Tomasz F. Bigaj Non-Locality and Possible Worlds

Total Page:16

File Type:pdf, Size:1020Kb

Tomasz F. Bigaj Non-Locality and Possible Worlds Tomasz F. Bigaj Non-locality and Possible Worlds EPISTEMISCHE STUDIEN Schriften zur Erkenntnis- und Wissenschaftstheorie Herausgegeben von / Edited by Michael Esfeld • Stephan Hartmann • Albert Newen Band 10 / Volume 10 Tomasz F. Bigaj Non-locality and Possible Worlds A Counterfactual Perspective on Quantum Entanglement ontos verlag Frankfurt I Paris I Ebikon I Lancaster I New Brunswick Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de North and South America by Transaction Books Rutgers University Piscataway, NJ 08854-8042 [email protected] United Kingdom, Ire, Iceland, Turkey, Malta, Portugal by Gazelle Books Services Limited White Cross Mills Hightown LANCASTER, LA1 4XS [email protected] Livraison pour la France et la Belgique: Librairie Philosophique J.Vrin 6, place de la Sorbonne ; F-75005 PARIS Tel. +33 (0)1 43 54 03 47 ; Fax +33 (0)1 43 54 48 18 www.vrin.fr 2006 ontos verlag P.O. Box 15 41, D-63133 Heusenstamm www.ontosverlag.com ISBN 10: 3-938793-29-5 ISBN 13: 978-3-938793-29-9 2006 No part of this book may be reproduced, stored in retrieval systems or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use of the purchaser of the work Printed on acid-free paper ISO-Norm 970-6 FSC-certified (Forest Stewardship Council) This hardcover binding meets the International Library standard Printed in Germany by buch bücher dd ag Table of Contents Introduction 9 0.1 Outline of the book 13 Chapter 1 Why does the quantum world have to be non-local? 23 1.1 Introduction: realism and locality 23 1.2 The EPR argument: incompleteness or non-locality? 29 1.3 Bell’s theorem and the plight of locality 33 1.4 Generalized Bell’s theorem 39 1.5 Outcome-locality and parameter-locality 47 1.5.1 Non-locality and non-separability 59 1.6 A provisional taxonomy of quantum non-localities 62 Chapter 2 Possible-world semantics for counterfactuals 69 2.1 Stalnaker’s counterfactual logic and the law of conditional excluded middle 72 2.2 Lewis’s counterfactual semantics 77 2.2.1 True-antecedent counterfactuals 81 2.3 Relative similarity between possible worlds 85 2.3.1 Lewis’s similarity ranking 88 2.3.2 Similarity ranking and the EPR correlations 93 2.3.3 Time-asymmetry of counterfactuals and the role of miracles 96 2.4 Conclusions 101 Chapter 3 A counterfactual version of Bell’s theorem and its criticism 105 3.1 Counterfactual strengthening of Bell’s theorem—a first approximation 106 3.2 CHSH inequality across possible worlds 111 3.3 The Matching Condition and the semantics of spatiotemporal counterfactuals 116 3.4 Alternative semantics of quantum counterfactuals 127 3.5 Locality and “might” counterfactuals 132 Chapter 4 The GHZ and Hardy theorems counterfactually strengthened—what went wrong? 141 4.1 The GHZ case 143 4.1.1 Initial assumptions 143 4.1.2 First steps of the proof 147 4.1.3 A semantic model for the GHZ counterfactuals 149 4.1.4 Elimination of Eliminated Conditions 151 4.1.5 Deriving the contradiction 154 4.1.6 Can the proof be rectified? 157 4.2 The Hardy case 160 4.2.1 Physical background 160 4.2.2 The Hardy case and EEC 163 4.2.3 Stapp’s 1997 proof 165 4.2.4 Locality condition LOC2 169 4.2.5 Possible justifications of LOC2 173 4.2.6 Einstein’s criterion of reality 176 4.2.7 Compatibility of LOC1 and quantum precepts 180 4.2.8 Conclusions 182 Chapter 5 Two interpretations of spatiotemporal counterfactuals 185 5.1 “Asymmetry by fiat” solution revived 185 5.2 Generalization of (C2) 190 5.3 Troubles with generalizing (C2) 197 5.4 Generalization of (C2) achieved—a step beyond Lewis’s orthodoxy 204 5.5. The application to the GHZ case 209 5.6 A comparison of the two notions of counterfactuals 219 Chapter 6 Locality explained and the EPR-Bell theorems reconsidered 225 6.1 Two variants of counterfactual locality 226 6.2 Semantic condition of locality and the equivalence theorem 231 6.3 The counterfactual EPR argument at last 236 6.3.1 Basic assumptions 236 6.3.2 The EPR argument and (C1) 239 6.3.3 The failure of the EPR argument under (C2) 246 6.4 Quantum dispositions or elements of reality? 