A Test of Bell's Inequality for the Undergraduate Laboratory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1607.01025V2
Observables, gravitational dressing, and obstructions to locality and subsystems William Donnelly∗ and Steven B. Giddings† Department of Physics, University of California, Santa Barbara, CA 93106 Quantum field theory – our basic framework for describing all nongravitational physics – conflicts with general relativity: the latter precludes the standard definition of the former’s essential principle of locality, in terms of commuting local observables. We examine this conflict more carefully, by investigating implications of gauge (diffeomorphism) invariance for observables in gravity. We prove a dressing theorem, showing that any operator with nonzero Poincar´echarges, and in particular any compactly supported operator, in flat-spacetime quantum field theory must be gravitationally dressed once coupled to gravity, i.e. it must depend on the metric at arbitrarily long distances, and we put lower bounds on this nonlocal dependence. This departure from standard locality occurs in the most severe way possible: in perturbation theory about flat spacetime, at leading order in Newton’s constant. The physical observables in a gravitational theory therefore do not organize themselves into local commuting subalgebras: the principle of locality must apparently be reformulated or abandoned, and in fact we lack a clear definition of the coarser and more basic notion of a quantum subsystem of the Universe. We discuss relational approaches to locality based on diffeomorphism-invariant nonlocal operators, and reinforce arguments that any such locality is state-dependent and approximate. We also find limitations to the utility of bilocal diffeomorphism- invariant operators that are considered in cosmological contexts. An appendix provides a concise review of the canonical covariant formalism for gravity, instrumental in the discussion of Poincar´e charges and their associated long-range fields. -
Quantum Noise in Quantum Optics: the Stochastic Schr\" Odinger
Quantum Noise in Quantum Optics: the Stochastic Schr¨odinger Equation Peter Zoller † and C. W. Gardiner ∗ † Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria ∗ Department of Physics, Victoria University Wellington, New Zealand February 1, 2008 arXiv:quant-ph/9702030v1 12 Feb 1997 Abstract Lecture Notes for the Les Houches Summer School LXIII on Quantum Fluc- tuations in July 1995: “Quantum Noise in Quantum Optics: the Stochastic Schroedinger Equation” to appear in Elsevier Science Publishers B.V. 1997, edited by E. Giacobino and S. Reynaud. 0.1 Introduction Theoretical quantum optics studies “open systems,” i.e. systems coupled to an “environment” [1, 2, 3, 4]. In quantum optics this environment corresponds to the infinitely many modes of the electromagnetic field. The starting point of a description of quantum noise is a modeling in terms of quantum Markov processes [1]. From a physical point of view, a quantum Markovian description is an approximation where the environment is modeled as a heatbath with a short correlation time and weakly coupled to the system. In the system dynamics the coupling to a bath will introduce damping and fluctuations. The radiative modes of the heatbath also serve as input channels through which the system is driven, and as output channels which allow the continuous observation of the radiated fields. Examples of quantum optical systems are resonance fluorescence, where a radiatively damped atom is driven by laser light (input) and the properties of the emitted fluorescence light (output)are measured, and an optical cavity mode coupled to the outside radiation modes by a partially transmitting mirror. -
A Non-Technical Explanation of the Bell Inequality Eliminated by EPR Analysis Eliminated by Bell A
Ghostly action at a distance: a non-technical explanation of the Bell inequality Mark G. Alford Physics Department, Washington University, Saint Louis, MO 63130, USA (Dated: 16 Jan 2016) We give a simple non-mathematical explanation of Bell's inequality. Using the inequality, we show how the results of Einstein-Podolsky-Rosen (EPR) experiments violate the principle of strong locality, also known as local causality. This indicates, given some reasonable-sounding assumptions, that some sort of faster-than-light influence is present in nature. We discuss the implications, emphasizing the relationship between EPR and the Principle of Relativity, the distinction between causal influences and signals, and the tension between EPR and determinism. I. INTRODUCTION II. OVERVIEW To make it clear how EPR experiments falsify the prin- The recent announcement of a \loophole-free" observa- ciple of strong locality, we now give an overview of the tion of violation