Aspects of the Reproduction of an Invasive Crab, Hemigrapsus Sanguineus, in Northern and Southern New England Emily F

Total Page:16

File Type:pdf, Size:1020Kb

Aspects of the Reproduction of an Invasive Crab, Hemigrapsus Sanguineus, in Northern and Southern New England Emily F University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2010 Aspects of the reproduction of an invasive crab, Hemigrapsus sanguineus, in northern and southern New England Emily F. Gamelin University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Gamelin, Emily F., "Aspects of the reproduction of an invasive crab, Hemigrapsus sanguineus, in northern and southern New England" (2010). Master's Theses and Capstones. 546. https://scholars.unh.edu/thesis/546 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. ASPECTS OF THE REPRODUCTION OF AN INVASIVE CRAB, Hemigrapsus sanguineus, IN NORTHERN AND SOUTHERN NEW ENGLAND BY EMILY F. GAMELIN BA, Biological Sciences, University of Chicago, 2005 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Zoology May, 2010 UMI Number: 1485427 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 1485427 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. uest ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 This thesis has been examined and approved. tor, Larry G. Harris, Professor of Zoology and Marine Sciences JamesTnHaney, Professor of Zoology fei( Marianne K. Litvaitis, Professor of Biology and Environmental Conservation Studies and Marine Sciences Vlafl%9/0 Date ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Larry Harris for his support and guidance and for sharing his immense knowledge of invertebrates and ecology, and historical perspectives on the Gulf of Maine. Thank you for all of the experiences and opportunities to learn, including many dives and trips to the intertidal over the years. Your knowledge and experience have been truly inspiring and have only deepened my fascination with marine invertebrate ecology. I thank my other committee members, Dr. James Haney and Dr. Marian Litvaitis. Your ideas, insight and constructive criticism have strengthened my research as well as the presentation of my work. Special thanks go to Michael Goodison, whose daily counsel was essential to my sanity and success. Thank you for making me laugh when I didn't want to and for believing in me completely. Thank you to the members of the Harris lab past and present, especially Linda Auker, Helen Day, Megan McCuller, and Jennifer Dijkstra. Thank you for the daily camaraderie and understanding. Thank you Linda for your help reviewing drafts of this manuscript, and for your support during the thesis writing process. Special thanks go to my amazing team of undergraduate research assistants, who included over the years the following students: Stephen iii Boutwell, Paula Teichholtz, Kirsten Ritner, Spencer Skinner, Nicola Groh, Lara Wayman and Angela Piemonte. This project would not have been possible without your help in the field and lab, and I especially appreciate your trustworthiness and ability to work independently. Stephen and Kirsten - thank you for volunteering your time in the summers. Thank you for enduring wet denim, cutting up your hands and getting pinched, and never complaining. I would also like to acknowledge my family. Thank you to Liz and Jerry Gamelin for supporting me through this and all other endeavors in my life. Thank you for always being proud and confident, especially when I couldn't be myself. Thank you mom for all of your help and enthusiasm in the field, and for not sleeping on the dock, even though you wanted to. I would also like to thank my sister Gillian for being an inspiration as a mom. To my nieces, Audrey and Bailey, thank you for giving me things to look forward to and moments to forget everything but joy and laughter. This work was funded by the University of New Hampshire Department of Biological Sciences, UNH Marine Program, UNH College of Life Sciences and Agriculture and the UNH Graduate School. IV TABLE OF CONTENTS ACKNOWLEDGEMENTS iii LIST OF TABLES vi LIST OF FIGURES vii ABSTRACT xvi CHAPTER PAGE INTRODUCTION 1 I. EFFECTS OF TEMPERATURE ON BROOD PRODUCTION 13 Introduction 13 Materials and Methods 18 Results 23 Discussion 52 II. REPRODUCTIVE SEASONALITY AT TWO LATITUDES IN NEW ENGLAND 66 Introduction 66 Materials and Methods 73 Results 84 Discussion 125 REFERENCES 136 v LIST OF TABLES TABLE PAGE Table 1.1. 33 Laboratory brooding experiment start dates (2009) and indication of number of crabs in each treatment with eggs at the start of the experiment. Table 1.2. 