Noble Gases in Seawater As Tracers for Physical and Biogeochemical Ocean Processes

Total Page:16

File Type:pdf, Size:1020Kb

Noble Gases in Seawater As Tracers for Physical and Biogeochemical Ocean Processes Noble Gases in Seawater as Tracers for Physical and Biogeochemical Ocean Processes Rachel H. R. Stanley and William J. Jenkins Abstract Noble gases are biologically and chemically inert, making them excellent tracers for physical processes. There are 5 stable noble gases: He, Ne, Ar, Kr, and Xe, with a range of physicochemical properties; the diffusivities of the noble gases in seawater differ by approximately a factor of 5 and the solubilities of the noble gases in seawater differ by approximately a factor of 10. This broad range in physicochemical characteristics leads to differing response to physical forcing. Thus, measurements of multiple noble gases made concurrently allow quantification of many physical processes. In seawater studies, noble gas measurements have been used to investigate air-sea gas exchange, allowing explicit separation of the bubble component from the diffusive gas exchange component, and to study equilibration during deep water formation. Argon has been used to quantify diapycnal mixing and the heavier noble gases could be useful in such studies as well. Helium, Ne, and Ar have yielded insights on ocean- cryospheric processes such as sea ice formation and basal melting of glaciers. The isotope 3 He has been used extensively in studies of ocean circulation, and also for quantifying ocean-lithospheric interactions. Additionally, noble gases can be combined with biologically active gases, such as O2 or N2, in order to quantify rates of biological production and denitrification. there are five stable noble gases with a range of 1 Introduction solubilities and molecular diffusivities in seawa- Dissolved noble gases are ideal in situ tracers for ter (Fig. 1). The diffusivities in seawater of the physical processes in the ocean because they are noble gases differ by a factor of seven with helium biologically and chemically inert and thus being the most diffusive (Jahne et al. 1987). The respond solely to physical forcing. Additionally, solubilities differ by more than an order of mag- nitude, with xenon being the most soluble (Smith R. H. R. Stanley (&) Á W. J. Jenkins and Kennedy 1983; Wood and Caputi 1966). The Woods Hole Oceanographic Institution, Woods solubilities of the heavier noble gases (Ar, Kr, and Hole, MA 02543, USA Xe) have a strong, non-linear dependence on e-mail: [email protected] P. Burnard (ed.), The Noble Gases as Geochemical Tracers, Advances in Isotope Geochemistry, 55 DOI: 10.1007/978-3-642-28836-4_4, Ó Springer-Verlag Berlin Heidelberg 2013 56 R. H. R. Stanley and W. J. Jenkins (a) Diffusivity (b) Solubility −9 x 10 8 200 Xe He 7 Ne ) Ar 6 150 He −1 Kr atm Xe ) 5 −1 −1 O2 s 2 4 100 Kr N2 D (m 3 Ne Ar , O2 N2 2 50 Kr Bunsen (ml Kg Ar , O2 Xe 1 N2 0 0 Ne , He 10 20 30 10 20 30 Temperature (C) Temperature (C) Fig. 1 a Molecular diffusivities of the noble gases, a function of temperature. Solubility values for He are oxygen, and nitrogen as a function of temperature, as from a modified version of Weiss (1971), Ne, Ar, and N2 calculated from the diffusivity values of Jahne et al. solubilities are from Hamme and Emerson (2004b), Kr (1987) and Wise and Houghton (1966). b Solubilities of solubility is from Weiss and Kyser (1978) and Xe the five noble gases, nitrogen, and oxygen in seawater as solubility is from Wood and Caputi (1966) temperature whereas the solubility of the lighter equilibrium. Additionally, He has two additional ones (He, Ne) are relatively insensitive to tem- sources. 4He is produced by nuclear reactions in perature (Hamme and Emerson 2004b; Smith and rocks,primarilyin the Uranium series. Some ofthis Kennedy 1983; Weiss 1971; Weiss and Kyser 4He enters the ocean through water-rock processes. 1978; Wood and Caputi 1966). Additionally, Additionally 3He is produced by radioactive decay during sea ice formation or melting, the lighter from atmospheric tritium. gases are favorably partitioned into ice whereas Noble gas measurements can be combined the heavier gases remain preferentially in the with dissolved biologically active gases, such as water (e.g. Hood et al. 1998). This broad range in O2 or N2, to yield quantitative insights into physicochemical characteristics leads to signifi- biogeochemical processes. O2 and N2 can be cantly different responses to physical forcing used as geochemical tracers for quantifying rates (Fig. 2). Thus, measurements of multiple noble of important biological processes such as net gases made concurrently in seawater allow one to community production and denitrification. diagnose and quantify physical processes, such as However, physical processes such as air-sea gas air-sea gas exchange, diapycnal mixing, and exchange and thermal forcing affect O2 and