Characteristics and Source of Polycyclic Aromatic Hydrocarbons In

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics and Source of Polycyclic Aromatic Hydrocarbons In Geochemical Journal, Vol. 46, pp. 31 to 43, 2012 Characteristics and source of polycyclic aromatic hydrocarbons in the surface hydrothermal sediments from two hydrothermal fields of the Central Indian and Mid-Atlantic Ridges JIWEI LI,1,2 XIAOTONG PENG,3* HUAIYANG ZHOU,3 JIANGTAO LI,3 SHUN CHEN,3 ZIJUN WU3 and HUIQIANG YAO2 1Southwest Jiaotong University, Chengdu 610031, China 2Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 3State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China (Received March 24, 2011; Accepted November 2, 2011) The analysis of major elements and polycyclic aromatic hydrocarbons (PAHs) were carried out on surface hydrother- mal sediments collected from the Kairei hydrothermal field on the Central Indian Ridge (CIR) and the Logatchev hydro- thermal field on the Mid Atlantic Ridge (MAR). The most characteristic PAHs in the samples were the low molecular weight (LMW) analogs present in a significantly high proportion. Values of the fluoranthene/pyrene (F/P) ratio indicated that PAHs originated from a pyrolytic process. The relative abundance of phenanthrene and its alkyl homologs character- ized by the following order C0 > C1 > C2 > C3 > C4, and this result suggested that less biodegradation had occurred in the hydrothermal organic matter. However, a severe secondary oxidation or thermal loss of Benzo[a]pyrene (BaP) would have happened due to the presence of Benzo[e]pyrene (BeP) and absence of BaP in the PAHs. The hierarchical cluster analysis (HCA) showed that these samples could be grouped into four clusters, and all members in the same cluster had a similar inorganic geochemical characteristic. On the basis of canonical correspondence analysis (CCA), the PAH compositions were correlated well with those of inorganic elements. Among them, LMW PAHs such as biphenyl, naphthalene and fluorene were more related to the Talc formation environment, where the Si rich fluids meet the Mg rich seawater. These intermediate weight (IMW) PAHs such as phenanthrene, dibenzothiophene and retene showed a positively relation with metal elements (Fe, Cu and Zn), which may represent a plume fall-out environment. Lastly, the high molecular weights (HMW) PAHs including chrysene, fluoranthene and BeP showed a major positive correlation with environment of the chimney wall. These results suggest that the different molecular weight PAHs might be prone to distribute in different hydrothermal occurrence among the hydrothermal system. Keywords: polycyclic aromatic hydrocarbons, inorganic geochemical characteristic, hydrothermal sediments, Kairei hydrothermal field, Logatchev hydrothermal field carbon, and subsequently migrate to surficial sediments INTRODUCTION (Pikovskii et al., 1996; Rudenko and Kulakova, 1986; PAHs are believed to be formed under high-tempera- Chernova et al., 1999). For example, Konn and coworkers ture synthesis, incomplete burning of organic fuel or as a detected the aromatic compounds in the hydrothermal flu- result of thermal impact on organic matter (Simoneit, ids from the Rainbow and Lost city hydrothermal fields 1993, 1995; Rudenko and Kulakova, 1986; Gennadiyev in the MAR region (Konn et al., 2009), and after that, et al., 1996). They are not only the indicator of industrial through the simulation experiment, they proved that PAHs and municipal contamination (Budzinski et al., 1997), but could be formed by biomass degradation in the extremely also one of the major components of hydrotherma1 bitu- hydrothermal environment (Konn et al., 2011). Since the men (Simoneit, 1984; Kawka and Simoneit, 1990). Both first discovery of hydrothermal petroleum at the Guaymas field study and laboratory simulation indicated that these Basin in the Gulf of California in 1978 (Simoneit et al., thermogenic hydrocarbons were likely to form from the 1979), numerous studies devoted to investigation of PAHs deep in the high temperature zone within the earth crust in the hydrothermal field have been carried out. Espe- as a result of synthesis and polycondensation of simple cially, in the Escanaba Trough on the southern Gorda Ridge (Kvenvolden et al., 1986), the Middle Valley of the Juan de Fuca Ridge (Simoneit, 1994), the Red Sea *Corresponding author (e-mail: [email protected]) (Simoneit et al., 1987; Michaelis et al., 1990), the Copyright © 2012 by The Geochemical Society of Japan. Andaman Basin (Chernova et al., 2001; Venkatesan et al., 31 Logatche v Edmond Meters Meters –3000 –2800 TVG13 –3100 –3400 Legend MAR6 –3400 –3800 MAR1 Hydrothermal field Sample site CIR7 Fig. 1. Locations of sampling sites at the Kairei and Edmond hydrothermal fields in CIR and the Logatchev hydrothermal field in MAR. 2003), the Rainbow vent field (Simoneit et al., 2004; Konn By contrast, the PAHs profiles in the hydrothermal solid et al., 2009) and the Lost City hydrothermal field structures, such as sulfide deposits (Simoneit et al., 2004) (Delacour et al., 2008; Konn