33 Summary of the effects of increase in temperature on brooding and molting behavior of crabs in 2009 laboratory experiment. Table 1.3. 34 Effects of crab origin on brooding and molting behavior of crabs in 2009 laboratory brooding experiment. Table 1.4. 36 Average, minimum and maximum days of first brood release for female crabs from New Hampshire and Rhode Island in four temperature treatments. Table 1.5 43 Average (± one standard deviation from the mean), minimum and maximum days of last brood release for New Hampshire and Rhode Island crabs in three temperature treatments. Table 1.6. 43 Range in days of first molting for female crabs from New Hampshire and Rhode Island in three temperature treatments. Julian day and date are given for average, minimum and maximum days of first molting. Table 1.7. 47 Average, minimum and maximum molt increment for New Hampshire male and female crabs in each of three temperature treatments. Table 1.8. 47 Average, minimum and maximum molt increment for Rhode Island male and female crabs in each of three temperature treatments. Table 1.9. 48 Average day of last brood release, first molt, and average number of days between the last brood release and first molt of the season for New Hampshire and Rhode Island crabs in three temperature treatments. Averages are shown ± one standard deviation from the mean. vi Table 1.10. 49 Summary of copulation observations which occurred in 2009 lab brooding experiment. Table 1.11 50 Possible ranges for all individual female crab ovipositions, brood releases and brood durations from New Hampshire field experiment. Variables expressed in date and Julian day. Table 1.12 65 Summary of timing and number of months with average daily temperatures exceeding 10°C and 15°C in various sample areas in Atlantic Canada and northern Maine. Data provided by the Department of Fisheries and Oceans Canada and NOAA's NOCD (US Data). Table 2.1. 72 Latitudinal patterns in reproductive traits for brachyuran crabs. Table 2.2. 83 Dates and details for targeted sampling for H. sanguineus megalopae using light traps deployed at surface and depth under various tidal conditions in 2009. No H. sanguineus megalopae were found in any of these samples. Table 2.3. 104 Number of ovigerous females, minimum, maximum and average (± one standard deviation) carapace width of ovigerous females from each region on each sampling date. Data for each region are composites of data from three local sites in that region. Table 2.4. 112 Average monthly temperatures calculated using bi-monthly historical data (NODC) or temperature data collected in each region with HOBO temperature loggers. New Hampshire temperatures were calculated from intertidal daily averages and Rhode Island temperatures were calculated with average daily sea surface temperatures. Table 2.5. 114 New Hampshire - percentage of days within given bi­ monthly intervals with average daily temperatures greater than certain temperatures from 9 to 20°C. Temperature data collected at 30 minute intervals using a HOBO temperature logger in the mid-intertidal zone in New Castle, NH were averaged over daily time intervals. Table 2.6. 120 Dates of H. sanguineus megalopae collection in plankton tows and traps and number collected on each date. VII LIST OF FIGURES FIGURE PAGE Figure 1.1. 35 Average Julian day of first brood release of the season for temperature treatments in 2009 laboratory experiment. Averages were calculated across crab origin sites (NH and Rl, N = 2). There was a significant difference in average day of first brood release among temperatures (p = 0.03). Error bars indicate ± one standard deviation from the mean. Figure 1.2. 35 Average Julian day of first brood release of the season for New Hampshire and Rhode Island origin crabs. Averages were calculated across 16, 20 and 25°C temperature treatments (N = 3). There was a significant difference in average day of first brood release between crab origin sites (p = 0.04). Error bars indicate ± one standard deviation from the mean. Figure 1.3. 37 Average number of broods per season for New Hampshire crabs in four temperature treatments. Regression analysis indicates significant correlation between the variables (p = 0.037), and r2= 0.928. Figure 1.4. 38 Correlation of average number of broods per season and temperature for Rhode Island crabs. Correlation between the two variables was non-significant when analyzed with regression analysis (p = 0.079). Figure 1.5. 39 Average number of broods per season in three temperature treatments. Averages were calculated across crab origin sites for each temperature (N = 2).