N2, subsurface basal glacial melting. making direct interpretation of those gas records The main source of noble gases to the ocean is difficult. Argon has a very similar solubility and from the atmosphere through the process of air-sea diffusivity to O2, and thus can serve as an abiotic gas exchange. The noble gases are usually close to analogue to O2. Thus, the difference between O2 being in equilibrium with the atmosphere, and Ar can serve as a tracer for biological pro- according to Henry Laws constants, although rapid ductivity. Additionally, Ar can be used in con- warming or cooling, ice formation or melting, and junction with nitrogen to construct basin-scale bubble injection can lead to departures from estimates of denitrification. Noble Gases in Seawater as Tracers 57 2 1 bubble injection bubble exchange glacial melting glacial increasingincreasing atmospheric salinity pressure warming 0 cooling He (%) Δ sea ice formation −1 decreasing salinity decreasing atmospheric pressure −2 −2 −1 0 1 2 ΔXe (%) Fig. 2 Schematic depicting the effect of different physical gases, different physical processes have differing effects on processes on saturation anomalies of He and Xe. Because of the gases, allowing the gases to be powerful tools for the differences in solubilities and diffusivities of the noble separating and quantifying physical processes sample is drawn, keeping the temperature of 2 Analytical Methods sample containers similar to temperature of the water (i.e. avoid letting the containers sit in the 2.1 Sample Collection sun before collecting samples since the gases in the seawater may exsolve due to warming on The standard protocol for measuring noble gases contact with the container), and carefully in seawater is to collect a sample of seawater, watching for any bubbles in tubing, neck of extract the gases from the water, and measure bottle, etc. the gases on a mass spectrometer. Water sam- The lighter noble gases are more diffusive ples are generally drawn on the deck of the ship than the heavier ones and are not well contained from Niskin bottles mounted on a CTD rosette by o-rings. If samples are collected in stainless system. It is important to draw the samples soon steel cylinders, which have o-rings in the plug after the rosette is retrieved, and immediately valves at the end of the cylinders, it is best to after the Niskin is vented for sampling, as extract the gases from the samples into alumi- exchange with the head-space created from nosilicate glass bulbs within 24–48 h of collec- drawing water from the Niskin will compromise tion (Lott 2001). If samples are stored in the integrity of the dissolved gases (Takahashi custom-made glass bottles, which contain et al. 1988). Samples of seawater can be trans- Louers-Houpert valves that have o-rings, it is ferred to copper tubes (Weiss 1968; Young and best to use valves with two o-rings, to fill the Lupton 1983), stainless steel cylinders (Lott and necks with CO2 to decrease the loss of gas Jenkins 1998), or pre-evacuated custom-made across the valves, and to analyze the samples glass bottles (Emerson et al. 1999) for storage within at most two months of sample collection (although the last is not suitable for helium (Hamme and Emerson 2004a). In contrast, studies). In all cases, great care must be taken samples are well preserved in copper tubes for when sampling to avoid bubbles entering the indefinitely long periods. sample containers. This can be achieved by In the case of stainless steel cylinders, sub- presoaking any transfer tubing that is used, sequent to sample collection, usually at-sea or in tapping on walls of sample containers as the an onshore laboratory, gases are extracted from 58 R. H. R. Stanley and W. J. Jenkins the water by essentially boiling the water in a N2 temperature (77 K) and the other at dry ice/ high-vacuum system and transferring the acetone temperature (196 K) (Sano and Takahata released gas to *25 cc aluminosilicate glass 2005), or onto a trap at liquid He temperature ampoules that can then be flame-sealed and (4 K) (Hamme and Severinghaus 2007; Sever- stored. In the laboratory, these ampoules are inghaus et al. 2003) Methods that measure all five attached to the mass spectrometer sample pro- gases from a single sample have precision of 0.3– cessing system using o-ring seals and the sample 1.0 % using a magnetic sector instrument is introduced by mechanically snapping the end (Beyerle et al. 2000) to 0.1–0.2 % using a series of the glass flame-seal (Lott and Jenkins 1998). of two automated cryogenic traps and a QMS In the case of crimped or clamped copper tube (Stanley et al. 2009a) and to 0.15–0.17 % for Ar, samples, a similar extraction procedure can be Kr and Xe only using an isotope ratio mass used on-shore, but after introduction to the spectrometer (Hamme and Severinghaus 2007; evacuated sample line, samples are stirred at Severinghaus et al.