et al., 2009). and chimneys (Simoneit and Fetzer, 1996), are charac- These previous investigations have made a great ad- terized by high concentrations of heavy PAHs (e.g., vancement in the knowledge of modern marine hydro- coronene) and only traces of LMW PAHs. thermal organic matter and provided a large amount of Based on the analysis of sulfide deposit at the rain- useful information to compare with the ancient counter- bow hydrothermal field, Simoneit et al. (2004) suggested parts found on land. However, the spatial distribution of that the solubility of the LMW PAHs was high enough PAHs in the hydrothermal geological occurrence at mod- for them to dissolve in the fluids. This factor resulted in ern marine hydrothermal fields is still a hot topic. the HMW PAHs analogs were abundant and LMW PAHs Chernova et al. (1999) reported that sediments in the analogs were depleted in the chimney walls at the rain- tectonically active zones of central part of the Andaman bow hydrothermal field (Simoneit et al., 2004). There- basin contained 10–100 times more hydrocarbons than fore, we hypothesized that the LMW PAHs would be apt pelagic sediments of the deep water basins in Indian to dissolve in the venting fluid and be transported out of Ocean, and concluded that the high levels of LMW ana- the hydrothermal chimney to the hydrothermal sediment logs PAHs, including naphthalene, phenanthrene and bi- around the hydrothermal deposit, whereas the HMW com- phenyl, in the deformation zone were associated with the ponents would be entrapped or redeposited from high tem- hydrothermal process. Venkatesan et al. (2003) also found perature fluid to the bitumen in the chimneys. This hy- that hydrothermal surface sediments of the Andaman pothesis sounds reasonable, however, it need more evi- backarc basin in Indian Ocean were predominated by alkyl dences to prove it. Here, we examined the relative abun- naphthalenes and alkyl phenanthrenes. Thus, this suggests dance of PAHs and concentration of major elements in that the low molecular weight PAHs would be commonly the hydrothermal surface sediments of two hydrothermal present in the surface sediments of hydrothermal systems. fields from two distantly geographic locations (CIR and 32 J. Li et al. Table 1. Sample location and description Sample Sample site Brief characteristics Main mineral Central Indian Ridge TVG 13 69.60°E, 23.88°S Fragment of sulfides chimney anhydrite Edmond hydrothermal field CIR7-1 70.04°E, 25.32°S Brown-yellow sediments with minor soft white sediment talc Kairei hydrothermal field CIR7-2 Gray-white soft sediment with some coarse grains talc, sphalerite CIR7-3 Gray-yellow sediments with some coarse grains talc CIR7-4 White and yellow sediment with dark-coffee coarse grains talc, chalcopyrite Mid Atlantic Ridge MAR1-1 44.98°W, 14.75°N Gray-white soft muddy sediments calcite Logatchev hydrothermal field MAR1-2 Red-brown metalliferous sediment Fe-oxyhydroxide MAR1-3 Dark-brown metalliferous sediment Fe-oxyhydroxide MAR6-1 44.98°W, 14.75°N White muddy sediment calcite MAR) to test the possibility of the occurrence of such ized by high contents of iron, silica, high H2S with high kind processes. chlorinity and low pH (Gallant and Von Damm, 2006). The Logatchev hydrothermal field GEOLOGICAL SETTING The hydrothermally active Logatchev field is located The Edmond and Kairei hydrothermal fields at 14°45′ N and 44°58′ W on a plateau immediately be- The Kairei vent field is located at 25°19′ S, 70°02′ E low a 350 m high cliff at a water depth of 3060–2900 m in segment S1 immediately north of the Rodriguez Triple (Fig. 1). Hydrothermal activity was first documented in Junction on the Central Indian Ridge (Gamo et al., 2001). 1994 along the eastern wall (Batuev et al., 1994). It ex- The hydrothermal activity was first reported by Herzig tends at least 800 m NW-SE and 400 m SW-NE and shows and Plüger (1988), and the hydrothermal vent site was a high diversity of vent sites and associated fauna. In this also first directly observed in 2000 (Hashimoto et al., area, tectonic accretion dominates the basaltic magma 2001). The main area of high temperature venting in this supply, resulting in a tectonic uplift of mantle and lower hydrothermal field occurs along a WNW trend, extends crustal rocks (peridotites and gabbros) to the sea-floor 80 m along the rift wall and is 30 m wide. The vent fluids (Cannat et al., 1997). Two main areas of high-tempera- of the Kairei hydrothermal field have a very high con- ture hydrothermal activity form the central part of the centration of hydrogen gas, a relatively high concentra- field, which is an area of at least three smoking craters, tion of silicon and a remarkably low CH4/H2 ratio. Large and a large mound with black smoker chimneys at its top. accumulations of weathered sulfides and peripheral rel- Black smoke is venting intensely at all three sites, either ict sulfide chimneys suggest the site has been active for a from the chimneys on the crater rim or from holes in the long time and there has been migration or focusing of sea-floor within the craters.
