Structure and Characterization of Phosphoglucomutase 5 from Atlantic and Baltic Herring—An Inactive Enzyme with Intact Substrate Binding

Total Page:16

File Type:pdf, Size:1020Kb

Structure and Characterization of Phosphoglucomutase 5 from Atlantic and Baltic Herring—An Inactive Enzyme with Intact Substrate Binding biomolecules Article Structure and Characterization of Phosphoglucomutase 5 from Atlantic and Baltic Herring—An Inactive Enzyme with Intact Substrate Binding 1, 1, , 2 2 Robert Gustafsson y , Ulrich Eckhard y z , Weihua Ye , Erik D. Enbody , Mats Pettersson 2, Per Jemth 2, Leif Andersson 2,3,4 and Maria Selmer 1,* 1 Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden; [email protected] (R.G.); [email protected] (U.E.) 2 Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; [email protected] (W.Y.); [email protected] (E.D.E.); [email protected] (M.P.); [email protected] (P.J.); [email protected] (L.A.) 3 Department of Veterinary Integrative Biosciences, Texas A & M University, College Station, TX 77843, USA 4 Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden * Correspondence: [email protected] These authors contributed equally. y Current address: Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of z Barcelona, CSIC, Barcelona Science Park, Baldiri Reixac, 15–21, 08028 Barcelona, Catalonia, Spain. Received: 8 November 2020; Accepted: 30 November 2020; Published: 3 December 2020 Abstract: Phosphoglucomutase 5 (PGM5) in humans is known as a structural muscle protein without enzymatic activity, but detailed understanding of its function is lacking. PGM5 belongs to the alpha-D-phosphohexomutase family and is closely related to the enzymatically active metabolic enzyme PGM1. In the Atlantic herring, Clupea harengus, PGM5 is one of the genes strongly associated with ecological adaptation to the brackish Baltic Sea. We here present the first crystal structures of PGM5, from the Atlantic and Baltic herring, differing by a single substitution Ala330Val. The structure of PGM5 is overall highly similar to structures of PGM1. The structure of the Baltic herring PGM5 in complex with the substrate glucose-1-phosphate shows conserved substrate binding and active site compared to human PGM1, but both PGM5 variants lack phosphoglucomutase activity under the tested conditions. Structure comparison and sequence analysis of PGM5 and PGM1 from fish and mammals suggest that the lacking enzymatic activity of PGM5 is related to differences in active-site loops that are important for flipping of the reaction intermediate. The Ala330Val substitution does not alter structure or biophysical properties of PGM5 but, due to its surface-exposed location, could affect interactions with protein-binding partners. Keywords: phosphoglucomutase 5; herring; adaptation; enzyme structure; phosphohexomutase 1. Introduction The Baltic Sea is a unique environment. The salinity of the brackish waters gradually drops to about 2–3% in the Bothnian Bay compared to 35% in the Atlantic Ocean [1]. Herring is one of few marine fishes that reproduce throughout the Baltic Sea. Already Linneaus divided the Atlantic and Baltic herring into two separate subspecies, Clupea harengus harengus and Clupea harengus membras [2], but early genetic studies based on a limited number of markers were unable to separate them genetically [3]. Thus, it was thought that the difference in appearance between the small and lean Baltic herring and the larger and fatter Atlantic herring was purely from environmental origin. More recent studies Biomolecules 2020, 10, 1631; doi:10.3390/biom10121631 www.mdpi.com/journal/biomolecules Biomolecules 2020, 10, x FOR PEER REVIEW 2 of 24 Biomolecules 2020, 10, 1631 2 of 23 genetically [3]. Thus, it was thought that the difference in appearance between the small and lean Baltic herring and the larger and fatter Atlantic herring was purely from environmental origin. More recentbased onstudies whole based genome on whole sequencing genome of sequencing population of samples population have