Grafting of Amino and Nitrogen Groups on Polymers by Means of Plasma Functionalisation Inauguraldissertation Zur Erlangung Des A

Total Page:16

File Type:pdf, Size:1020Kb

Grafting of Amino and Nitrogen Groups on Polymers by Means of Plasma Functionalisation Inauguraldissertation Zur Erlangung Des A Grafting of Amino and Nitrogen Groups on Polymers by Means of Plasma Functionalisation Inauguraldissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr.rer.nat) an der Mathematisch-Naturwissenschaftlichen Fakult¨at der Ernst-Moritz-Arndt-Universit¨at Greifswald vorgelegt von Asmus Andres Meyer-Plath geb. Meyer-Sievers geboren am 7. Mai 1968 in Hamburg Greifswald, den 6. Februar 2002 Dekan: Prof. Dr. K. Fesser 1. Gutachter: Prof. Dr. H. Conrads 2. Gutachter: Prof. Dr. R. d’Agostino Tag der Promotion: 24. Juni 2002 Abstract The main objective of this work is to contribute to the understanding of the grafting of nitrogen and amino surface functional groups on polymers by means of plasmas containing nitrogen and hydrogen. For this purpose, many aspects of plasma surface modification were studied. In the frame of this work, a new, UHV-sealed plasma reactor system was put into operation. The system is special for its clean reaction environment and the possibility to perform quasi in situ XPS measurements. A comparison of the UHV system to a fine vacuum reactor showed that a clean reaction environment is mandatory for reproducible plasma processing and efficient nitrogen and amino functionalisation. A key motivation for the present work was the observation that the non-coating plasma processes reported in literature fail to graft primary amino groups on polymer surfaces with densities that significantly exceed 3 4% NH2/C. In order to investigate this phenomenon in detail, this work followed two experimental tracks: On the one hand, a broad systematic study of plasma processing parameters was performed. On the other, the surface diagnostics methods used for the quantification of amino groups were critically reviewed. For this, a numerical algorithm was developed to reconstruct the element depth profile from angle-resolved XPS data. In the scope of the process parameter study, cw and pulsed microwave (MW) plasma excitation was com- pared to radio-frequency (RF) excitation. The home-built MW source was studied and optimised with respect to ignition behaviour and power efficiency. The performance of the MW and RF plasmas in polymer surface modifications was studied in various gas mixtures containing NH3 and H2,orN2 and H2. Also the differences of glow and afterglow processing of polymers were investigated. Large variations of the nitrogen and primary amino grafting efficiencies were obtained. They triggered a number of new ideas for the underlying reaction mechanisms. Special attendance was devoted to the selectivity of the functionalisation processes for primary amino groups. Nitrogen-containing discharges that were rich in hydrogen achieved selectivities up to 100%. The upper limit of 3 4% amino groups on the surface, however, was not passed. Angle-resolved XPS measurements revealed a systematic problem for the definition of a surface density, which is capable of explaining the upper limit for amino groups. It is either due to a limited labelling depth of amino groups by the applied TFBA derivatisation reaction, or to a limited functionalisation depth of the plasma process. One very efficient nitrogen-grafting plasma process that was developed on polystyrene was applied to seven other unfluorinated polymers. The similarity of the resulting functionalisation demonstrated a good transfer- ability of plasma surface functionalisation processes. Plasma treatments of polymer surfaces, especially in hydrogen-containing gases, are known to be generally followed by uncontrollable oxidation phenomena. The properties of plasma-functionalised polymer surfaces were therefore studied in conjunction with ageing effects. Quasi in situ XPS analysis allowed to distinguish the influence of oxygen contamination during the plasma process from post-process oxidation due to contact of plasma-treated samples to atmospheric oxygen. The surface modification experiments were accompanied by several gas phase diagnostic techniques. In the scope of this work, the UHV reactor system was equipped with optical emission spectroscopy (OES), two-photon absorption laser-induced