Recommended publications
  • Identification of a Chemical Fingerprint Linking the Undeclared 2017 Release of 106Ru to Advanced Nuclear Fuel Reprocessing
    Identification of a chemical fingerprint linking the undeclared 2017 release of 106Ru to advanced nuclear fuel reprocessing Michael W. Cookea,1, Adrian Bottia, Dorian Zokb, Georg Steinhauserb, and Kurt R. Ungara aRadiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada; and bInstitute of Radioecology and Radiation Protection, Leibniz Universität Hannover, 30419 Hannover, Germany Edited by Kristin Bowman-James, University of Kansas, Lawrence, KS, and accepted by Editorial Board Member Marcetta Y. Darensbourg May 1, 2020 (received for review February 7, 2020) The undeclared release and subsequent detection of ruthenium- constitutes the identification of unique signatures. From a radiologi- 106 (106Ru) across Europe from late September to early October of cal perspective, there is none. Samples have been shown to be radi- 2017 prompted an international effort to ascertain the circum- opure and to carry the stable ruthenium isotopic signature of civilian stances of the event. While dispersion modeling, corroborated spent nuclear fuel (10), while stable elemental analysis by scanning by ground deposition measurements, has narrowed possible loca- electron microscopy and neutron activation has revealed no detect- tions of origin, there has been a lack of direct empirical evidence to able anomalies compared to aerosol filter media sampled prior to the address the nature of the release. This is due to the absence of advent of the 106Ru contaminant (1, 11). We are, then, left with the radiological and chemical signatures in the sample matrices, con- definition of a limiting case for a nuclear forensic investigation. sidering that such signatures encode the history and circumstances Fortunately, we are concerned with an element that has sig- of the radioactive contaminant.
    [Show full text]
  • Blending Hydrogen Into Natural Gas Pipeline Networks: a Review of Key Issues
    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5600-51995 March 2013 Contract No. DE-AC36-08GO28308 Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Prepared under Task No. HT12.2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5600-51995 Golden, Colorado 80401 March 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • Atmospheric Gases Student Handout Atmospheric Gases
    Atmospheric Gases Student Handout Atmospheric Gases Driving Question: What is our atmosphere made of? In this activity you will: 1. Explore the variety and ratio of compounds and elements that make up the Earth’s atmosphere. 2. Understand volumetric measurements of gases in the atmosphere. 3. Visually depict the composition of the atmosphere. Background Information: Understanding Concentration Measurements In this activity, we will investigate the gas composition of our planet’s atmosphere. We use percentages to represent units of gas composition. A percent (%) is equivalent to 1 part out of 100 equal units. 1% = 1 part out of 100 For smaller concentrations scientists use parts per million (ppm) to represent concentrations of gases (or pollutants) in the atmosphere). One ppm is equivalent to 1 part out of 1,000,000 if the volume being measured is separated into 1,000,000 equal units. 1 ppm = 1 part out of 1,000,000 In this activity, you will use graph paper to represent the concentration of different gases in the atmosphere. Copyright © 2011 Environmental Literacy and Inquiry Working Group at Lehigh University Atmospheric Gases Student Handout 2 Here are some examples to help visualize parts per million: The common unit mg/liter is equal to ppm concentration Four drops of ink in a 55-gallon barrel of water would produce an "ink concentration" of 1 ppm. 1 12-oz can of soda pop in a 30-meter swimming pool 1 3-oz chocolate bar on a football field Atmospheric Composition Activity You will be creating a graphic model of the atmosphere composition using the Atmospheric Composition of Clean Dry Air activity sheet.