Recommended publications
  • R Graphics Output
    Dexamethasone sodium phosphate ( 0.339 ) Melengestrol acetate ( 0.282 ) 17beta−Trenbolone ( 0.252 ) 17alpha−Estradiol ( 0.24 ) 17alpha−Hydroxyprogesterone ( 0.238 ) Triamcinolone ( 0.233 ) Zearalenone ( 0.216 ) CP−634384 ( 0.21 ) 17alpha−Ethinylestradiol ( 0.203 ) Raloxifene hydrochloride ( 0.203 ) Volinanserin ( 0.2 ) Tiratricol ( 0.197 ) trans−Retinoic acid ( 0.192 ) Chlorpromazine hydrochloride ( 0.191 ) PharmaGSID_47315 ( 0.185 ) Apigenin ( 0.183 ) Diethylstilbestrol ( 0.178 ) 4−Dodecylphenol ( 0.161 ) 2,2',6,6'−Tetrachlorobisphenol A ( 0.156 ) o,p'−DDD ( 0.155 ) Progesterone ( 0.152 ) 4−Hydroxytamoxifen ( 0.151 ) SSR150106 ( 0.149 ) Equilin ( 0.3 ) 3,5,3'−Triiodothyronine ( 0.256 ) 17−Methyltestosterone ( 0.242 ) 17beta−Estradiol ( 0.24 ) 5alpha−Dihydrotestosterone ( 0.235 ) Mifepristone ( 0.218 ) Norethindrone ( 0.214 ) Spironolactone ( 0.204 ) Farglitazar ( 0.203 ) Testosterone propionate ( 0.202 ) meso−Hexestrol ( 0.199 ) Mestranol ( 0.196 ) Estriol ( 0.191 ) 2,2',4,4'−Tetrahydroxybenzophenone ( 0.185 ) 3,3,5,5−Tetraiodothyroacetic acid ( 0.183 ) Norgestrel ( 0.181 ) Cyproterone acetate ( 0.164 ) GSK232420A ( 0.161 ) N−Dodecanoyl−N−methylglycine ( 0.155 ) Pentachloroanisole ( 0.154 ) HPTE ( 0.151 ) Biochanin A ( 0.15 ) Dehydroepiandrosterone ( 0.149 ) PharmaCode_333941 ( 0.148 ) Prednisone ( 0.146 ) Nordihydroguaiaretic acid ( 0.145 ) p,p'−DDD ( 0.144 ) Diphenhydramine hydrochloride ( 0.142 ) Forskolin ( 0.141 ) Perfluorooctanoic acid ( 0.14 ) Oleyl sarcosine ( 0.139 ) Cyclohexylphenylketone ( 0.138 ) Pirinixic acid ( 0.137 )
    [Show full text]
  • Chlorinated and Polycyclic Aromatic Hydrocarbons in Riverine and Estuarine Sediments from Pearl River Delta, China
    Environmental Pollution 117 (2002) 457–474 www.elsevier.com/locate/envpol Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China Bi-Xian Maia,*, Jia-Mo Fua, Guo-Ying Shenga, Yue-Hui Kanga, Zheng Lina, Gan Zhanga, Yu-Shuan Mina, Eddy Y. Zengb aState Key Lab Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, PO Box 1130, Guangzhou, Guangdong 510640, People’s Republic of China bSouthern California Coastal Water Research Project, 7171 Fenwick Lane, Westminster, CA 92683, USA Received 5 January 2001; accepted 3 July 2001 ‘‘Capsule’’: Sediments of the Zhujiang River and Macao Harbor have the potential to be detrimental to biological systems. Abstract Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and poly- cyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6–1658 ng/g, while concentrations of PCBs are in the range 10–339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic con- dition, and land erosion due to urbanization processes.