249 6.5 Bell’s theorem with counterfactual hidden variables 255 6.6 Generalized locality condition and counterfactual outcome- dependence 264 Chapter 7 Comparisons and conclusions 271 Bibliography 283 Index 291 INTRODUCTION his book is primarily intended as a philosophical analysis of the phe- T nomenon of non-locality that so famously (or, one may say, infamously) unfolds in quantum theory. However, the scope of the pro- posed analysis is seriously limited by the adopted research methodology. It is not the purpose of the book to present the whole gamut of conceptions of how to interpret and deal with the problem of non-local causation—the causation that seems to propagate instantaneously from place to place— that apparently crops up in the quantum-mechanical realm. Instead, we will adopt a very specific perspective which may be dubbed the “counter- factual” approach to the problem of quantum non-locality and quantum en- tanglement. Thus, the main goal of the book will be to use the logic of counterfactual conditionals, i.e. expressions of the form “If it were (had been) P, then it would be (have been) Q”, in order to shed a new light on the ontological issue of non-locality in quantum mechanics. Actually, a substantial portion of the book will be devoted to the preliminary task of constructing a logic (or logics) of counterfactuals suitable for the interpre- tative job that is called for within the foundations of quantum mechanics. Only after having satisfactory dealt with this challenge, we can venture to seek solutions to the perennial philosophical debate regarding fundamental quantum results such as various versions of Bell-like theorems, where the problem of non-locality plays a pivotal part. Resorting to non-standard logical apparatuses in the foundational analy- sis of quantum mechanics is not an entirely novel idea. There is a well- established and highly regarded method of constructing a formal theory of quantum reality called “quantum logic” which was stimulated by the works of both mathematicians (G. Birkhoff, J. von Neumann) and philosophers (H. Reichenbach).1 The most important feature of these logical ap- 1 Classical texts on the subject of quantum logic are (Birkhoff, von Neumann 1936) and (Reichenbach 1944). A particularly nice and elegant introduction to various versions of quantum logic can be found in (Greechie, Gudder 1973). Other intro- ductions to quantum logic that particularly accentuate its philosophical importance are (Putnam 1969), (van Fraassen 1973), (Haack 1996, chapter 8), (Bub 1997, chapter 1). For the recent developments of this subject see (Dalla Chiara et al. 2004). I took issue with some claims of Birkoff and von Neumann’s version of quantum logic in (Bigaj 2001). Tomasz F. Bigaj • Non-locality and Possible Worlds proaches—for there is actually more than one quantum logic—is that they are all underpinned by the strong conviction that the peculiar properties of quantum reality call for some change in classical logic. The proposed non- classical novelties of quantum logics range from multi-valency to the rejec- tion of the law of distributivity. However, the task of constructing a counterfactual logic that would be helpful for describing quantum- mechanical phenomena is to be differentiated from these ambitious pro- grams. The counterfactual approach to quantum mechanics does not aim to correct classical logic, but rather to extend its expressive powers by intro- ducing some new non-truth-functional operators, similarly to the way modal logics extend, but do not reject classical logic by adding modal op- erators of possibility and necessity. There are, in my opinion, three main reasons why counterfactual condi- tionals may prove themselves useful in the analysis of non-local quantum causality. The first reason is that causality itself admits a clear and intuitive analysis in terms of counterfactuals. It is commonly accepted that there are two predominant conceptions of causality: regularist and singularist. The regularist approach tries to reduce causation to a regular succession of events, thus subsuming singular causal agents under general types of events (“phenomena”, in some terminology) and appealing to the general laws that connect these types of events. An alternative approach, famously developed by David Lewis, views causality as a relation between concrete token-events: this particular event e, as occurring in the actually obtaining circumstances, is a cause of another concrete event e′. Causation under- stood in such a way need not be based on regularities; another instance of event e in different circumstances may not produce an effect of the same type as e′. The key to the relation between the cause and the effect in this case lies in counterfactuality: we say that if the cause e had not occurred in those circumstances, the effect e′ would not have happened. Even without an excursion into the analysis of causation it should be clear that counterfactual conditionals lend themselves naturally to the task of expressing the idea of the lack of influence between events which is so crucial to the notion of locality.