    [Show full text]
  • Tracer Applications of Noble Gas Radionuclides in the Geosciences
    To be published in Earth-Science Reviews Tracer Applications of Noble Gas Radionuclides in the Geosciences (August 20, 2013) Z.-T. Lua,b, P. Schlosserc,d, W.M. Smethie Jr.c, N.C. Sturchioe, T.P. Fischerf, B.M. Kennedyg, R. Purtscherth, J.P. Severinghausi, D.K. Solomonj, T. Tanhuak, R. Yokochie,l a Physics Division, Argonne National Laboratory, Argonne, Illinois, USA b Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, USA c Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA d Department of Earth and Environmental Sciences and Department of Earth and Environmental Engineering, Columbia University, New York, USA e Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, USA f Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, USA g Center for Isotope Geochemistry, Lawrence Berkeley National Laboratory, Berkeley, USA h Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland i Scripps Institution of Oceanography, University of California, San Diego, USA j Department of Geology and Geophysics, University of Utah, Salt Lake City, USA k GEOMAR Helmholtz Center for Ocean Research Kiel, Marine Biogeochemistry, Kiel, Germany l Department of Geophysical Sciences, University of Chicago, Chicago, USA Abstract 81 85 39 Noble gas radionuclides, including Kr (t1/2 = 229,000 yr), Kr (t1/2 = 10.8 yr), and Ar (t1/2 = 269 yr), possess nearly ideal chemical and physical properties for studies of earth and environmental processes. Recent advances in Atom Trap Trace Analysis (ATTA), a laser-based atom counting method, have enabled routine measurements of the radiokrypton isotopes, as well as the demonstration of the ability to measure 39Ar in environmental samples.
    [Show full text]
  • Midterm Examination #3, December 11, 2015 1. (10 Point
    NAME: NITROMETHANE CHEMISTRY 443, Fall, 2015(15F) Section Number: 10 Midterm Examination #3, December 11, 2015 Answer each question in the space provided; use back of page if extra space is needed. Answer questions so the grader can READILY understand your work; only work on the exam sheet will be considered. Write answers, where appropriate, with reasonable numbers of significant figures. You may use only the "Student Handbook," a calculator, and a straight edge. 1. (10 points) Argon is a noble gas. For all practical purposes it can be considered an ideal gas. DO NOT WRITE Calculate the change in molar entropy of argon when it is subjected to a process in which the molar IN THIS SPACE volume is tripled and the temperature is simultaneously changed from 300 K to 400 K. 1,2 _______/25 This is a straightforward application of thermodynamics: 3,4 _______/25 = = + = + 2 2 2 2 5 _______/20 Identifying ∆the derivative� and� doing1 � the� integrals � 1give� � �1 � � �1 3 3 400 6,7 _______/20 = + = 8.3144349 + 8.3144349 2 2 1 2 300 8 _______/10 where the∆ heat capacity � 1� at constant � 1volume� of a monatomic �ideal� gas is� . � � � 3 ============= = 9.13434 + 3.58786 = 12.722202 9 _______/5 ∆ (Extra credit) ============= TOTAL PTS 2. (15 points) Benzene ( • = 96.4 ) and toluene ( • = 28.9 ) form a nearly ideal solution over a wide range. For purposes of this question, you may assume that a solution of the two is ideal. (a) What is the total vapor pressure above a solution containing 5.00 moles of benzene and 3.25 moles of toluene? 5.00 3.25 = • + • = (96.4 ) + (28.9 ) 5.00 + 3.25 5.00 + 3.25 = 58.4 + 11.4 = 69.8 (b) What is mole fraction of benzene in the vapor above this solution? .
    [Show full text]
  • The Oganesson Odyssey Kit Chapman Explores the Voyage to the Discovery of Element 118, the Pioneer Chemist It Is Named After, and False Claims Made Along the Way
    in your element The oganesson odyssey Kit Chapman explores the voyage to the discovery of element 118, the pioneer chemist it is named after, and false claims made along the way. aving an element named after you Ninov had been dismissed from Berkeley for is incredibly rare. In fact, to be scientific misconduct in May5, and had filed Hhonoured in this manner during a grievance procedure6. your lifetime has only happened to Today, the discovery of the last element two scientists — Glenn Seaborg and of the periodic table as we know it is Yuri Oganessian. Yet, on meeting Oganessian undisputed, but its structure and properties it seems fitting. A colleague of his once remain a mystery. No chemistry has been told me that when he first arrived in the performed on this radioactive giant: 294Og halls of Oganessian’s programme at the has a half-life of less than a millisecond Joint Institute for Nuclear Research (JINR) before it succumbs to α -decay. in Dubna, Russia, it was unlike anything Theoretical models however suggest it he’d ever experienced. Forget the 2,000 ton may not conform to the periodic trends. As magnets, the beam lines and the brand new a noble gas, you would expect oganesson cyclotron being installed designed to hunt to have closed valence shells, ending with for elements 119 and 120, the difference a filled 7s27p6 configuration. But in 2017, a was Oganessian: “When you come to work US–New Zealand collaboration predicted for Yuri, it’s not like a lab,” he explained. that isn’t the case7.