Recommended publications
  • Bibliography-Of-Texas-Speleology
    1. Anonymous. n.d. University of Texas Bulletin No. 4631, pp. 51. 2. Anonymous. 1992. Article on Pendejo Cave. Washington Post, 10 February 1992. 3. Anonymous. 1992. Article on bats. Science News, 8 February 1992. 4. Anonymous. 2000. National Geographic, 2000 (December). 5. Anonymous. n.d. Believe odd Texas caves is Confederate mine; big rock door may be clue to mystery. 6. Anonymous. n.d. The big dig. Fault Zone, 4:8. 7. Anonymous. n.d. Cannibals roam Texas cave. Georgetown (?). 8. Anonymous. n.d. Cavern under highway is plugged by road crew. Source unknown. 9. Anonymous. n.d. Caverns of Sonora: Better Interiors. Olde Mill Publ. Co., West Texas Educators Credit Union. 10. Anonymous. n.d. Crawling, swimming spelunkers discover new rooms of cave. Austin(?). Source unknown. 11. Anonymous. n.d. Discovery (of a sort) in Airmen's Cave. Fault Zone, 5:16. 12. Anonymous. n.d. Footnotes. Fault Zone, 5:13. 13. Anonymous. n.d. Help the blind... that is, the Texas blind salamander [Brochure]: Texas Nature Conservancy. 2 pp. 14. Anonymous. n.d. Honey Creek map. Fault Zone, 4:2. 15. Anonymous. n.d. The Langtry mini-project. Fault Zone, 5:3-5. 16. Anonymous. n.d. Neuville or Gunnels Cave. http:// www.shelbycountytexashistory.org/neuvillecave.htm [accessed 9 May 2008]. 17. Anonymous. n.d. Palo Duro Canyon State Scenic Park. Austin: Texas Parks and Wildlife Department. 2 pp. 18. Anonymous. n.d. Texas blind salamander (Typhlomolge rathbuni). Mississippi Underground Dispatch, 3(9):8. 19. Anonymous. n.d. The TSA at Cascade Caverns. Fault Zone, 4:1-3, 7-8.
    [Show full text]
  • Looking Beyond the Mortality of Bycatch: Sublethal Effects of Incidental Capture on Marine Animals
    Biological Conservation 171 (2014) 61–72 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Review Looking beyond the mortality of bycatch: sublethal effects of incidental capture on marine animals a, a a,b b a Samantha M. Wilson ⇑, Graham D. Raby , Nicholas J. Burnett , Scott G. Hinch , Steven J. Cooke a Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Sciences, Carleton University, Ottawa, ON, Canada b Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada article info abstract Article history: There is a widely recognized need to understand and reduce the incidental effects of marine fishing on Received 14 August 2013 non-target animals. Previous research on marine bycatch has largely focused on simply quantifying mor- Received in revised form 10 January 2014 tality. However, much less is known about the organism-level sublethal effects, including the potential Accepted 13 January 2014 for behavioural alterations, physiological and energetic costs, and associated reductions in feeding, growth, or reproduction (i.e., fitness) which can occur undetected following escape or release from fishing gear. We reviewed the literature and found 133 marine bycatch papers that included sublethal endpoints Keywords: such as physiological disturbance, behavioural impairment, injury, reflex impairment, and effects on RAMP reproduction,
    [Show full text]
  • Olympia Oyster (Ostrea Lurida)
    COSEWIC Assessment and Status Report on the Olympia Oyster Ostrea lurida in Canada SPECIAL CONCERN 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Olympia Oyster Ostrea lurida in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 56 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report(s): COSEWIC. 2000. COSEWIC assessment and status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 30 pp. (www.sararegistry.gc.ca/status/status_e.cfm) Gillespie, G.E. 2000. COSEWIC status report on the Olympia Oyster Ostrea conchaphila in Canada in COSEWIC assessment and update status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-30 pp. Production note: COSEWIC acknowledges Graham E. Gillespie for writing the provisional status report on the Olympia Oyster, Ostrea lurida, prepared under contract with Environment Canada and Fisheries and Oceans Canada. The contractor’s involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim and 2-month interim status reports were overseen by Robert Forsyth and Dr. Gerald Mackie, COSEWIC Molluscs Specialist Subcommittee Co-Chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’huître plate du Pacifique (Ostrea lurida) au Canada.