    [Show full text]
  • Dibenzofuran, 4-Chromanone, Acetophenone, and Dithiecine Derivatives: Cytotoxic Constituents from Eupatorium Fortunei
    International Journal of Molecular Sciences Article Dibenzofuran, 4-Chromanone, Acetophenone, and Dithiecine Derivatives: Cytotoxic Constituents from Eupatorium fortunei Chun-Hao Chang 1, Semon Wu 2, Kai-Cheng Hsu 3,4, Wei-Jan Huang 5,6 and Jih-Jung Chen 7,8,9,* 1 Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; [email protected] 2 Department of Life Science, Chinese Culture University, Taipei 110, Taiwan; [email protected] 3 Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; [email protected] 4 Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan 5 Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; [email protected] 6 Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan 7 Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan 8 Faculty of Pharmacy, National Yang-Ming University, Taipei 112, Taiwan 9 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan * Correspondence: [email protected]; Tel.: +886-2-2826-7195; Fax: +886-2-2823-2940 Abstract: Five new compounds, eupatodibenzofuran A (1), eupatodibenzofuran B (2), 6-acetyl-8- methoxy-2,2-dimethylchroman-4-one (3), eupatofortunone (4), and eupatodithiecine (5), have been isolated from the aerial part of Eupatorium fortunei, together with 11 known compounds (6-16).
    [Show full text]
  • Intra-Field Variation of Prokaryotic Communities on and Below the Seafloor 24 in the Back-Arc Hydrothermal System of the Southern Mariana Trough
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Intra-Field Variation of Prokaryotic Communities On and Below the Seafloor 24 in the Back-Arc Hydrothermal System of the Southern Mariana Trough Shingo Kato, Moriya Ohkuma, and Akihiko Yamagishi Abstract Deep-sea hydrothermal vents harbor diverse prokaryotes. There are a variety of habitat types in a deep-sea hydrothermal field, e.g., active and inactive chimneys, iron-rich mats, venting fluid and hydrothermal plume. Numerous studies have shown the diversity and composition of prokaryotic communities in individual habitats. However, it is still unclear whether and how the characteristics of prokaryotic communities in their respective habitats are different. Previously, we reported 16S rRNA genes in a variety of habitats, i.e., hydrothermally active and inactive chimneys, iron-rich mats, a vent fluid, crustal fluids from boreholes, as well as ambient seawater in a back-arc basin hydrothermal field of the Southern Mariana Trough. Here we summarize the prokaryotic communities in the col- lected samples at higher taxonomic resolution (up to family level) using the detected 16S rRNA gene sequences and compare them using recently developed bioinformatics tools. The comparative analysis clearly highlights differences in prokaryotic communities among the habitat types on and below the seafloor in the Southern Mariana Trough. Furthermore, descriptions of cultured species and environmental clones close to the detected sequences provide valuable information for understanding of their distribution and potential of ecological roles in deep-sea hydrothermal fields. Keywords 16S rRNA gene Archaea Back-arc basin Bacteria Chemosynthetic ecosystem Deep- sea hydrothermal vents Prokaryotic community 24.1 Introduction The online version of this chapter (doi:10.1007/978-4-431-54865-2_24) Deep-sea hydrothermal vents are oases for organisms on the contains supplementary material, which is available to authorized users.
    [Show full text]
  • Sulfide Mineralization in an Ultramafic-Rock Hosted Seafloor
    Marine Geology 245 (2007) 20–39 www.elsevier.com/locate/margeo Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu–Zn–(Co)-rich massive sulfides ⁎ Ana Filipa A. Marques a,b, , Fernando J.A.S. Barriga a, Steven D. Scott b a CREMINER (LA/ISR), Universidade de Lisboa, Faculdade de Ciências, Departamento de Geologia, Edif. C6 Piso 4. 1749-016 Campo Grande, Lisboa, Portugal b Scotiabank Marine Geology Research Laboratory, Department of Geology, University of Toronto, 22 Russell St., Toronto, Canada M5S 3B1 Received 12 December 2006; received in revised form 2 May 2007; accepted 12 May 2007 Abstract The Rainbow vent field is an ultramafic rock-hosted seafloor hydrothermal system located on the Mid-Atlantic ridge issuing high temperature, acidic, metal-rich fluids. Hydrothermal products include Cu–Zn–(Co)-rich massive sulfides with characteristics comparable to those found in mafic volcanic-hosted massive sulfide deposits. Petrography, mineralogy and geochemistry of nonmineralized and mineralized rocks sampled in the Rainbow vent field indicate that serpentinized peridotites host the hydrothermal vent system but serpentinization reactions occurred prior to and independently of the sulfide mineralization event. The onset of sulfide mineralization is reflected by extensive textural and chemical transformations in the serpentine-group minerals that show clear signs of hydrothermal corrosion. Element remobilization is a recurrent process in the Rainbow vent field rocks and, during simple peridotite serpentinization, Ni and Cr present in olivine and pyroxene are incorporated in the pseudomorphic serpentine mesh and bastite, respectively. Ni is later remobilized from pseudomorphic serpentine into the newly formed sulfides as a result of extensive hydrothermal alteration.