    [Show full text]
  • Periodic Trends in the Main Group Elements
    Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds.
    [Show full text]
  • Equation of State for Natural Gas Systems
    Equation of State for Natural Gas Systems. m A thesis submitted to the University of London for the Degree of Doctor of Philosophy and for the Diploma of Imperial College by Jorge Francisco Estela-Uribe. Department of Chemical Engineering and Chemical Technology Imperial College of Science, Technology and Medicine. Prince Consort Road, SW7 2BY London, United Kingdom. March 1999. Acknowledgements. I acknowledge and thank the sponsorship I received from the following institutions: Fundacion para el Futuro de Colombia, Colfiituro; Pontificia Universidad Javeriana, Seccional Cali; the Committee of Vice-Chancellors and Principal of the Universities of the United Kingdom and Ruhrgas AG. Without their economic support my stay in London and the completion of this work would have been impossible. My greatest gratitude goes to my Supervisor, Dr Martin Trusler. His expert guidance and advice were always fundamental for the success of this research. He helped me with abundant patience and undying commitment and his optimism regarding the possibilities of the project was always inspirational for me. He also worked shoulder by shoulder with me on solving a good number of experimental problems, some of them were just cases of bad luck and for some prominent ones, I was the only one to blame. Others helped me willingly as well. My labmate, Dr Andres Estrada-Alexanders, was quite helpful in the beginning of my research, and has carried on being so. He not only did do well in his role as the senior student in the laboratory, but also became a good fnend of mine. Another good friend of mine, Dr Abdel Fenghour, has always been an endless source of help and information.
    [Show full text]
  • Appendix a Basics of Landfill
    APPENDIX A BASICS OF LANDFILL GAS Basics of Landfill Gas (Methane, Carbon Dioxide, Hydrogen Sulfide and Sulfides) Landfill gas is produced through bacterial decomposition, volatilization and chemical reactions. Most landfill gas is produced by bacterial decomposition that occurs when organic waste solids, food (i.e. meats, vegetables), garden waste (i.e. leaf and yardwaste), wood and paper products, are broken down by bacteria naturally present in the waste and in soils. Volatilization generates landfill gas when certain wastes change from a liquid or solid into a vapor. Chemical reactions occur when different waste materials are mixed together during disposal operations. Additionally, moisture plays a large roll in the speed of decomposition. Generally, the more moisture, the more landfill gas is generated, both during the aerobic and anaerobic conditions. Landfill Gas Production and Composition: In general, during anaerobic conditions, the composition of landfill gas is approximately 50 percent methane and 50 percent carbon dioxide with trace amounts (<1 percent) of nitrogen, oxygen, hydrogen sulfide, hydrogen, and nonmethane organic compounds (NMOCs). The more organic waste and moisture present in a landfill, the more landfill gas is produced by the bacteria during decomposition. The more chemicals disposed in a landfill, the more likely volatile organic compounds and other gasses will be produced. The Four Phases of Bacterial Decomposition: “Bacteria decompose landfill waste in four phases. The composition of the gas produced changes with each of the four phases of decomposition. Landfills often accept waste over a 20-to 30-year period, so waste in a landfill may be undergoing several phases of decomposition at once.