    [Show full text]
  • A Checklist and Annotated Bibliography of the Subterranean Aquatic Fauna of Texas
    A CHECKLIST AND ANNOTATED BIBLIOGRAPHY OF THE SUBTERRANEAN AQUATIC FAUNA OF TEXAS JAMES R. REDDELL and ROBERT W. MITCHELL Texas Technological College WATER RESOURCES \ CENTER Lubbock, Texas WRC 69-6 INTERNATIONAL CENTER for ARID and August 1969 SEMI-ARID LAND STUDIES A CHECKLIST AND ANNOTATED BIBLIOGRAPHY OF THE SUBTERRANEAN AQUATIC FAUNA OF TEXAS James R. Reddell and Robert W. Mitchell Department of Biology Texas Tech University Lubbock, Texas INTRODUCTION In view of the ever-increasing interest in all studies relating to the water resources of Texas, we have found it timely to prepare this guide to the fauna and biological literature of our subterranean waters. The value of such a guide has already been demonstrated by Clark (1966) in his "Publications, Personnel, and Government Organizations Related to the Limnology, Aquatic Biology and Ichthyology of the Inland Waters of Texas". This publication dea ls primarily with inland surface waters, however, barely touching upon the now rather extensive literature which has accumulated on the biology of our subterranean waters. To state a n obvious fact, it is imperative that our underground waters receive the attention due them. They are one of our most important resources. Those subterranean waters for which biological data exi st are very un­ equally distributed in the state. The best known are those which are acces­ sible to collection and study via the entrances of caves. Even in cavernous regions there exist inaccessible deep aquifers which have yielded little in­ formation as yet. Biological data from the underground waters of non-cave rn­ ous areas are virtually non-existant.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Population Structure of the Recent Invader Hemigrapsus Takanoi and Prey Size Selection on Baltic Sea Mussels
    Aquatic Invasions (2020) Volume 15, Issue 2: 297–317 CORRECTED PROOF Research Article Population structure of the recent invader Hemigrapsus takanoi and prey size selection on Baltic Sea mussels Ola Mohamed Nour1,2,*, Meike Stumpp3, Sonia C. Morón Lugo1,4, Francisco R. Barboza1 and Christian Pansch1 1GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany 2Department of Biology and Geology, Faculty of Education, Alexandria University, 21526 Alexandria, Egypt 3Institute of Zoology, Comparative Immunobiology, Christian-Albrechts University Kiel, 24118 Kiel, Germany 4Departement des Sciences Fondamentales, Universite du Quebec a Chicoutimi 555, Chicoutimi, Quebec G7H 2B 1, Canada Author e-mails: [email protected] (OMN), [email protected] (MS), [email protected] (SCML), [email protected] (FRB), [email protected] (CP) *Corresponding author Citation: Nour OM, Stumpp M, Morón Lugo SC, Barboza FR, Pansch C (2020) Abstract Population structure of the recent invader Hemigrapsus takanoi and prey size The shore crab Hemigrapsus takanoi Asakura and Watanabe, 2005, native to the selection on Baltic Sea mussels. Aquatic Northwest Pacific, was recorded in European waters about 25 years ago and it was Invasions 15(2): 297–317, https://doi.org/ first found in the Baltic Sea in 2014. Information on population structure of 10.3391/ai.2020.15.2.06 invaders and their new niche is needed in order to understand their biological Received: 16 April 2019 impact. Over one year, we assessed temporal changes in relative abundance, size-class Accepted: 9 November 2019 and sex ratio, as well as breeding season of H. takanoi in the Kiel Fjord (Western Published: 31 January 2020 Baltic Sea).
    [Show full text]
  • Hemigrapsus Asian Crab
    NONINDIGENOUS SPECIES INFORMATION BULLETIN: Asian shore crab, Japanese shore crab, Pacific crab, Hemigrapsus sanguineus (De Haan) (Arthropoda: Grapsidae) IDENTIFICATION: The Asian shore crab has a square-shaped shell with 3 spines on each side of the carapace. The carapace color ranges from green to purple to orange-brown to red. It has light and dark bands along its legs and red spots on its claws. Male crabs have a distinctive fleshy, bulb-like structure at the base of the moveable finger on the claws. This species is small with adults ranging from 35 mm (1.5 in) to 42 mm (1.65 in) in carapace width. NATIVE RANGE: Hemigrapsus sanguineus is indigenous to the western Pacific Ocean from Russia, along the Korean and Chinese coasts to Hong Kong, and the Japanese archipelago. LIFE HISTORY: This species is an opportunistic omnivore, feeding on macroalgae, salt marsh grass, larval and juvenile fish, and small invertebrates such as amphipods, gastropods, bivalves, barnacles, and polychaetes. The Asian shore crab is highly reproductive with a breeding season from May to September, twice the length of native crabs. The females are capable of producing 50,000 eggs per clutch with 3-4 clutches per breeding season. The larvae are suspended in the water for approximately one month before developing into juvenile crabs. Actual carapace width of Because of this, the larvae have the ability to be specimen is ~ 20 mm transported over great distances, a possible means Asian Shore Crab (Hemigrapsus sanguineus) of new introductions. (Specimen courtesy of Susan Park, University of Delaware) HABITAT: This versatile crab inhabits any shallow hard-bottom intertidal or sometimes subtidal habitat.