fluorescence (TALIF), and tunable diode laser absorption spectroscopy (TDLAS). A se- parate plasma source was setup to perform an absolute quantification of the vacuum-ultra-violet (VUV) emission intensity of hydrogen-containing MW-excited plasmas. The techniques were evaluated with respect to their contribution to an understanding of the plasma processing of polymers. The rich experimental data allowed to suggest new reaction mechanisms for the grafting of nitrogen- and amino functional groups. Surface passivation experiments in H2 plasmas of nitrogen-functionalised surfaces initiated a re-evaluation and an extension of the mechanism of selective etching [1]. Together with two other new reaction mechanisms, a hypothetical reaction scheme was suggested. It was studied by the help of two numerical models for heterogenous reactions of radicals with the surface. In order to avoid the complexity of the fragmentation process of NH3, the models were restricted to discharges in N2 and H2. Despite the sparse information on the composition of the gas phase, the data of two experimental series showed a very particular phenomenology that allowed a first test of the model. The test supports the newly-suggested reaction mechanisms. Especially the role of NH2 attachment to open reaction sites for the grafting of amino groups was emphasised. A more stringent test of the model is left to future experiments with extended gas phase diagnostic means. Contents 1Introduction 3 1.1 GeneralIntroduction.......................................... 3 1.2 MicrowavePlasmaPhysics....................................... 5 1.3 Polymer Chemistry ........................................... 11 1.4 BiomaterialProperties......................................... 13 2 Fundamentals of Surface Functionalisation 15 2.1 Gas Phase Plasma Chemistry ..................................... 16 2.2 PlasmaSurfaceInteraction....................................... 20 2.3 Post-Plasma Surface Processes ..................................... 26 3 Experimental 29 3.1 Plasma Reactor System ......................................... 29 3.2 PlasmaDiagnostics........................................... 35 3.3 PolymerSamplePreparation...................................... 42 3.4 SurfaceDiagnostics........................................... 43 3.5 ExperimentalStrategy......................................... 53 4Results 55 4.1 AvailableInformationontheGasPhase............................... 56 4.2 Polymer Functionalisation Experiments ............................... 59 4.3 ComparisonofVariousPolymers................................... 74 4.4 Durability of Functionalisation .................................... 75 4.5 PolymerPassivationExperiments................................... 78 4.6 Damageability of Polymers ...................................... 79 5 Discussion, Conclusions and Perspectives 84 5.1 Discussion................................................ 84 5.2 Conclusions............................................... 100 5.3 FutureResearch............................................. 105 A Technical Data of the Experimental Equipment 122 B XPS Peak Positions 123 C Reaction Coefficients 124 D Infrared Transitions of NH2 and NH 129 E Optical Transitions 132 Glossary 135 Index 137 1 2 1 Introduction Contents 1.1 GeneralIntroduction................................................. 3 1.2 MicrowavePlasmaPhysics.............................................. 5 1.2.1 Introductiontoplasmaphysics....................................... 5 1.2.2 Plasmaexcitationbymicrowaves..................................... 7 1.2.3 Examplesoflarge-areamicrowaveplasmassources............................ 9 1.2.4 Pulsedplasmaexcitation.......................................... 10 1.3 Polymer Chemistry .................................................. 11 1.3.1 Polymers under investigation ....................................... 11 1.3.2 Functional groups .............................................. 11 1.3.3 Functionalisation of polymers ....................................... 13 1.4 BiomaterialProperties................................................ 