of the Bell inequality [1] has brought re- logical context (Fig. 1). For pedagogical purposes it is newed attention to the Einstein-Podolsky-Rosen (EPR) natural to present the analysis of the experimental re- family of experiments in which such violation is observed. sults in two stages, which we will call the \EPR analy- The violation of the Bell inequality is often described as sis", and the \Bell analysis" although historically they falsifying the combination of \locality" and \realism". were not presented in exactly this form [4, 5]; indeed, However, we will follow the approach of other authors both stages are combined in Bell's 1976 paper [2]. including Bell [2{4] who emphasize that the EPR results We will concentrate on Bohm's variant of EPR, the violate a single principle, strong locality. -
Quantum Computation and Complexity Theory
Quantum computation and complexity theory Course given at the Institut fÈurInformationssysteme, Abteilung fÈurDatenbanken und Expertensysteme, University of Technology Vienna, Wintersemester 1994/95 K. Svozil Institut fÈur Theoretische Physik University of Technology Vienna Wiedner Hauptstraûe 8-10/136 A-1040 Vienna, Austria e-mail: [email protected] December 5, 1994 qct.tex Abstract The Hilbert space formalism of quantum mechanics is reviewed with emphasis on applicationsto quantum computing. Standardinterferomeric techniques are used to construct a physical device capable of universal quantum computation. Some consequences for recursion theory and complexity theory are discussed. hep-th/9412047 06 Dec 94 1 Contents 1 The Quantum of action 3 2 Quantum mechanics for the computer scientist 7 2.1 Hilbert space quantum mechanics ..................... 7 2.2 From single to multiple quanta Ð ªsecondº ®eld quantization ...... 15 2.3 Quantum interference ............................ 17 2.4 Hilbert lattices and quantum logic ..................... 22 2.5 Partial algebras ............................... 24 3 Quantum information theory 25 3.1 Information is physical ........................... 25 3.2 Copying and cloning of qbits ........................ 25 3.3 Context dependence of qbits ........................ 26 3.4 Classical versus quantum tautologies .................... 27 4 Elements of quantum computatability and complexity theory 28 4.1 Universal quantum computers ....................... 30 4.2 Universal quantum networks ........................ 31 4.3 Quantum recursion theory ......................... 35 4.4 Factoring .................................. 36 4.5 Travelling salesman ............................. 36 4.6 Will the strong Church-Turing thesis survive? ............... 37 Appendix 39 A Hilbert space 39 B Fundamental constants of physics and their relations 42 B.1 Fundamental constants of physics ..................... 42 B.2 Conversion tables .............................. 43 B.3 Electromagnetic radiation and other wave phenomena ......... -
Quantum Memories for Continuous Variable States of Light in Atomic Ensembles
Quantum Memories for Continuous Variable States of Light in Atomic Ensembles Gabriel H´etet A thesis submitted for the degree of Doctor of Philosophy at The Australian National University October, 2008 ii Declaration This thesis is an account of research undertaken between March 2005 and June 2008 at the Department of Physics, Faculty of Science, Australian National University (ANU), Can- berra, Australia. This research was supervised by Prof. Ping Koy Lam (ANU), Prof. Hans- Albert Bachor (ANU), Dr. Ben Buchler (ANU) and Dr. Joseph Hope (ANU). Unless otherwise indicated, the work present herein is my own. None of the work presented here has ever been submitted for any degree at this or any other institution of learning. Gabriel H´etet October 2008 iii iv Acknowledgments I would naturally like to start by thanking my principal supervisors. Ping Koy Lam is the person I owe the most. I really appreciated his approachability, tolerance, intuition, knowledge, enthusiasm and many other qualities that made these three years at the ANU a great time. Hans Bachor, for helping making this PhD in Canberra possible and giving me the opportunity to work in this dynamic research environment. I always enjoyed his friendliness and general views and interpretations of physics. Thanks also to both of you for the opportunity you gave me to travel and present my work to international conferences. This thesis has been a rich experience thanks to my other two supervisors : Joseph Hope and Ben Buchler. I would like to thank Joe for invaluable help on the theory and computer side and Ben for the efficient moments he spent improving the set-up and other innumerable tips that polished up the work presented here, including proof reading this thesis. -
What Can Quantum Optics Say About Computational Complexity Theory?