samples completely have changedcompletely the changed picture theand picture revealed and hundreds revealed of hundreds loci showing of loci strong showing genetic strong diff geneticerentiation differentiation between the between Atlantic the and Atlantic Baltic andherring Baltic [1, herring4,5]. This [1,4,5] ecological. This ecological adaptation adaptation must be recent, must be as recent, the Baltic as the Sea Baltic has only Sea existedhas only since existed the sincelast glaciation the last glaciation about 10,000 about years 10,000 ago years [6]. The ago allele [6]. The frequencies allele frequencies at several at of several these lociof these show loci a strong show acorrelation strong correlation with salinity with at salinity the spawning at the spawning site where site the where fish were the collected.fish were Ancollected. important An important discovery discoveryin these studies in these was studies that missense was that mutations missense have mutations played have a prominent played a role prominent for the adaptation role for the of adaptationherring to the of brackishherring Balticto the Sea brackish [1]. For Baltic instance, Sea it[1] was. For recently instance, reported it was that recently a missense reported mutation that ina missenserhodopsin mutation (Phe261Tyr) in rhodopsin has been critical(Phe261Tyr) for the has adaptation been critical to the for red-shifted the adaptation light environment to the red-shifted in the lightBaltic environment Sea [7]. Here, in wethe exploreBaltic Sea the [7] functional. Here, we significance explore the of functional Ala330Val significance in phosphoglucomutase of Ala330Val in 5 (PGM5),phosphoglucomutase another missense 5 (PGM5), mutation another that shows missense a striking mutation allele that frequency shows a di strikingfference allele (>80%) frequency between differencethe Atlantic (> and80%) Baltic between herring. the Atlantic and Baltic herring. PGM5 belongs to the alpha-D-phosphohexomutasealpha-D-phosphohexomutase family family that most notably includes PGM1, PGM2, PGM2L1,PGM2L1, PGM3,PGM3,and and PGM5 PGM5 [ 8[8–11–11]]. PGM5. PGM5 is is most most closely closely related related to PGM1to PGM1 [8– 10[8–],10] which, which is the is themost most studied studied PGM P andGM theand main the isomerasemain isomerase responsible responsible for catalyzing for catalyzing the interconversion the interconversion between betweenglucose-1-phosphate glucose-1-phosphate (G1P) and (G1P) glucose-6-phosphate and glucose-6- (G6P)phosphate (Figure (G6P)1)[ 9 ].(Figure PGM1 is1) thus[9]. responsiblePGM1 is thus for responsiblethe metabolic for shift the betweenmetabolic glycolysis shift between (which glycolysis uses G6P) (which and gluconeogenesisuses G6P) and gluconeogenesis (which uses G1P) (which [12]. Thisuses G1P) reaction [12] requires. This reaction a phosphorylated requires a phosphorylated serine residue serine that donates residueits that phosphoryl donates its group phosphoryl to the groupsubstrate to the to formsubstrate the intermediate to form the intermediate glucose-1,6-bisphosphate glucose-1,6-bisphosphate (G16P), which (G16P), has to which flip 180 has degrees to flip 180to allow degrees transfer to allow of the transfer other phosphorylof the other group phosphoryl to the enzymegroup to to the regenerate enzyme theto phosphoserineregenerate the (Figurephosphoserine1)[ 9]. The (Figure phosphoryl 1) [9]. The transfer phosphoryl reaction transfer is reversible reaction and is reversible is believed and to occuris believed using to general occur usingacid-base general catalysis acid- [base13]. Basedcatalysis on mutagenesis[13]. Based on studies mutagenesis in bacteria studies [14– 16in ],bacteria a lysine [14 in– a16] loop, a lysine of domain in a loopIII was of domain proposed III aswas catalytic proposed base as catalytic and an argininebase and inan a arginine loop from in a domainloop from I as domain catalytic I as acid catalytic [12]. acidHowever, [12]. However, based on quantumbased on mechanicalquantum