13 1.1 General Introduction This work investigates functionalisation of polymer surfaces by means of non-coating plasma processes. In non-coating surface functionalisation no additional molecular layer is deposited, as in plasma polymerisation, but functional groups of the polymer are converted to other chemical groups by substitutive radical reactions, a process also called grafting. Functional groups critically determine the characteristic chemical and physical properties of the polymer surface. If only a thin surface layer is being functionalised the specific nature of the bulk material can be preserved. This way, standard materials may obtain novel qualities. In gas phase processes the depth of surface modification is generally smaller than in wet-chemical reactions, where solvents and capillary forces may transport reagents deep into the substrate. Gas phase processing by plasmas utilises an energised, partially ionised gas. The gas is a source of energetic particles and allows to modify even highly inert surfaces. The particles possess enthalpy in form of kinetic and/or potential energy. The former includes rotational and vibrational excitation, the latter ionisation, electronic excitation, and last, not least chemical reactiveness. While some plasma-based surface processes employ ions, either inert (sputtering), or reactive
Recommended publications
  • Densifying Metal Hydrides with High Temperature and Pressure
    3,784,682 United States Patent Office Patented Jan. 8, 1974 feet the true density. That is, by this method only theo- 3,784,682 retical or near theoretical densities can be obtained by DENSIFYING METAL HYDRIDES WITH HIGH making the material quite free from porosity (p. 354). TEMPERATURE AND PRESSURE The true density remains the same. Leonard M. NiebylsM, Birmingham, Mich., assignor to Ethyl Corporation, Richmond, Va. SUMMARY OF THE INVENTION No Drawing. Continuation-in-part of abandoned applica- tion Ser. No. 392,370, Aug. 24, 1964. This application The process of this invention provides a practical Apr. 9,1968, Ser. No. 721,135 method of increasing the true density of hydrides of Int. CI. COlb 6/00, 6/06 metals of Groups II-A, II-B, III-A and III-B of the U.S. CI. 423—645 8 Claims Periodic Table. More specifically, true densities of said 10 metal hydrides may be substantially increased by subject- ing a hydride to superatmospheric pressures at or above ABSTRACT OF THE DISCLOSURE fusion temperatures. When beryllium hydride is subjected A method of increasing the density of a hydride of a to this process, a material having a density of at least metal of Groups II-A, II-B, III-A and III-B of the 0.69 g./cc. is obtained. It may or may not be crystalline. Periodic Table which comprises subjecting a hydride to 15 a pressure of from about 50,000 p.s.i. to about 900,000 DESCRIPTION OF THE PREFERRED p.s.i. at or above the fusion temperature of the hydride; EMBODIMENT i.e., between about 65° C.
    [Show full text]
  • Thermodynamic Hydricity of Small Borane Clusters and Polyhedral Closo-Boranes
    molecules Article Thermodynamic Hydricity of Small Borane Clusters y and Polyhedral closo-Boranes Igor E. Golub 1,* , Oleg A. Filippov 1 , Vasilisa A. Kulikova 1,2, Natalia V. Belkova 1 , Lina M. Epstein 1 and Elena S. Shubina 1,* 1 A. N. Nesmeyanov Institute of Organoelement Compounds and Russian Academy of Sciences (INEOS RAS), 28 Vavilova St, 119991 Moscow, Russia; [email protected] (O.A.F.); [email protected] (V.A.K.); [email protected] (N.V.B.); [email protected] (L.M.E.) 2 Faculty of Chemistry, M.V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, 119991 Moscow, Russia * Correspondence: [email protected] (I.E.G.); [email protected] (E.S.S.) Dedicated to Professor Bohumil Štibr (1940-2020), who unfortunately passed away before he could reach the y age of 80, in the recognition of his outstanding contributions to boron chemistry. Academic Editors: Igor B. Sivaev, Narayan S. Hosmane and Bohumír Gr˝uner Received: 6 June 2020; Accepted: 23 June 2020; Published: 25 June 2020 MeCN Abstract: Thermodynamic hydricity (HDA ) determined as Gibbs free energy (DG◦[H]−) of the H− detachment reaction in acetonitrile (MeCN) was assessed for 144 small borane clusters (up 2 to 5 boron atoms), polyhedral closo-boranes dianions [BnHn] −, and their lithium salts Li2[BnHn] (n = 5–17) by DFT method [M06/6-311++G(d,p)] taking into account non-specific solvent effect (SMD MeCN model). Thermodynamic hydricity values of diborane B2H6 (HDA = 82.1 kcal/mol) and its 2 MeCN dianion [B2H6] − (HDA = 40.9 kcal/mol for Li2[B2H6]) can be selected as border points for the range of borane clusters’ reactivity.