Recommended publications
  • Arxiv:1607.01025V2
    Observables, gravitational dressing, and obstructions to locality and subsystems William Donnelly∗ and Steven B. Giddings† Department of Physics, University of California, Santa Barbara, CA 93106 Quantum field theory – our basic framework for describing all nongravitational physics – conflicts with general relativity: the latter precludes the standard definition of the former’s essential principle of locality, in terms of commuting local observables. We examine this conflict more carefully, by investigating implications of gauge (diffeomorphism) invariance for observables in gravity. We prove a dressing theorem, showing that any operator with nonzero Poincar´echarges, and in particular any compactly supported operator, in flat-spacetime quantum field theory must be gravitationally dressed once coupled to gravity, i.e. it must depend on the metric at arbitrarily long distances, and we put lower bounds on this nonlocal dependence. This departure from standard locality occurs in the most severe way possible: in perturbation theory about flat spacetime, at leading order in Newton’s constant. The physical observables in a gravitational theory therefore do not organize themselves into local commuting subalgebras: the principle of locality must apparently be reformulated or abandoned, and in fact we lack a clear definition of the coarser and more basic notion of a quantum subsystem of the Universe. We discuss relational approaches to locality based on diffeomorphism-invariant nonlocal operators, and reinforce arguments that any such locality is state-dependent and approximate. We also find limitations to the utility of bilocal diffeomorphism- invariant operators that are considered in cosmological contexts. An appendix provides a concise review of the canonical covariant formalism for gravity, instrumental in the discussion of Poincar´e charges and their associated long-range fields.
    [Show full text]
  • A Non-Technical Explanation of the Bell Inequality Eliminated by EPR Analysis Eliminated by Bell A
    Ghostly action at a distance: a non-technical explanation of the Bell inequality Mark G. Alford Physics Department, Washington University, Saint Louis, MO 63130, USA (Dated: 16 Jan 2016) We give a simple non-mathematical explanation of Bell's inequality. Using the inequality, we show how the results of Einstein-Podolsky-Rosen (EPR) experiments violate the principle of strong locality, also known as local causality. This indicates, given some reasonable-sounding assumptions, that some sort of faster-than-light influence is present in nature. We discuss the implications, emphasizing the relationship between EPR and the Principle of Relativity, the distinction between causal influences and signals, and the tension between EPR and determinism. I. INTRODUCTION II. OVERVIEW To make it clear how EPR experiments falsify the prin- The recent announcement of a \loophole-free" observa- ciple of strong locality, we now give an overview of the tion of violation of the Bell inequality [1] has brought re- logical context (Fig. 1). For pedagogical purposes it is newed attention to the Einstein-Podolsky-Rosen (EPR) natural to present the analysis of the experimental re- family of experiments in which such violation is observed. sults in two stages, which we will call the \EPR analy- The violation of the Bell inequality is often described as sis", and the \Bell analysis" although historically they falsifying the combination of \locality" and \realism". were not presented in exactly this form [4, 5]; indeed, However, we will follow the approach of other authors both stages are combined in Bell's 1976 paper [2]. including Bell [2{4] who emphasize that the EPR results We will concentrate on Bohm's variant of EPR, the violate a single principle, strong locality.