    [Show full text]
  • Life History of the Native Shore Crabs Hemigrapsus Oregonensis And
    3/12/2018 people.oregonstate.edu/~yamadas/crab/ch5.htm Life History of Hemigrapsus oregonensis and Hemigrapsus nudus Objective of study Materials and Methods Results SEX SPECIES TIDE LEVEL SITE Discussion Prediction of the possible impact of Carcinus maenas on the populations of Hemigrapsus oregonensis and Hemigrapsus nudus Life History of the native shore crabs Hemigrapsus oregonensis and Hemigrapsus nudus and their distribution, relative abundance and size frequency distribution at four sites in Yaquina Bay, Oregon. Jennifer Oliver and Anja Schmelter Life History of Hemigrapsus oregonensis and Hemigrapsus nudus Much is known about the life history of the two common intertidal shore crabs Hemigrapsus oregonensis and Hemigrapsus nudus. The following summary was compiled from Batie 1975; Behrens Yamada and Boulding 1996 and 1998; Cohen et. al 1995; Daly 1981; Grosholz and Ruiz 1995; Harms and Seeger 1989; Low 1970; Morris Abbot and Haderlie 1980; Naylor 1962; and Rudy and Rudy 1983. Both of these species are Brachyuran crabs belonging to the family Grapsidae. These crabs can be distinguished from other crabs by their square carapace and eyes, which are set out towards the front corners of their carapace. The characteristic features of Hemigrapsus oregonensis are the dull olive-colored hairs on its legs, and a carapace width ranging up to 34.7 mm for males and 29.1 mm for females. This carapace is colored yellow-green or gray and has a four-lobed anterior margin (Plate 1). H. oregonensis occurs from the high to low intertidal zones of bays and estuaries from Resurrection Bay (Alaska) to Bahia de Todos Santos (Baja California).
    [Show full text]
  • The Morphology of the Eye of the Purple Shore Crab, Hemigrapsus Nudus
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1975 The morphology of the eye of the purple shore crab, Hemigrapsus nudus Sharon E. Heisel Portland State University Let us know how access to this document benefits ouy . Follow this and additional works at: http://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons Recommended Citation Heisel, Sharon E., "The morphology of the eye of the purple shore crab, Hemigrapsus nudus" (1975). Dissertations and Theses. Paper 2163. 10.15760/etd.2160 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. For more information, please contact [email protected]. AN A:aSTRACTJ"~OF THE THESIS OF Sharon E. Heisel for the Master.",of Soience in BiOlogy presented May 21, 1975;. Title: The Morphology of the Eye of the Purple Shore .APPROVED BY MEMBERS OF THE THESIS COMMITTEE: 'Dr. Leonar l.IDpson Dr'.. Rl.chard B. F=e.o""-lr::-.b""""eilOolos...-:;.....-·----------- Dr.• 1if" H. Fahrenbach Dr. David T. Clark . A structural analysis of the compound eye of Hemi­ grapsus npdus expands the basis of functional analysis of d~9apod Crustacean eyes. Contradictory evidence for dip- integration of rhabdomeric microvilli.. in the absence of light prompted observation of ~ nudus eyes after 146 days in darkness. Eyes were fixed with formalin and glutaraldehyde and 2. :postfixed with osmiUm tetroxide for' electron and l~ght microscopy. Light~and dark-adapted eyes we~e also'ob­ served with hot water fixation' and paraf~in emPeq~ent.