    [Show full text]
  • Plasma Polymerization of 3-Aminopropyl-Trimethoxysilane Inside Closed Plastic Bags at Atmospheric Pressure K
    Plasma polymerization of 3-aminopropyl-trimethoxysilane inside closed plastic bags at atmospheric pressure K. Lachmann, A. Dohse, M. Thomas, C.-P. Klages Fraunhofer-Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54 E, 38108 Braunschweig, Germany, Phone: +49 531-2155 683, Fax: +49 531-2155 900, [email protected] Abstract: Surface modification of the inner surfaces of closed plastic bags enables cultivation of stem cells under GMP (Good Manufacturing Practice) conditions. The surface coating is performed in an atmospheric PECVD process based on dielectric barrier discharges using specially designed automated equipment. In former investigations coatings made from 3-aminopropyl- trimethoxysilane (APTMS) were found to be particularly suitable for adherent cell cultivation. This contribution presents investigations of the coating process within the bag with a focus on film composition and stability of the deposited film. Effects of treatment parameters, diffusion processes through the permeable polymer bag and the influence of the relative humidity were studied. Keywords: plasma polymerization, DBD, cell culture, plastic bag 1. Introduction 2. Experimental Plasma treatment to enhance cell cultivation is well Plasma treatment was performed in an automated described in the literature [1-2]. Usually two system designed and built at Fraunhofer IST (see dimensional substrates, like polymer foils or glass Figure 1). The process is based on a DBD slides were coated. As the cultivation of arrangement where the plastic bag is pressed mesenchymal stem cells is challenging, the use of between two parallel electrodes, a high voltage open systems may be involved with high risk of electrode (150 x 300 mm2) covered with a 3.4 mm contamination.
    [Show full text]
  • Catalytic, Thermal, Regioselective Functionalization of Alkanes and Arenes with Borane Reagents
    ACS Symposium Series 885, Activation and Functionalization of C-H Bonds, Karen I. Goldberg and Alan S. Goldman, eds. 2004. CHAP TER 8 Catalytic, Thermal, Regioselective Functionalization of Alkanes and Arenes with Borane Reagents John F. Hartwig Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107 Work in the author’s group that has led to a regioselective catalytic borylation of alkanes at the terminal position is summarized. Early findings on the photochemical, stoichiometric functionalization of arenes and alkanes and the successful extension of this work to a catalytic functionalization of alkanes under photochemical conditions is presented first. The discovery of complexes that catalyze the functionalization of alkanes to terminal alkylboronate esters is then presented, along with mechanistic studies on these system and computational work on the stoichiometric reactions of isolated metal-boryl compounds with alkanes. Parallel results on the development of catalysts and a mechanistic understanding of the borylation of arenes under mild conditions to form arylboronate esters are also presented. © 2004 American Chemical Society 136 137 1. Introduction Although alkanes are considered among the least reactive organic molecules, alkanes do react with simple elemental reagents such as halogens and oxygen.1,2) Thus, the conversion of alkanes to functionalized molecules at low temperatures with control of selectivity and at low temperatures is a focus for development of catalytic processes.(3) In particular the conversion of an alkane to a product with a functional group at the terminal position has been a longstanding goal (eq. 1). Terminal alcohols such as n-butanol and terminal amines, such as hexamethylene diamine, are major commodity chemicals(4) that are produced from reactants several steps downstream from alkane feedstocks.