    [Show full text]
  • Natural Gas Compressibility Factor Correlation Evaluation for Niger Delta Gas Fields
    IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 6, Issue 4 (Jul. - Aug. 2013), PP 01-10 www.iosrjournals.org Natural Gas Compressibility Factor Correlation Evaluation for Niger Delta Gas Fields Obuba, J*.1, Ikiesnkimama, S.S.2, Ubani, C. E.3, Ekeke, I. C.4 12Petroleum/Gas, Engineering/ University of Port Harcourt, Nigeria 3Department of Petroleum and Gas Engineering University of Port Harcourt Port Harcourt, Rivers State. 4Department of Chemical Engineering Federal University of Technology Oweri, Imo State Nigeria. Abstract: Natural gas compressibility factor (Z) is key factor in gas industry for natural gas production and transportation. This research presents a new natural gas compressibility factor correlation for Niger Delta gas fields. First, gas properties databank was developed from twenty-two (22) laboratory Gas PVT Reports from Niger Delta gas fields. Secondly, the existing natural gas compressibility factor correlations were evaluated against the developed database (comprising 22 gas reservoirs and 223 data sets). The developed new correlation was used to compute the z-factors for the four natural gas reservoir system of dry gas, solution gas, rich CO2 gas and rich condensate gas reservoirs, and the results were compared with some exiting correlations. The performances of the developed correction indicated better statistical ranking, good graph trends and best crossplots parity line when compared with correlations evaluated. From the results the new developed correlation has the least standard error and absolute error of (stdEr) of 1.461% and 1.669% for dry gas; 6.661% and 1.674% for solution; 7.758% and 6.660% for rich CO2 and 7.668% and 6.661 % for rich condensate gas reservoirs.
    [Show full text]
  • The Noble Gases
    INTERCHAPTER K The Noble Gases When an electric discharge is passed through a noble gas, light is emitted as electronically excited noble-gas atoms decay to lower energy levels. The tubes contain helium, neon, argon, krypton, and xenon. University Science Books, ©2011. All rights reserved. www.uscibooks.com Title General Chemistry - 4th ed Author McQuarrie/Gallogy Artist George Kelvin Figure # fig. K2 (965) Date 09/02/09 Check if revision Approved K. THE NOBLE GASES K1 2 0 Nitrogen and He Air P Mg(ClO ) NaOH 4 4 2 noble gases 4.002602 1s2 O removal H O removal CO removal 10 0 2 2 2 Ne Figure K.1 A schematic illustration of the removal of O2(g), H2O(g), and CO2(g) from air. First the oxygen is removed by allowing the air to pass over phosphorus, P (s) + 5 O (g) → P O (s). 20.1797 4 2 4 10 2s22p6 The residual air is passed through anhydrous magnesium perchlorate to remove the water vapor, Mg(ClO ) (s) + 6 H O(g) → Mg(ClO ) ∙6 H O(s), and then through sodium hydroxide to remove 18 0 4 2 2 4 2 2 the carbon dioxide, NaOH(s) + CO2(g) → NaHCO3(s). The gas that remains is primarily nitrogen Ar with about 1% noble gases. 39.948 3s23p6 36 0 The Group 18 elements—helium, K-1. The Noble Gases Were Kr neon, argon, krypton, xenon, and Not Discovered until 1893 83.798 radon—are called the noble gases 2 6 4s 4p and are noteworthy for their rela- In 1893, the English physicist Lord Rayleigh noticed 54 0 tive lack of chemical reactivity.
    [Show full text]
  • Reviewing Martian Atmospheric Noble Gas Measurements: from Martian Meteorites to Mars Missions
    geosciences Review Reviewing Martian Atmospheric Noble Gas Measurements: From Martian Meteorites to Mars Missions Thomas Smith 1,* , P. M. Ranjith 1, Huaiyu He 1,2,3,* and Rixiang Zhu 1,2,3 1 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 19 Beitucheng Western Road, Box 9825, Beijing 100029, China; [email protected] (P.M.R.); [email protected] (R.Z.) 2 Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China 3 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] (T.S.); [email protected] (H.H.) Received: 10 September 2020; Accepted: 4 November 2020; Published: 6 November 2020 Abstract: Martian meteorites are the only samples from Mars available for extensive studies in laboratories on Earth. Among the various unresolved science questions, the question of the Martian atmospheric composition, distribution, and evolution over geological time still is of high concern for the scientific community. Recent successful space missions to Mars have particularly strengthened our understanding of the loss of the primary Martian atmosphere. Noble gases are commonly used in geochemistry and cosmochemistry as tools to better unravel the properties or exchange mechanisms associated with different isotopic reservoirs in the Earth or in different planetary bodies. The relatively low abundance and chemical inertness of noble gases enable their distributions and, consequently, transfer mechanisms to be determined. In this review, we first summarize the various in situ and laboratory techniques on Mars and in Martian meteorites, respectively, for measuring noble gas abundances and isotopic ratios.
    [Show full text]