    [Show full text]
  • Long-Term Monitoring of the Mid-Atlantic Ridge
    Long-Term Monitoring of the Mid-Atlantic Ridge Proceedings of the III MOMAR Workshop 7-9 April 2005 Lisbon, Portugal Convenors Fernando Barriga Universidade de Lisboa, Portugal Ana Colaço University of the Azores, Portugal Javier Escartin CNRS, Paris, France Emilie Hooft University of Oregon, USA Susan Humphris Woods Hole Oceanographic Institution, USA Nadine Le Bris IFREMER, France Celia Lee Universidade de Lisboa, Portugal Nuno Lourenço University of Algarve, Portugal Frank Wenzhofer Max Planck Institute for Marine Microbiology, Germany 1 INTRODUCTION The third in a series of workshops to define the objectives of the Monitoring the Mid- Atlantic Ridge (MOMAR) project was convened at the Museu de Ciêcia in Lisbon, Portugal, on 7-9 April 2005 with approximately 80 scientists from 12 countries participating. MOMAR brings together researchers from the international scientific community to plan a long-term monitoring program on the Mid-Atlantic Ridge in a region south of the Azores. With an emphasis on real-time data retrieval, MOMAR plans to combine long-term monitoring of geological, physico-chemical, and biological activity at hydrothermal vents with broader-scale monitoring of tectonic, volcanic and hydrothermal processes at the ridge axis. These studies will lead to a comprehensive, interdisciplinary understanding of temporal changes in, and linkages among magmatic, tectonic, seismic, hydrothermal, and biological activity at this slow-spreading plate boundary, enabling the development of quantitative, whole-system models of the inter-linked
    [Show full text]
  • Kinetic Study of Decomposition of Azo Dyes and Phenol in Advanced Oxidation Processes: Reaction Mechanisms, Pathways and Intermediates
    Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Guidance on Information Requirements and Chemical Safety Assessment Chapter R.6: Qsars and Grouping of Chemicals
    Guidance on information requirements and chemical safety assessment Chapter R.6: QSARs and grouping of chemicals May 2008 Guidance for the implementation of REACH LEGAL NOTICE This document contains guidance on REACH explaining the REACH obligations and how to fulfil them. However, users are reminded that the text of the REACH regulation is the only authentic legal reference and that the information in this document does not constitute legal advice. The European Chemicals Agency does not accept any liability with regard to the contents of this document. © European Chemicals Agency, 2008 Reproduction is authorised provided the source is acknowledged. 2 CHAPTER R.6 – QSARS AND GROUPING OF CHEMICALS PREFACE This document describes the information requirements under REACH with regard to substance properties, exposure, use and risk management measures, and the chemical safety assessment. It is part of a series of guidance documents that are aimed to help all stakeholders with their preparation for fulfilling their obligations under the REACH regulation. These documents cover detailed guidance for a range of essential REACH processes as well as for some specific scientific and/or technical methods that industry or authorities need to make use of under REACH. The guidance documents were drafted and discussed within the REACH Implementation Projects (RIPs) led by the European Commission services, involving stakeholders from Member States, industry and non-governmental organisations. These guidance documents can be obtained via the website of
    [Show full text]
  • Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical
    International Journal of Molecular Sciences Article The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical 1, 1, 1,2 1 1,2, 3 Xuan Li y, Yixiang Gao y, Chenpeng Zuo , Siyuan Zheng , Fei Xu *, Yanhui Sun and Qingzhu Zhang 1 1 Environment Research Institute, Shandong University, Qingdao 266237, China; [email protected] (X.L.); [email protected] (Y.G.); [email protected] (C.Z.); [email protected] (S.Z.); [email protected] (Q.Z.) 2 Shenzhen Research Institute, Shandong University, Shenzhen 518057, China 3 College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; [email protected] * Correspondence: [email protected]; Tel.: +86-532-58631992 These authors contributed equally to this article. y Received: 11 August 2019; Accepted: 28 October 2019; Published: 31 October 2019 Abstract: Benzofuran (BF), benzothiophene (BT), indole (IN), dibenzofuran (DBF), dibenzothiophene (DBT), and carbazole (CA) are typical heterocyclic aromatic compounds (NSO-HETs), which can coexist with polycyclic aromatic hydrocarbons (PAHs) in combustion and pyrolysis conditions. In this work, quantum chemical calculations were carried out to investigate the formation of DBF, DBT, and CA from the reactions of BF, BT, and IN with a cyclopentadienyl radical (CPDyl) by using the hybrid density functional theory (DFT) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants of crucial elementary steps were deduced over 600 1200 K, using canonical − variational transition state theory with a small-curvature tunneling contribution (CVT/SCT).