    [Show full text]
  • A Photoionization Reflectron Time‐Of‐Flight Mass Spectrometric
    Articles ChemPhysChem doi.org/10.1002/cphc.202100064 A Photoionization Reflectron Time-of-Flight Mass Spectrometric Study on the Detection of Ethynamine (HCCNH2) and 2H-Azirine (c-H2CCHN) Andrew M. Turner,[a, b] Sankhabrata Chandra,[a, b] Ryan C. Fortenberry,*[c] and Ralf I. Kaiser*[a, b] Ices of acetylene (C2H2) and ammonia (NH3) were irradiated with 9.80 eV, and 10.49 eV were utilized to discriminate isomers energetic electrons to simulate interstellar ices processed by based on their known ionization energies. Results indicate the galactic cosmic rays in order to investigate the formation of formation of ethynamine (HCCNH2) and 2H-azirine (c-H2CCHN) C2H3N isomers. Supported by quantum chemical calculations, in the irradiated C2H2:NH3 ices, and the energetics of their experiments detected product molecules as they sublime from formation mechanisms are discussed. These findings suggest the ices using photoionization reflectron time-of-flight mass that these two isomers can form in interstellar ices and, upon spectrometry (PI-ReTOF-MS). Isotopically-labeled ices confirmed sublimation during the hot core phase, could be detected using the C2H3N assignments while photon energies of 8.81 eV, radio astronomy. 1. Introduction acetonitrile (CH3CN; 1) and methyl isocyanide (CH3NC; 2) ‘isomer doublet’ (Figure 2) – the methyl-substituted counterparts of For the last decade, the elucidation of the fundamental reaction hydrogen cyanide (HCN) and hydrogen isocyanide (HNC) – has pathways leading to structural isomers – molecules with the been detected toward the star-forming region SgrB2.[4,8–9] same molecular formula, but distinct connectivities of atoms – However, none of their higher energy isomers has ever been of complex organic molecules (COMs) in the interstellar identified in any astronomical environment: 2H-azirine (c- [10–14] [15–19] medium (ISM) has received considerable interest from the NCHCH2; 3), ethynamine (HCCNH2; 4), ketenimine [1–3] [20] [21] astrochemistry and physical chemistry communities.
    [Show full text]
  • Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines
    materials Review Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines Melanie Macgregor 1,2 and Krasimir Vasilev 1,2,* 1 School of Engineering, University of South Australia, Adelaide, SA 5000, Australia; [email protected] 2 Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia * Correspondence: [email protected]; Tel.: +61-8-8302-5697 Received: 3 December 2018; Accepted: 2 January 2019; Published: 8 January 2019 Abstract: Plasma polymers are unconventional organic thin films which only partially share the properties traditionally attributed to polymeric materials. For instance, they do not consist of repeating monomer units but rather present a highly crosslinked structure resembling the chemistry of the precursor used for deposition. Due to the complex nature of the deposition process, plasma polymers have historically been produced with little control over the chemistry of the plasma phase which is still poorly understood. Yet, plasma polymer research is thriving, in par with the commercialisation of innumerable products using this technology, in fields ranging from biomedical to green energy industries. Here, we briefly summarise the principles at the basis of plasma deposition and highlight recent progress made in understanding the unique chemistry and reactivity of these films. We then demonstrate how carefully designed plasma polymer films can serve the purpose of fundamental research and biomedical applications. We finish the review with a focus on a relatively new class of plasma polymers which are derived from oxazoline-based precursors. This type of coating has attracted significant attention recently due to its unique properties.
