropical Botanical Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Tomlinson, P. Barry (2006) "Stem Anatomy of Climbing Palms in Relation to Long-distance Water Transport," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 22. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/22 Aliso 22, pp. 265-277 © 2006, Rancho Santa Ana Botanic Garden STEM ANATOMY OF CLIMBING PALMS IN RELATION TO LONG-DISTANCE WATER TRANSPORT P. BARRY TOMLINSON Harvard Forest, Harvard University, Petersham, Massachusetts 01366, USA and National Tropical Botanical Garden, 3530 Papalina Road, Kalaheo, Hawaii 96741, USA ([email protected]) ABSTRACT Palms lack secondary growth so their primary vascular system is long-lived and must be minimally vulnerable to dysfunction. For water movement, the axial xylem must be well defended against cav­ itation. Climbing palms can be very long and represent a maximum solution to transport problems. How is this demonstrated in their anatomy? This article contrasts stem vascular anatomy in a cane­ like "tree palm" (Rhapis excelsa) with that in the American climbing palm Desmoncus and the Old World rattan genus Calamus. Rhapis, representing the basic classical palm vasculature, has a contin­ uously integrated vascular system determined by branching of the axial (stem) system to produce leaf traces, bridges, and continuing axial bundles. Axial transport is favored over appendicular structures because leaves are irrigated solely by narrower protoxylem tracheids.
    [Show full text]