    [Show full text]
  • Humane Slaughter of Edible Decapod Crustaceans
    animals Review Humane Slaughter of Edible Decapod Crustaceans Francesca Conte 1 , Eva Voslarova 2,* , Vladimir Vecerek 2, Robert William Elwood 3 , Paolo Coluccio 4, Michela Pugliese 1 and Annamaria Passantino 1 1 Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 981 68 Messina, Italy; [email protected] (F.C.); [email protected] (M.P.); [email protected] (A.P.) 2 Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; [email protected] 3 School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK; [email protected] 4 Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence-Viale Pieraccini, 6-50139 Firenze, Italy; paolo.coluccio@unifi.it * Correspondence: [email protected] Simple Summary: Decapods respond to noxious stimuli in ways that are consistent with the experi- ence of pain; thus, we accept the need to provide a legal framework for their protection when they are used for human food. We review the main methods used to slaughter the major decapod crustaceans, highlighting problems posed by each method for animal welfare. The aim is to identify methods that are the least likely to cause suffering. These methods can then be recommended, whereas other methods that are more likely to cause suffering may be banned. We thus request changes in the legal status of this group of animals, to protect them from slaughter techniques that are not viewed as being acceptable. Abstract: Vast numbers of crustaceans are produced by aquaculture and caught in fisheries to Citation: Conte, F.; Voslarova, E.; meet the increasing demand for seafood and freshwater crustaceans.
    [Show full text]
  • IS the INVASIVE ASIAN SHORE CRAB (Hemigrapsus Sanguineus) EXPANDING INTO UPPER BARNEGAT BAY?
    IS THE INVASIVE ASIAN SHORE CRAB (Hemigrapsus sanguineus) EXPANDING INTO UPPER BARNEGAT BAY? Kristen Ranges2, Kylie Johnson1, Jeffrey Webb1, and Emily Cristiano1 1 Monmouth University Marine and Environmental Biology and Policy Program 2 University of Delaware School of Marine Science and Policy Faculty Mentor: Dean John A. Tiedemann, Department of Biology Funding Sources: Urban Coast Institute Marine Science and Policy Initiative and Santander Bank ABSTRACT The Asian shore crab (Hemigrapsus sanguineus) is native to low energy rocky intertidal habitats along the east coast of Asia. They are thought to have been introduced to the mid-Atlantic and northeast coasts of the United States through ship ballast water. Their presence in North America was first discovered in 1988 at Townsends Inlet, New Jersey. Their populations have increased and spread rapidly since that time. Along the Atlantic coast, their range now extends from North Carolina to Maine. In the Barnegat Bay region, there have been reports of H. sanguineus along the Barnegat Inlet and Manasquan Inlet jetties since the early 1990s; however, no records of their presence in characteristics habitats within the bay existed prior to 2013. In the summers of 2012 and 2013, macrozooplankton samples we collected in upper Barnegat Bay contained megalopae larvae of H. sanguineus. In July 2013, preliminary field surveys at sites characteristic of the crab’s usual rocky intertidal habitat revealed the presence of adult crabs inhabiting an area of rip-rap in the upper bay at the Bay Head Shores Beach Club. Field surveys conducted this summer at these same sites included seining to identify possible prey species available to H.
    [Show full text]
  • Hemigrapsus Takanoi Potential in the GULF of MAINE Brush-Clawed Shore Crab Invader
    GUIDE TO MARINE INVADERS Hemigrapsus takanoi Potential IN THE GULF OF MAINE brush-clawed shore crab Invader PHYSICAL DESCRIPTION • 3 lateral spines on each side of a square-shaped carapace (shell) • Light and dark banded legs with small, dark spots on the claws • Light brown to yellow, fuzzy growth (setal patch) at base of pincers on males’ claws (chelae) • Color variable: commonly orange-brown, also green and maroon • Carapace width up to 1 in (2.5 cm) Adriann Gittenberger fuzzy growth between pincers small dark spots on claws 3 lateral spines square-shaped carapace HABITAT PREFERENCE • Occurs primarily in mid to low intertidal zone banded legs and occassionally in the subtidal zone • Typically found among rocks and cobbles Male Hemigrapsus takanoi (dorsal view) but may also be found in soft sediments © Rob Gough 1 2 3 4 5 6 7 8 GUIDE TO MARINE INVADERS Hemigrapsus takanoi Potential IN THE GULF OF MAINE brush-clawed shore crab Invader INVASION STATUS & ECOLOGICAL CONCERNS Found in rocky intertidal habitats, Hemigrapsus takanoi is a native of the western Pacific Ocean, ranging from Northern Japan to China. Its invasion in Europe was first documented in 1993, and now includes France, Spain, Belgium, the Netherlands, and Germany. In some areas, it has been found in densities as high as 20 individuals/m2. It has most likely been transported by ballast water. Scientists have identified this crab species as a likely candidate to invade North American waters. This species, like its close relative Hemigrapsus sanguineus, can produce up to 50,000 eggs three to four times during the spawning season, compared to our region’s native crabs that reproduce twice each year.
    [Show full text]