    [Show full text]
  • Boranes in Organic Chemistry 2. Β-Aminoalkyl- and Β-Sulfanylalkylboranes in Organic Synthesis V.M
    Eurasian ChemTech Journal 4 (2002) 153-167 Boranes in Organic Chemistry 2. β-Aminoalkyl- and β-sulfanylalkylboranes in organic synthesis V.M. Dembitsky1, G.A. Tolstikov2*, M. Srebnik1 1Department of Pharmaceutical Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, The Hebrew University of Jerusalem, Jerusalem 91120, Israel 2Novosibirsk Institute of Organic Chemistry SB RAS, 9, Lavrentieva Ave., Novosibirsk, 630090, Russia Abstract Problems on using of β-aminoalkyl- and β-sulfanylalkylboranes in organic synthesis are considered in this review. The synthesis of boron containing α-aminoacids by Curtius rearrangement draws attention. The use of β-aminoalkylboranes available by enamine hydroboration are described. Examples of enamine desamination with the formation of alkenes, aminoalcohols and their transfor- mations into allylic alcohol are presented. These conversions have been carried out on steroids and nitro- gen containing heterocyclic compounds. The dihydroboration of N-vinyl-carbamate and N-vinyl-urea have been described. Examples using nitrogen and oxygen containing boron derivatives for introduction of boron functions were presented. The route to borylhydrazones by hydroboration of enehydrazones was envisaged. The possibility of trialkylamine hydroboration was shown on indole alkaloids and 11-azatricyclo- [6.2.11,802,7]2,4,6,9-undecatetraene examples. The synthesis of β-sulfanyl-alkylboranes by various routes was described. The synthesis of boronic thioaminoacids was carried out by free radical thiilation of dialkyl-vinyl- boronates. Ethoxyacetylene has been shown smoothly added 1-ethylthioboracyclopentane. Derivatives of 1,4-thiaborinane were readily obtained by divinylboronate hydroboration. Dialkylvinylboronates react with mercaptoethanol with the formation of 1,5,2-oxathioborepane derivatives. Stereochemistry of thiavinyl esters hydroboration leading to stereoisomeric β-sulfanylalkylboranes are discussed.
    [Show full text]
  • Chemistry and Physics of Plasma Polymerization Probed by Mass Spectrometry
    Institutional Repository - Research Portal Dépôt Institutionnel - Portail de la Recherche University of Namurresearchportal.unamur.be THESIS / THÈSE DOCTOR OF SCIENCES Chemistry and physics of plasma polymerization probed by mass spectrometry Author(s) - Auteur(s) : Gillon, Xavier Award date: 2014 Awarding institution: University of Namur Supervisor - Co-Supervisor / Promoteur - Co-Promoteur : Link to publication Publication date - Date de publication : Permanent link - Permalien : Rights / License - Licence de droit d’auteur : General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. BibliothèqueDownload date: Universitaire 11. oct.. 2021 Moretus Plantin Cover design: © University Presses of Namur © Presses universitaires de Namur & X. Gillon Rempart de la Vierge, 13 B - 5000 Namur (Belgium) Any reproduction of an excerpt any of this book, out of the restrictive limits laid down by law, by any process whatsoever, and in particular by photocopying or scanning, is strictly prohibited for all countries.