mechanical calculations, calculations, an alternative an alternative catalytic acid catalytic histidine acid following histidine followingthe phosphoserine the phosphoserine in loop 1 was in recentlyloop 1 was proposed, recently suggesting proposed, that suggesting the arginine that instead the arginine plays ainstead role in playselectrostatic a role in stabilization electrostatic [17 stabilization]. [17]. Figure 1. GeneralGeneral reaction reaction mechanism of phosphoglucomutase (PGM)(PGM) enzymes.enzymes. P = phosphatephosphate group group.. There is until now no structure available of PGM5, but several crystal structures of apo and ligandligand-bound-bound PGM1PGM1 from from di ffdifferenterent organisms, organisms, including including rabbit rabbit and humanand hum [10an,12 ,[10,12,18,19]18,19]. These. PGM1These PGM1structures structures are well-conserved are well-conserved and are composed and are composed of four domains of four (I–IV) domains that form (I–IV) a bi-lobed that form heart-shaped a bi-lobed heartstructure-shaped with struct a deepure andwith widea deep active-site and wide cleft active between-site cleft the between first two the and first the two last and two the domains. last two domains.Upon ligand Upon binding, ligand domainbinding, IVdomain closes IV the closes active the site active by a site hinge-like by a hinge movement-like movement creating creating a closed a closedconformation conformation [20–22]. [20 One–22] loop. One from loop each from of the each four of domains, the four named domains, 1–4 as named the corresponding 1–4
Recommended publications
  • Articles Catalytic Cycling in Β-Phosphoglucomutase: a Kinetic
    9404 Biochemistry 2005, 44, 9404-9416 Articles Catalytic Cycling in â-Phosphoglucomutase: A Kinetic and Structural Analysis†,‡ Guofeng Zhang, Jianying Dai, Liangbing Wang, and Debra Dunaway-Mariano* Department of Chemistry, UniVersity of New Mexico, Albuquerque, New Mexico 87131-0001 Lee W. Tremblay and Karen N. Allen* Department of Physiology and Biophysics, Boston UniVersity School of Medicine, Boston, Massachusetts 02118-2394 ReceiVed March 26, 2005; ReVised Manuscript ReceiVed May 18, 2005 ABSTRACT: Lactococcus lactis â-phosphoglucomutase (â-PGM) catalyzes the interconversion of â-D-glucose 1-phosphate (â-G1P) and â-D-glucose 6-phosphate (G6P), forming â-D-glucose 1,6-(bis)phosphate (â- G16P) as an intermediate. â-PGM conserves the core domain catalytic scaffold of the phosphatase branch of the HAD (haloalkanoic acid dehalogenase) enzyme superfamily, yet it has evolved to function as a mutase rather than as a phosphatase. This work was carried out to identify the structural basis underlying this diversification of function. In this paper, we examine â-PGM activation by the Mg2+ cofactor, â-PGM activation by Asp8 phosphorylation, and the role of cap domain closure in substrate discrimination. First, the 1.90 Å resolution X-ray crystal structure of the Mg2+-â-PGM complex is examined in the context of + + previously reported structures of the Mg2 -R-D-galactose-1-phosphate-â-PGM, Mg2 -phospho-â-PGM, and Mg2+-â-glucose-6-phosphate-1-phosphorane-â-PGM complexes to identify conformational changes that occur during catalytic turnover. The essential role of Asp8 in nucleophilic catalysis was confirmed by demonstrating that the D8A and D8E mutants are devoid of catalytic activity.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Diagnosis, Treatment and Follow Up