    [Show full text]
  • Key Points for Understanding of Unruh and Hawking Effects
    Key points for understanding of Unruh and Hawking effects Peter Slavov∗ Sofia University “St. Kliment Ohridski”, Theoretical Physics Department, August 25, 2021 Abstract The present paper stress on the distinction between the two idealizations – eternal (pri- mordial) black hole and a black hole formed in a process of gravitation collapse. Such a distinction is an essential condition for a better understanding of the relation between Unruh effect and Hawking effect. The fundamental character of the discussions inside requires a preferred orientation to results of the local QFT in curved space-time. 1 Introduction The meeting between the quantum physics and a space-time horizon is one of the most untrivial things in the physics. A serious challenge to common sense, a test about how we understand the basic physical concepts and notions like space-time, causality, locality, dynamics, evolution, quantization, temperature, information, entropy, energy, mass, particle. In early years of General Relativity (GR) black hole (BH) has been an exotic feature of causality structure of the space-time. After obtaining Kerr’s solution of Einstein–Hilbert’s equations in 1963, the development of BH physics starts growing up as a separate discipline in gravitational science fruitful for many new results. The Golden Age of this area of research was a highest pilotage in theoretical and mathematical physics. It consist of a few number of important theorems coming after a deep study of gravity solutions with symmetries and also of a brilliant (skillfully) defined system of basic notions leading to outstanding physical results (4 lows of BH mechanics [BCH1973] and Smarr’s formula [S1973]) despite (regardless of) the difficulties in the physical interpretation and the conflict with common sense.
    [Show full text]
  • The Mathematical Structure of Non-Locality & Contextuality
    The Mathematical Structure of Non-locality & Contextuality Shane Mansfield Wolfson College University of Oxford A thesis submitted for the degree of Doctor of Philosophy Trinity Term 2013 To my family. Acknowledgements I would like to thank my supervisors Samson Abramsky and Bob Coecke for taking me under their wing, and for their encouragement and guidance throughout this project; my collaborators Samson Abramsky, Tobias Fritz and Rui Soares Barbosa, who have contributed to some of the work contained here; and all of the members of the Quantum Group, past and present, for providing such a stimulating and colourful environment to work in. I gratefully acknowledge financial support from the National University of Ireland Travelling Studentship programme. I'm fortunate to have many wonderful friends, who have played a huge part in making this such an enjoyable experience and who have been a great support to me. A few people deserve a special mention: Rui Soares Barbosa, who caused me to and kept me from `banging two empty halves of coconut together' at various times, and who very generously proof-read this dissertation; Daniel `The Font of all Knowledge' Corbett; Tahir Mansoori, who looked after me when I was laid up with a knee injury; mo chara dh´ılis,fear m´orna Gaeilge, Daith´ı O´ R´ıog´ain;Johan Paulsson, my companion since Part III; all of my friends at Wolfson College, you know who you are; Alina, Michael, Jon & Pernilla, Matteo; Bowsh, Matt, Lewis; Ant´on,Henry, Vincent, Joe, Ruth, the Croatians; Jerry & Joe at the lodge; the Radish, Ray; my flatmates; again, the entire Quantum Group, past and present; the Cambridge crew, Raph, Emma & Marion; Colm, Dave, Goold, Samantha, Steve, Tony and the rest of the UCC gang; the veteran Hardy Bucks, Rossi, Diarmuid & John, and the Abbeyside lads; Brendan, Cormac, and the organisers and participants of the PSM.
    [Show full text]
  • Arxiv:1707.00609V2 [Quant-Ph] 3 Oct 2018
    Bohm's approach to quantum mechanics: Alternative theory or practical picture? A. S. Sanz∗ Department of Optics, Faculty of Physical Sciences, Universidad Complutense de Madrid, Pza. Ciencias 1, Ciudad Universitaria E-28040 Madrid, Spain Since its inception Bohmian mechanics has been generally regarded as a hidden-variable theory aimed at providing an objective description of quantum phenomena. To date, this rather narrow conception of Bohm's proposal has caused it more rejection than acceptance. Now, after 65 years of Bohmian mechanics, should still be such an interpretational aspect the prevailing appraisal? Why not favoring a more pragmatic view, as a legitimate picture of quantum mechanics, on equal footing in all respects with any other more conventional quantum picture? These questions are used here to introduce a discussion on an alternative way to deal with Bohmian mechanics at present, enhancing its aspect as an efficient and useful picture or formulation to tackle, explore, describe and explain quantum phenomena where phase and correlation (entanglement) are key elements. This discussion is presented through two complementary blocks. The first block is aimed at briefly revisiting the historical context that gave rise to the appearance of Bohmian mechanics, and how this approach or analogous ones have been used in different physical contexts. This discussion is used to emphasize a more pragmatic view to the detriment of the more conventional hidden-variable (ontological) approach that has been a leitmotif within the quantum foundations. The second block focuses on some particular formal aspects of Bohmian mechanics supporting the view presented here, with special emphasis on the physical meaning of the local phase field and the associated velocity field encoded within the wave function.