    [Show full text]
  • Chapter 13 Group 13 Elements
    Chapter 13 Group 13 Elements Physical Properties Metals Halides, oxides, hydroxides, salts of oxoacids Compounds containing nitrogen Metal boride Electron deficient borane and carborane clusters: an introduction 1 Borax Boron Relative abundances of the group 13 elements in the Earth’s crust. http://www.astro.virginia.edu/class/oconnell/LBT/ Abundances of elements in the Earth’s crusts. 2 Production of aluminium in the US between 1960 and 2008. World production (estimated) and US consumption of gallium between 1980 and 2008 3 Uses of aluminium in the US in 2008 Uses of boron in the US in 2008 Some physical properties of the group 13 elements, M, and their ions. 4 Some physical properties of the group 13 elements, M, and their ions. (Continued) α Part of one layer of the infinite lattice of -rhombohedral boron, showing the B 12 - icosahedral building blocks which are covalently linked to give a rigid, infinite lattice. 5 B 12 B12 +12B B60 B84 = B 12 B12 B60 β The construction of the B 84 -unit, the main building block of the infinite lattice of - rhombohedral boron. (a) In the centre of the unit is a B 12 -icosahedron, and (b) to each of these 12, another boron atom is covalently bonded. (c) A B60 -cage is the outer ‘skin’ of the B 84 -unit. (d) The final B 84 -unit can be described in terms of covalently bonded sub-units (B 12 )(B 12 )(B 60 ). Neutral Group 13 Hydrides Molecular compounds – BnHm B2H6 Delocalized 3-center 2-electron B-H-B interactions 6 Selected reactions of B 2H6 and Ga 2H6 GaBH 6 Gas Phase Solid State Part of one chain of the polymeric structure of crystalline GaBH 6 (X-ray diffraction at 110 K) 7 Adducts of GaH 3 t Formation of adducts RH 2N•GaH 3 (R = Me, Bu) − [Al 2H6(THF) 2] [Al(BH 4)3] [Al(BH 4)4] 8 π The formation of partial -bonds in a trigonal planar BX 3 molecule Reaction of BX 3 with a Lewis base Boron Halide Clusters B4Cl 4 B8Cl 8 B9Br 9 The family of BnXn (X = Cl, Br, I) molecules possess cluster structures.
    [Show full text]
  • Condensed-Phase Photochemistry in the Absence of Radiation Chemistry Ella Mullikin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wellesley College Wellesley College Wellesley College Digital Scholarship and Archive Faculty Research and Scholarship 6-27-2018 Condensed-Phase Photochemistry in the Absence of Radiation Chemistry Ella Mullikin Pierce van Mulbregt Jeniffer Perea Muhammad Kasule Jean Huang See next page for additional authors Follow this and additional works at: https://repository.wellesley.edu/scholarship Version: Post-print Recommended Citation E. Mullikin, P. van Mulbregt, J. Perea, M. Kasule, J. Huang, C. Buffo, J. Campbell, L. Gates, H. M. Cumberbatch, Z. Peeler, H. Schneider, J. Lukens, S. T. Bao, R. Tano-Menka, S. Baniya, K. Cui, M. Thompson, A. Hay, L. Widdup, A. Caldwell-Overdier, J. Huang, M. C. Boyer, M. Rajappan, G. Echebiri and C. R. Arumainayagam, ACS Earth and Space Chemistry, 2018, DOI: 10.1021/ acsearthspacechem.8b00027. This Article is brought to you for free and open access by Wellesley College Digital Scholarship and Archive. It has been accepted for inclusion in Faculty Research and Scholarship by an authorized administrator of Wellesley College Digital Scholarship and Archive. For more information, please contact [email protected]. Authors Ella Mullikin, Pierce van Mulbregt, Jeniffer Perea, Muhammad Kasule, Jean Huang, Christina Buffo, Jyoti Campbell, Leslie Gates, Helen M. Cumberbatch, Zoe Peeler, Hope Schneider, Julia Lukens, Si Tong Bao, Rhoda Tano-Menka, Subha Baniya, Kendra Cui, Mayla Thompson, Aury Hay, Lily Widdup, Anna Caldwell- Overier, Justine Huang, Michael C. Boyer, Mahesh Rajappan, Geraldine Echebiri, and Christopher R. Arumainayagam This article is available at Wellesley College Digital Scholarship and Archive: https://repository.wellesley.edu/scholarship/183 Condensed-Phase Photochemistry in the Absence of Radiation Chemistry Ella Mullikin,1 Pierce van Mulbregt,2 Jeniffer Perea,1 Muhammad Kasule,3 Jean Huang,1 Christina Buffo,1 Jyoti Campbell,1 Leslie Gates,1 Helen M.