    DOI: 10.1002/jimd.12024 REVIEW International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: Diagnosis, treatment and follow up Ruqaiah Altassan1,2 | Romain Péanne3,4 | Jaak Jaeken3 | Rita Barone5 | Muad Bidet6 | Delphine Borgel7 | Sandra Brasil8,9 | David Cassiman10 | Anna Cechova11 | David Coman12,13 | Javier Corral14 | Joana Correia15 | María Eugenia de la Morena-Barrio16 | Pascale de Lonlay17 | Vanessa Dos Reis8 | Carlos R Ferreira18,19 | Agata Fiumara5 | Rita Francisco8,9,20 | Hudson Freeze21 | Simone Funke22 | Thatjana Gardeitchik23 | Matthijs Gert4,24 | Muriel Girad25,26 | Marisa Giros27 | Stephanie Grünewald28 | Trinidad Hernández-Caselles29 | Tomas Honzik11 | Marlen Hutter30 | Donna Krasnewich18 | Christina Lam31,32 | Joy Lee33 | Dirk Lefeber23 | Dorinda Marques-da-Silva9,20 | Antonio F Martinez34 | Hossein Moravej35 | Katrin Õunap36,37 | Carlota Pascoal8,9 | Tiffany Pascreau38 | Marc Patterson39,40,41 | Dulce Quelhas14,42 | Kimiyo Raymond43 | Peymaneh Sarkhail44 | Manuel Schiff45 | Małgorzata Seroczynska29 | Mercedes Serrano46 | Nathalie Seta47 | Jolanta Sykut-Cegielska48 | Christian Thiel30 | Federic Tort27 | Mari-Anne Vals49 | Paula Videira20 | Peter Witters50,51 | Renate Zeevaert52 | Eva Morava53,54 1Department of Medical Genetic, Montréal Children's Hospital, Montréal, Québec, Canada 2Department of Medical Genetic, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia 3Department of Human Genetics, KU Leuven, Leuven, Belgium 4LIA GLYCOLAB4CDG (International
    [Show full text]
  • Supplementary Table S1. Table 1. List of Bacterial Strains Used in This Study Suppl
    Supplementary Material Supplementary Tables: Supplementary Table S1. Table 1. List of bacterial strains used in this study Supplementary Table S2. List of plasmids used in this study Supplementary Table 3. List of primers used for mutagenesis of P. intermedia Supplementary Table 4. List of primers used for qRT-PCR analysis in P. intermedia Supplementary Table 5. List of the most highly upregulated genes in P. intermedia OxyR mutant Supplementary Table 6. List of the most highly downregulated genes in P. intermedia OxyR mutant Supplementary Table 7. List of the most highly upregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Table 8. List of the most highly downregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Figures: Supplementary Figure 1. Comparison of the genomic loci encoding OxyR in Prevotella species. Supplementary Figure 2. Distribution of SOD and glutathione peroxidase genes within the genus Prevotella. Supplementary Table S1. Bacterial strains Strain Description Source or reference P. intermedia V3147 Wild type OMA14 isolated from the (1) periodontal pocket of a Japanese patient with periodontitis V3203 OMA14 PIOMA14_I_0073(oxyR)::ermF This study E. coli XL-1 Blue Host strain for cloning Stratagene S17-1 RP-4-2-Tc::Mu aph::Tn7 recA, Smr (2) 1 Supplementary Table S2. Plasmids Plasmid Relevant property Source or reference pUC118 Takara pBSSK pNDR-Dual Clonetech pTCB Apr Tcr, E. coli-Bacteroides shuttle vector (3) plasmid pKD954 Contains the Porpyromonas gulae catalase (4)
    [Show full text]
  • Identification of Proteins That Are Differentially Expressed in Brains
    Journal of Proteomics 139 (2016) 103–121 Contents lists available at ScienceDirect Journal of Proteomics journal homepage: www.elsevier.com/locate/jprot Identification of proteins that are differentially expressed in brains with Alzheimer's disease using iTRAQ labeling and tandem mass spectrometry Benito Minjarez a,1, Karla Grisel Calderón-González a, Ma. Luz Valero Rustarazo b,2, María Esther Herrera-Aguirre a,MaríaLuisaLabra-Barriosa, Diego E. Rincon-Limas c,d, Manuel M. Sánchez del Pino b,3,RaulMenae,4, Juan Pedro Luna-Arias a,⁎ a Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México b Unidad de Proteómica, Centro de Investigación Príncipe Felipe, C/Rambla del Saler 16, 46012 Valencia, España c Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA d Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA e Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México article info abstract Article history: Alzheimer's disease is one of the leading causes of dementia in the elderly. It is considered the result of complex Received 5 November 2015 events involving both genetic and environmental factors. To gain further insights into this complexity, we Received in revised form 26 February 2016 quantitatively analyzed the proteome of cortex region of brains from patients diagnosed with Alzheimer's Accepted 11 March 2016 disease, using a bottom-up proteomics approach.