    [Show full text]
  • Article (Published Version)
    Article All quantum states useful for teleportation are nonlocal resources CAVALCANTI, Daniel, et al. Abstract Understanding the relation between the different forms of inseparability in quantum mechanics is a longstanding problem in the foundations of quantum theory and has implications for quantum information processing. Here we make progress in this direction by establishing a direct link between quantum teleportation and Bell nonlocality. In particular, we show that all entangled states which are useful for teleportation are nonlocal resources, i.e., lead to deterministic violation of Bell's inequality. Our result also extends the phenomenon of superactivation of quantum nonlocality, recently proven by C. Palazuelos [Phys. Rev. Lett. 109, 190401 (2012)], and suggests that the latter might in fact be more general than initially thought. Reference CAVALCANTI, Daniel, et al. All quantum states useful for teleportation are nonlocal resources. Physical Review. A, 2013, vol. 87, no. 4 DOI : 10.1103/PhysRevA.87.042104 Available at: http://archive-ouverte.unige.ch/unige:36420 Disclaimer: layout of this document may differ from the published version. 1 / 1 PHYSICAL REVIEW A 87, 042104 (2013) All quantum states useful for teleportation are nonlocal resources Daniel Cavalcanti,1 Antonio Ac´ın,2,3 Nicolas Brunner,4,5 and Tamas´ Vertesi´ 6 1Centre for Quantum Technologies, University of Singapore, 117542, Singapore 2Institut de Ciencies Fotoniques, 08860 Castelldefels (Barcelona), Spain 3Institucio´ Catalana de Recerca i Estudis Avanc¸ats, Lluis Companys 23, 08010 Barcelona, Spain 4H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom 5Departement´ de Physique Theorique,´ Universite´ de Geneve,` 1211 Geneve,` Switzerland 6Institute for Nuclear Research, Hungarian Academy of Sciences, P.O.
    [Show full text]
  • 1 Photon Statistics at Beam Splitters: an Essential Tool in Quantum Information and Teleportation
    1 Photon statistics at beam splitters: an essential tool in quantum information and teleportation GREGOR WEIHS and ANTON ZEILINGER Institut f¨ur Experimentalphysik, Universit¨at Wien Boltzmanngasse 5, 1090 Wien, Austria 1.1 INTRODUCTION The statistical behaviour of photons at beam splitters elucidates some of the most fundamental quantum phenomena, such as quantum superposition and randomness. The use of beam splitters was crucial in the development of such early interferometers as the Michelson-Morley interferometer, the Mach- Zehnder interferometer and others for light. The most generally discussed beam splitter is the so-called half-silvered mirror. It was apparently originally considered to be a mirror in which the reflecting metallic layer is so thin that only half of the incident light is reflected, the other half being transmitted, splitting an incident beam into two equal parts. Today beam splitters are no longer constructed in this way, so it might be more appropriate to call them semi-reflecting beam splitters. Unless otherwise noted, we always consider in this paper a beam splitter to be semi-reflecting. While from the point of view of classical physics a beam splitter is a rather simple device and its physical understanding is obvious, its operation becomes highly non-trivial when we consider quantum behaviour. Therefore the questions we ask and discuss in this paper are very simply as follows: What happens to an individual particle incident on a semi-reflecting beam splitter? What will be the behaviour of two particle incidents simultaneously on a beam splitter? How can the behaviour of one- or two-particle systems in a series of beam splitters like a Mach-Zehnder interferometer be understood? i ii Rather unexpectedly it has turned out that, in particular, the behaviour of two-particle systems at beam splitters has become the essential element in a number of recent quantum optics experiments, including quantum dense coding, entanglement swapping and quantum teleportation.