    [Show full text]
  • Nitroxyl (Hno) and Carbonylnitrenes
    INVESTIGATION OF REACTIVE INTERMEDIATES: NITROXYL (HNO) AND CARBONYLNITRENES by Tyler A. Chavez A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland February 2016 © 2016 Tyler A. Chavez All rights reserved Abstract Membrane inlet mass spectrometry (MIMS) is a well-established method used to detect gases dissolved in solution through the use of a semipermeable hydrophobic membrane that allows the dissolved gases, but not the liquid phase, to enter a mass spectrometer. Interest in the unique biological activity of azanone (nitroxyl, HNO) has highlighted the need for new sensitive and direct detection methods. Recently, MIMS has been shown to be a viable method for HNO detection with nanomolar sensitivity under physiologically relevant conditions (Chapter 2). In addition, this technique has been used to explore potential biological pathways to HNO production (Chapter 3). Nitrenes are reactive intermediates containing neutral, monovalent nitrogen atoms. In contrast to alky- and arylnitrenes, carbonylnitrenes are typically ground state singlets. In joint synthesis, anion photoelectron spectroscopic, and computational work we studied the three nitrenes, benzoylnitrene, acetylnitrene, and trifluoroacetylnitrene, with the purpose of determining the singlet-triplet splitting (ΔEST = ES – ET) in each case (Chapter 7). Further, triplet ethoxycarbonylnitrene and triplet t-butyloxycarbonylnitrene have been observed following photolysis of sulfilimine precursors by time-resolved infrared (TRIR) spectroscopy (Chapter 6). The observed growth kinetics of nitrene products suggest a contribution from both the triplet and singlet nitrene, with the contribution from the singlet becoming more prevalent in polar solvents. Advisor: Professor John P. Toscano Readers: Professor Kenneth D.
    [Show full text]
  • Ammonia-Borane: a Promising Material for Hydrogen Storage
    0 1) Background BES021 Ammonia-Borane: a Promising Material for Hydrogen Storage H3NBH3 H2 + (H2NBH2)n H2 + (HNBH)n H2 + BN 6.5 wt% H 13.1 wt% 19.6 wt% • High storage capacity has drawn attention to hydrogen release methods and mechanisms: – Catalyzed hydrolysis – Solid thermolysis – Catalyzed solid thermolysis - Solution thermolysis in ethers and ionic liquids - Catalyzed solution thermolysis Cf. A. Staubitz et al. Chem. Rev. 2010, 110, 4079-4124. This presentation does not contain any proprietary or confidential information 2) Base-Promoted AB dehydrogenation Enhanced AB H2-Release with Proton Sponge in Ionic Liquids or Tetraglyme with Reduced Foaming o NH3BH3 + 5 mol % PS at 85 C in Ionic Liquids or Tetraglyme (250 mg) (91 mg) (250 mg) 5.60 mat. wt. % H2 pKa = 11.1 Himmelberger, D.; Yoon, C. W.; Bluhm, M. E.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. 2009, 131, 14101. Proton Sponge Increases Release Rate of Second Equivalent of H2 from AB 2nd Equiv. AB with 5 mol% PS in bmimCl at 85°C Proton Sponge Induces Loss of a Second H2- Equivalent from Thermally Dehydrogenated AB − Model Studies: AB/[Et3BNH2BH3] Reactions Show Chain Growth -H • • + − 2 - NH3BH3+ Li BEt3H Et3BNH2BH3 -H2 − NH BH [Et3BNH2BH2NH2BH3] 3 3 Mass spec and GIAO/NMR studies indicate chain growth • - X-ray structure Et3BNH2BH3 0h • 11B{1H} NMR AB • 67h • AB ★ -19.7 (q) ★ -11.0 (t) -6.1(s) DFT optimized structure of ★ − [Et3BNH2BH2NH2BH3] GIAO calculated 11B chem. shifts: -8.2, -12.0, -23.5 ppm Verkade’s Base Also Activates AB H2-Release 50 wt% bmimCl 2 Verkade’s Base of H Equiv.
    [Show full text]