    [Show full text]
  • Glycogenesis
    Glycogenesis Glycogen is the storage form of glucose in animals and humans which is analogous to the starch in plants. Glycogen is synthesized and stored mainly in the liver and the muscles. Structurally, glycogen is very similar to amylopectin with alpha acetal linkages, however, it has even more branching and more glucose units are present than in amylopectin. Various samples of glycogen have been measured at 1,700-600,000 units of glucose. The structure of glycogen consists of long polymer chains of glucose units connected by an alpha acetal linkage. All of the monomer units are alpha-D-glucose, and all the alpha acetal links connect C # 1 of one glucose to C # 4 of the next glucose. The branches are formed by linking C # 1 to a C # 6 through acetal linkages. In glycogen, the branches occur at intervals of 8-10 glucose units (in amylopectin the branches are separated by 12-20 glucose units). Carbon # 1 is called the anomeric carbon and is the center of an acetal functional group. The Alpha position is defined as the ether oxygen being on the opposite side of the ring as the C # 6. In the chair structure this results in a downward projection. Plants make starch and cellulose through the photosynthesis processes. Animals and human in turn eat plant materials and products. Digestion is a process of hydrolysis where the starch is broken ultimately into the various monosaccharides. A major product is of course glucose which can be used immediately for metabolism to make energy. The glucose that is not used immediately is converted in the liver and muscles into glycogen for storage by the process of glycogenesis.
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • Expression of a Phosphoglucomutase Gene in Rainbow Trout (Polymorphism/Developmental Rate/Glycolysis/Salmo Gairdneri) FRED W
    Proc. Natt Acad. Sci. USA Vol. 80, pp. 1397-1400, March 1983 Genetics Adaptive significance of differences in the tissue-specific expression of a phosphoglucomutase gene in rainbow trout (polymorphism/developmental rate/glycolysis/Salmo gairdneri) FRED W. ALLENDORF, KATHY L. KNUDSEN, AND ROBB F. LEARY Department of Zoology,, University of Montana, Missoula, Montana 59812 Communicated by G. Ledyard Stebbins, November 17, 1982 ABSTRACT We have investigated the phenotypic effects of fold increase in the expression of a phosphoglucomutase (PGM; a mutant allele that results in the expression of a phosphogluco- a-D-glucose-1,6-bisphosphate:a-D-glucose-l-phosphate phos- mutase locus (Pgml) in the liver of rainbow trout. Embryos with photransferase EC 2.7.5. 1) locus, Pgml, in liver tissue (14, 15). liver Pgml expression hatch earlier than embryos without liver The results of inheritance experiments are consistent with a sin- Pgml expression. These differences apparently result from in- gle regulatory gene, Pgml-t, with additive inheritance being re- creased flux through glycolysis in embryos with liver PGM1 ac- sponsible for the differences in the expression of this locus (15). tivity while they are dependent on the yolk for energy. Fish with We report here that the presence or absence of PGM1 in the liver PGM1 activity are also more developmentally buffered, as liver rise to indicated by less fluctuating asymmetry of five bilateral meristic gives important differences in several phenotypic traits. The more rapidly developing individuals begin exogenous characteristics of adaptive significance (developmental rate, de- feeding earlier and achieve a size advantage that is maintained velopmental stability, body size, and age at first maturity).