    [Show full text]
  • 16 Multi-Photon Entanglement and Quantum Non-Locality
    16 Multi-Photon Entanglement and Quantum Non-Locality Jian-Wei Pan and Anton Zeilinger We review recent experiments concerning multi-photon Greenberger–Horne– Zeilinger (GHZ) entanglement. We have experimentally demonstrated GHZ entanglement of up to four photons by making use of pulsed parametric down- conversion. On the basis of measurements on three-photon entanglement, we have realized the first experimental test of quantum non-locality following from the GHZ argument. Not only does multi-particle entanglement enable various fundamental tests of quantum mechanics versus local realism, but it also plays a crucial role in many quantum-communication and quantum- computation schemes. 16.1 Introduction Ever since its introduction in 1935 by Schr¨odinger [1] entanglement has occupied a central position in the discussion of the non-locality of quantum mechanics. Originally the discussion focused on the proposal by Einstein, Podolsky and Rosen (EPR) of measurements performed on two spatially sep- arated entangled particles [2]. Most significantly John Bell then showed that certain statistical correlations predicted by quantum physics for measure- ments on such two-particle systems cannot be understood within a realistic picture based on local properties of each individual particle – even if the two particles are separated by large distances [3]. An increasing number of experiments on entangled particle pairs having confirmed the statistical predictions of quantum mechanics [4–6] and have thus provided increasing evidence against local realistic theories. However, one might find some comfort in the fact that such a realistic and thus classical picture can explain perfect correlations and is only in conflict with statistical predictions of the theory.
    [Show full text]
  • 9 Fundamental Nonlocality
    i i “proc11” — 2011/12/18 — 20:08 — page 103 — #113 i i BLED WORKSHOPS Proceedings to the 14th Workshop IN PHYSICS What Comes Beyond ::: (p. 103) VOL. 12, NO. 2 Bled, Slovenia, July 11-21, 2011 9 Fundamental Nonlocality A. Kleppe? SACT, Stensgt. 40 B, Oslo, Norway Abstract. According to the Random Dynamics approach the structured physical reality that we observe emerges from a fundamentally chaotic and (almost) random primal layer. Properties that we take for granted, like space and time, causality and locality, are all derived. A mild nonlocality is however believed to remain even after the introduction of locality, but this (classical) nonlocality is very different from the quantum nonlocality discussed by Einstein, Rosen, Podolsky, as well as by John Bell. How to get to grips with the classical nonlocality of Random Dynamics, and how is it related to quantum nonlocality? 9.1 Introduction Locality is a property that is mostly taken for granted in field theory. Perhaps that is the reason why it actually means so seldom is discussed at great length. We usually think of locality in terms of information being localized, and propagating from one spacetime point to another by at most the speed of light. Nonlocality, on the other hand, refers to a situation where information can spread out ”instantaneously” over a large distance. In the Random Dynamics approach[1], locality is not perceived as fundamental. The reason is that the primal Random Dynamics ”world machinery” M is a very general, random mathematical structure which merely contains non-identical elements and some set-theoretical notions.
    [Show full text]
  • EPR Paradox, Nonlocality, and Entanglement in Multi-Qubit Systems
    Wilfrid Laurier University Scholars Commons @ Laurier Theses and Dissertations (Comprehensive) 2016 EPR Paradox, Nonlocality, and Entanglement in Multi-qubit Systems Raja Emlik [email protected] Follow this and additional works at: https://scholars.wlu.ca/etd Part of the Quantum Physics Commons Recommended Citation Emlik, Raja, "EPR Paradox, Nonlocality, and Entanglement in Multi-qubit Systems" (2016). Theses and Dissertations (Comprehensive). 1853. https://scholars.wlu.ca/etd/1853 This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. EPR Paradox, Nonlocality, and Entanglement in Multi-qubit Systems By Raja Muftah Emlik ID No. 145822450 Supervisor: Dr. Shohini Ghose Associate Professor Department of Physics and Computer Science A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in Mathematics Department of Mathematics Wilfrid Laurier University, Waterloo, Ontario, Canada Summer 2016 Abstract Bell inequalities were formulated by John Bell to test the possible violation of local realistic theories by quantum mechanical systems. It was shown that entangled quantu- m states of multiple particles violate various Bell’s inequalities. This proved that quan- tum mechanics allows correlations between spatially separated systems that have no classical analogue. The main focus of this work is to investigate genuine multiqubit non-locality in families of entangled 3 and 4-qubit pure states by studying a Bell-type inequality that is violated only if all qubits are non-locally correlated.