week ending PRL 114, 060501 (2015) PHYSICAL REVIEW LETTERS 13 FEBRUARY 2015 What Can Quantum Optics Say about Computational Complexity Theory? Saleh Rahimi-Keshari, Austin P. Lund, and Timothy C. Ralph Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072, Australia (Received 26 August 2014; revised manuscript received 13 November 2014; published 11 February 2015) Considering the problem of sampling from the output photon-counting probability distribution of a linear-optical network for input Gaussian states, we obtain results that are of interest from both quantum theory and the computational complexity theory point of view. We derive a general formula for calculating the output probabilities, and by considering input thermal states, we show that the output probabilities are proportional to permanents of positive-semidefinite Hermitian matrices. It is believed that approximating permanents of complex matrices in general is a #P-hard problem. However, we show that these permanents can be approximated with an algorithm in the BPPNP complexity class, as there exists an efficient classical algorithm for sampling from the output probability distribution. We further consider input squeezed- vacuum states and discuss the complexity of sampling from the probability distribution at the output. DOI: 10.1103/PhysRevLett.114.060501 PACS numbers: 03.67.Ac, 42.50.Ex, 89.70.Eg Introduction.—Boson sampling is an intermediate model general formula for the probabilities of detecting single of quantum computation that seeks to generate random photons at the output of the network. Using this formula we samples from a probability distribution of photon (or, in show that probabilities of single-photon counting for input general, boson) counting events at the output of an M-mode thermal states are proportional to permanents of positive- linear-optical network consisting of passive optical ele- semidefinite Hermitian matrices. -
Quantum Error Correction
Quantum Error Correction Sri Rama Prasanna Pavani [email protected] ECEN 5026 – Quantum Optics – Prof. Alan Mickelson - 12/15/2006 Agenda Introduction Basic concepts Error Correction principles Quantum Error Correction QEC using linear optics Fault tolerance Conclusion Agenda Introduction Basic concepts Error Correction principles Quantum Error Correction QEC using linear optics Fault tolerance Conclusion Introduction to QEC Basic communication system Information has to be transferred through a noisy/lossy channel Sending raw data would result in information loss Sender encodes (typically by adding redundancies) and receiver decodes QEC secures quantum information from decoherence and quantum noise Agenda Introduction Basic concepts Error Correction principles Quantum Error Correction QEC using linear optics Fault tolerance Conclusion Two bit example Error model: Errors affect only the first bit of a physical two bit system Redundancy: States 0 and 1 are represented as 00 and 01 Decoding: Subsystems: Syndrome, Info. Repetition Code Representation: Error Probabilities: 2 bit flips: 0.25 *0.25 * 0.75 3 bit flips: 0.25 * 0.25 * 0.25 Majority decoding Total error probabilities: With repetition code: Error Model: 0.25^3 + 3 * 0.25^2 * 0.75 = 0.15625 Independent flip probability = 0.25 Without repetition code: 0.25 Analysis: 1 bit flip – No problem! Improvement! 2 (or) 3 bit flips – Ouch! Cyclic system States: 0, 1, 2, 3, 4, 5, 6 Operators: Error model: probability = where q = 0.5641 Decoding Subsystem probability -
Quantum Interference & Entanglement
QIE - Quantum Interference & Entanglement Physics 111B: Advanced Experimentation Laboratory University of California, Berkeley Contents 1 Quantum Interference & Entanglement Description (QIE)2 2 Quantum Interference & Entanglement Pictures2 3 Before the 1st Day of Lab2 4 Objectives 3 5 Introduction 3 5.1 Bell's Theorem and the CHSH Inequality ............................. 3 6 Experimental Setup 4 6.1 Overview ............................................... 4 6.2 Diode Laser.............................................. 4 6.3 BBOs ................................................. 6 6.4 Detection ............................................... 7 6.5 Coincidence Counting ........................................ 8 6.6 Proper Start-up Procedure ..................................... 9 7 Alignment 9 7.1 Violet Beam Path .......................................... 9 7.2 Infrared Beam Path ......................................... 10 7.3 Detection Arm Angle......................................... 12 7.4 Inserting the polarization analyzing elements ........................... 12 8 Producing a Bell State 13 8.1 Mid-Lab Questions.......................................... 13 8.2 Quantifying your Bell State..................................... 14 9 Violating Bell's Inequality 15 9.1 Using the LabVIEW Program.................................... 15 9.1.1 Count Rate Indicators.................................... 15 9.1.2 Status Indicators....................................... 16 9.1.3 General Settings ....................................... 16 9.1.4 -
Quantum Retrodiction: Foundations and Controversies
S S symmetry Article Quantum Retrodiction: Foundations and Controversies Stephen M. Barnett 1,* , John Jeffers 2 and David T. Pegg 3 1 School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK 2 Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK; [email protected] 3 Centre for Quantum Dynamics, School of Science, Griffith University, Nathan 4111, Australia; d.pegg@griffith.edu.au * Correspondence: [email protected] Abstract: Prediction is the making of statements, usually probabilistic, about future events based on current information. Retrodiction is the making of statements about past events based on cur- rent information. We present the foundations of quantum retrodiction and highlight its intimate connection with the Bayesian interpretation of probability. The close link with Bayesian methods enables us to explore controversies and misunderstandings about retrodiction that have appeared in the literature. To be clear, quantum retrodiction is universally applicable and draws its validity directly from conventional predictive quantum theory coupled with Bayes’ theorem. Keywords: quantum foundations; bayesian inference; time reversal 1. Introduction Quantum theory is usually presented as a predictive theory, with statements made concerning the probabilities for measurement outcomes based upon earlier preparation events. In retrodictive quantum theory this order is reversed and we seek to use the Citation: Barnett, S.M.; Jeffers, J.; outcome of a measurement to make probabilistic statements concerning earlier events [1–6]. Pegg, D.T. Quantum Retrodiction: The theory was first presented within the context of time-reversal symmetry [1–3] but, more Foundations and Controversies. recently, has been developed into a practical tool for analysing experiments in quantum Symmetry 2021, 13, 586. -