    [Show full text]
  • The Reaction Mechanism of Phosphomannomutase in Plants
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector FEBS 18031 FEBS Letters 401 (1997) 35-37 The reaction mechanism of phosphomannomutase in plants Christine Oesterhelt, Claus Schnarrenberger, Wolfgang Gross* Institut für Pflanzenphysiologie und Mikrobiologie, Freie Universität Berlin, Königin-Luise-Str. 12-16a, D-14195 Berlin, Germany Received 11 November 1996 the presence of an excess of GIC-I.6-P2, purified PMM from G. sul- Abstract The enzyme phosphomannomutase catalyzes the phuraria, pig brain, and yeast was incubated with 1 mM GIC-I.6-P2 interconversion of mannose-1-phosphate (Man-l-P) and man- and 0.1 mM Man-l-P for 3 h at room temperature. The reaction nose-6-phosphate (Man-6-P). In mammalian cells the enzyme products were separated by TLC at pH 10 as described [8]. The has to be activated by transfer of a phosphate group from a corresponding regions for Man-l-P, Man-6-P, and Glc-6-P were sugar-1.6-P2 (Guha, S.K. and Rose, Z.B. (1985) Arch. Biochem. scraped off, the sugar phosphates eluted, and identified enzymatically. Biophys. 243, 168). In contrast, in the red alga Galdieria The concentration of Glc-6-P was determined by the addition of Glc- sulphuraria the co-substrate (Man-1.6-P2 or GIC-I.6-P2) is 6-P dehydrogenase and NADP. For Man-6-P determination PGI and PMI were included and for Man-l-P purified PMM from G. sulphu- converted to the corresponding sugar monophosphate while the raria was added.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Molecular Diagnosis of Glycogen Storage Disease and Disorders with Overlapping Clinical Symptoms by Massive Parallel Sequencing
    © American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE Molecular diagnosis of glycogen storage disease and disorders with overlapping clinical symptoms by massive parallel sequencing Ana I Vega, PhD1,2,3, Celia Medrano, BSc1,2,3, Rosa Navarrete, BSc1,2,3, Lourdes R Desviat, PhD1,2,3, Begoña Merinero, PhD1,2,3, Pilar Rodríguez-Pombo, PhD1,2,3, Isidro Vitoria, MD, PhD4, Magdalena Ugarte, PhD1,2,3, Celia Pérez-Cerdá, PhD1,2,3 and Belen Pérez, PhD1,2,3 Purpose: Glycogen storage disease (GSD) is an umbrella term for a Results: Pathogenic mutations were detected in 23 patients. group of genetic disorders that involve the abnormal metabolism of ­Twenty-two mutations were recognized (mostly loss-of-function glycogen; to date, 23 types of GSD have been identified. The nonspe- mutations), including 11 that were novel in GSD-associated genes. In cific clinical presentation of GSD and the lack of specific biomarkers addition, CES detected five patients with mutations in ALDOB, LIPA, mean that Sanger sequencing is now widely relied on for making a NKX2-5, CPT2, or ANO5. Although these genes are not involved in diagnosis. However, this gene-by-gene sequencing technique is both GSD, they are associated with overlapping phenotypic characteristics laborious and costly, which is a consequence of the number of genes such as hepatic, muscular, and cardiac dysfunction. to be sequenced and the large size of some genes. Conclusions: These results show that next-generation sequenc- ing, in combination with the detection of biochemical and clinical Methods: This work reports the use of massive parallel sequencing hallmarks, provides an accurate, high-throughput means of making to diagnose patients at our laboratory in Spain using either a cus- genetic diagnoses of GSD and related diseases.
    [Show full text]
  • DIPPER, a Spatiotemporal Proteomics Atlas of Human Intervertebral Discs
    TOOLS AND RESOURCES DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics Vivian Tam1,2†, Peikai Chen1†‡, Anita Yee1, Nestor Solis3, Theo Klein3§, Mateusz Kudelko1, Rakesh Sharma4, Wilson CW Chan1,2,5, Christopher M Overall3, Lisbet Haglund6, Pak C Sham7, Kathryn Song Eng Cheah1, Danny Chan1,2* 1School of Biomedical Sciences, , The University of Hong Kong, Hong Kong; 2The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China; 3Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada; 4Proteomics and Metabolomics Core Facility, The University of Hong Kong, Hong Kong; 5Department of Orthopaedics Surgery and Traumatology, HKU-Shenzhen Hospital, Shenzhen, China; 6Department of Surgery, McGill University, Montreal, Canada; 7Centre for PanorOmic Sciences (CPOS), The University of Hong Kong, Hong Kong Abstract The spatiotemporal proteome of the intervertebral disc (IVD) underpins its integrity *For correspondence: and function. We present DIPPER, a deep and comprehensive IVD proteomic resource comprising [email protected] 94 genome-wide profiles from 17 individuals. To begin with, protein modules defining key †These authors contributed directional trends spanning the lateral and anteroposterior axes were derived from high-resolution equally to this work spatial proteomes of intact young cadaveric lumbar IVDs. They revealed novel region-specific Present address: ‡Department profiles of regulatory activities
    [Show full text]