    [Show full text]
  • Historical and Interpretative Aspects of Quantum Mechanics: a Physicists’ Naive Approach∗
    Condensed Matter Physics 2006, Vol. 9, No 2(46), pp. 319–341 Historical and interpretative aspects of quantum mechanics: a physicists’ naive approach∗ B.Berche, C.Chatelain, C.Dufour, T.Gourieux, D.Karevski Groupe M, Laboratoire de Physique des Materiaux,´ UMR CNRS 7556, Universite´ Henri Poincare,´ Nancy 1, F–54506 Vandœuvre les Nancy Cedex, France Received April 10, 2006, in final form April 17, 2006 Many theoretical predictions derived from quantum mechanics have been confirmed experimentally for the last 80 years. However, interpretative aspects have long been subject to debate. Among them, the question of the existence of hidden variables is still open. We review these questions, paying special attention to his- torical aspects, and argue that one may definitively exclude local realism based on the present experimental outcomes. Nevertheless other interpretations of Quantum Mechanics are not excluded. Key words: foundations of quantum mechanics, EPR, entanglement, hidden variables, no-go theorems, Bell inequalities, Bohm theory PACS: 01.65.+g, 01.70.+w, 03.65.Ta Contents 1 Motivations 320 2 1935: the reality assumptions in quantum mechanics 320 2.1 EPRassumptions.................................. ... 321 2.2 Incompletenessofquantummechanics . ......... 321 2.3 Bohr’sreply..................................... ... 322 2.4 Bohm’sfurtherexplanations. ........ 323 2.5 Einstein’s pointofviewonseparability . ............ 324 2.6 What orthodox physicists should accept, and what others mayreject . 324 3 On the impossibility of local hidden variables 325 3.1 Hidden-variabletheories . ........ 325 3.2 vonNeumannno-gotheorems. ..... 326 3.3 Bellinequalities................................ ...... 327 3.4 A simple illustration of Bell’s inequalities . .............. 328 4 Tests of Bell’s inequalities: from thought experiments to realistic experiments 328 4.1 OpticalvariantoftheBohmexperiment .
    [Show full text]
  • Connection Between Bell Nonlocality and Bayesian Game Theory
    ARTICLE Received 9 Nov 2012 | Accepted 24 May 2013 | Published 3 July 2013 DOI: 10.1038/ncomms3057 Connection between Bell nonlocality and Bayesian game theory Nicolas Brunner1,2 & Noah Linden3 In 1964, Bell discovered that quantum mechanics is a nonlocal theory. Three years later, in a seemingly unconnected development, Harsanyi introduced the concept of Bayesian games. Here we show that, in fact, there is a deep connection between Bell nonlocality and Bayesian games, and that the same concepts appear in both fields. This link offers interesting possi- bilities for Bayesian games, namely of allowing the players to receive advice in the form of nonlocal correlations, for instance using entangled quantum particles or more general no- signalling boxes. This will lead to novel joint strategies, impossible to achieve classically. We characterize games for which nonlocal resources offer a genuine advantage over classical ones. Moreover, some of these strategies represent equilibrium points, leading to the notion of quantum/no-signalling Nash equilibrium. Finally, we describe new types of question in the study of nonlocality, namely the consideration of nonlocal advantage given a set of Bell expressions. 1 De´partement de Physique The´orique, Universite´ de Gene`ve, 1211 Gene`ve, Switzerland. 2 H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK. 3 School of Mathematics, University of Bristol, Bristol BS8 1TW, UK. Correspondence and requests for materials should be addressed to N.B. (email: [email protected]). NATURE COMMUNICATIONS | 4:2057 | DOI: 10.1038/ncomms3057 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3057 n several occasions in the history of science, different mechanics provides a clear and indisputable advantage over areas of research, sharing a priori nothing in common classical resources, in the most general sense.
    [Show full text]