A Topological Quantum Optics Interface
A topological quantum optics interface Sabyasachi Barik 1,2, Aziz Karasahin 3, Chris Flower 1,2, Tao Cai3 , Hirokazu Miyake 2, Wade DeGottardi 1,2, Mohammad Hafezi 1,2,3*, Edo Waks 2,3* 1Department of Physics, University of Maryland, College Park, MD 20742, USA 2Joint Quantum Institute, University of Maryland, College Park, MD 20742, USA and National Institute of Standards and Technology, Gaithersburg, MD 20899, USA 3Department of Electrical and Computer Engineering and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA *Correspondence to: [email protected] , [email protected] . Abstract : The application of topology in optics has led to a new paradigm in developing photonic devices with robust properties against disorder. Although significant progress on topological phenomena has been achieved in the classical domain, the realization of strong light-matter coupling in the quantum domain remains unexplored. We demonstrate a strong interface between single quantum emitters and topological photonic states. Our approach creates robust counter-propagating edge states at the boundary of two distinct topological photonic crystals. We demonstrate the chiral emission of a quantum emitter into these modes and establish their robustness against sharp bends. This approach may enable the development of quantum optics devices with built-in protection, with potential applications in quantum simulation and sensing. The discovery of electronic quantum Hall effects has inspired remarkable developments of similar topological phenomena in a multitude of platforms ranging from ultracold neutral atoms (1,2), to photonics (3,4) and mechanical structures (5-7). Like their electronic analogs, topological photonic states are unique in their directional transport and reflectionless propagation along the interface of two topologically distinct regions. -
Quantum Optics in Superconducting Circuits
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Quantum optics in superconducting circuits Generating, engineering and detecting microwave photons SANKAR RAMAN SATHYAMOORTHY Department of Microtechnology and Nanoscience (MC2) Applied Quantum Physics Laboratory CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2017 Quantum optics in superconducting circuits Generating, engineering and detecting microwave photons SANKAR RAMAN SATHYAMOORTHY ISBN 978-91-7597-589-4 c SANKAR RAMAN SATHYAMOORTHY, 2017 Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr. 4270 ISSN 0346-718X Technical Report MC2-362 ISSN 1652-0769 Applied Quantum Physics Laboratory Department of Microtechnology and Nanoscience (MC2) Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: +46 (0)31-772 1000 Cover: Schematic setup of an all-optical quantum processor at microwave frequencies. The insets show the proposals discussed in the thesis for the different components. Printed by Chalmers Reproservice Göteborg, Sweden 2017 Quantum optics in superconducting circuits Generating, engineering and detecting microwave photons Thesis for the degree of Doctor of Philosophy SANKAR RAMAN SATHYAMOORTHY Department of Microtechnology and Nanoscience (MC2) Applied Quantum Physics Laboratory Chalmers University of Technology ABSTRACT Quantum optics in superconducting circuits, known as circuit QED, studies the interaction of photons at microwave frequencies with artificial atoms made of Josephson junctions. Although quite young, remarkable progress has been made in this field over the past decade, especially given the interest in building a quantum computer using superconducting circuits. In this thesis based on the appended papers, we look at generation, engineering and detection of mi- crowave photons using superconducting circuits. We do this by taking advantage of the strong coupling, on-chip tunability and huge nonlinearity available in superconducting circuits. -
Quantum Computing Linear Optics Implementations
Quantum Computing Linear optics implementations PºalSunds¿y and Egil Fjeldberg Department of Physics - NTNU December 15, 2003 i "The nineteenth century was known as the machine age, the twentieth century will go down in history as the information age. I believe the twenty-¯rst century will be the quantum age." | Paul Davies (1996) "..it seems that the laws of physics present no barrier to reduc- ing the size of computers until bits are the size of atoms, and quantum behavior holds sway" | Nobel Prize winner physicist Richard Feynman (1985) ii Preface This work was carried out as a directed study at the department of Physics at the Norwegian University of Science and Technology under the guidance of Prof. Johannes Skaar from the Department of Physical Electronics. We would especially like to thanks Prof. Skaar for his assistance and source of knowledge on the subject. Also, we would like to thank Prof. Bo-Sture Skagerstam at the Department of Physics who has been a good source of inspiration within the ¯eld of Quantum Optics. PºalRoe Sunds¿y and Egil Fjeldberg NTNU, Trondheim December 2003 Contents 1 Introduction 1 1.1 Background . 1 1.2 Applications for Quantum Computers . 2 1.2.1 Shor's algorithm . 3 1.2.2 Quantum Cryptography . 3 1.2.3 Grover's algorithm . 3 1.3 Physical requirements for QC . 4 1.3.1 Constructing qubits in physical systems . 5 1.4 Outline . 6 2 Timeline of quantum computing 7 2.1 A brief history of quantum computing . 7 3 General formalism 9 3.1 Notation .