    [Show full text]
  • Questions for the Record Public Meeting on the Petition Regarding Additive Organohalogen Flame Retardants U.S
    Questions for the Record Public Meeting on the Petition Regarding Additive Organohalogen Flame Retardants U.S. Consumer Product Safety Commission Bethesda, MD Part 3 of 4: This file contains the questions and responses for presenters 25 through 27. Panel Presenter Affiliation Notes Panel 1 1 Linda Birnbaum, Ph.D. NIEHS/National Toxicology Program Panel 2 2 William Wallace Consumers Union 3 Eve Gartner Earthjustice Northeast Office 4 Simona Balan, Ph.D. Green Science Policy Institute Joint response 5 Arlene Blum, Ph.D. 6 Miriam Diamond, Ph.D. University of Toronto Panel 3 7 Jennifer Lowery, MD, FAAP American Academy of Pediatrics 8 Patrick Morrison International Association of Fire Fighters 9 Luis Torres League of United Latin American Citizens 10 Maureen Swanson, MPA Learning Disabilities Association of America 11 Daniel Penchina The Raben Group/Breast Cancer Fund American Chemistry Council/North American Panel 4 12 Robert Simon Flame Retardant Alliance 13 Michael Walls American Chemistry Council No response 14 Matthew S. Blais, Ph.D. Southwest Research Institute 15 Thomas Osimitz, Ph.D. Science Strategies Information Technology Industry Council and the 16 Chris Cleet, QEP Consumer Technology Association 17 Timothy Reilly Clariant Corporation Panel 5 18 Rachel Weintraub Consumer Federation of America 19 Katie Huffling, RN, MS, CNM Alliance of Nurses for Family Environments 20 Kathleen A. Curtis, LPN Clean and Healthy New York Ecology Center/American Sustainable Business 21 Jeff Gearhart Council 22 Bryan McGannon American Sustainable Business Council Panel 6 23 Vytenis Babrauskas, Ph.D. Fire Science and Technology, Inc. 24 Donald Lucas, Ph.D. Lawrence Berkeley National Laboratory 25 Jennifer Sass, Ph.D.
    [Show full text]
  • Dibenzofuran-Induced Mitochondrial Dysfunction: Interaction with ANT Carrier ⇑ F.V
    Toxicology in Vitro 27 (2013) 2160–2168 Contents lists available at ScienceDirect Toxicology in Vitro journal homepage: www.elsevier.com/locate/toxinvit Dibenzofuran-induced mitochondrial dysfunction: Interaction with ANT carrier ⇑ F.V. Duarte a,b, , A.P. Gomes a,b, J.S. Teodoro a,b, A.T. Varela a,b, A.J.M. Moreno b, A.P. Rolo a,c, C.M. Palmeira a,b a CNC – Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal b Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal c Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal article info abstract Article history: Exposure to environmental pollutants such as dibenzofurans and furans is linked to the pathophysiology Received 6 April 2013 of several diseases. Dibenzofuran (DBF) is listed as a pollutant of concern due to its persistence in the Accepted 26 August 2013 environment, bioaccumulation and toxicity to humans, being associated with the development of lung Available online 3 September 2013 diseases and cancers, due to its extremely toxic properties such as carcinogenic and teratogenic. Mitochondria play a key role in cellular homeostasis and keeping a proper energy supply for eukaryotic Keywords: cells is essential in the fulfillment of the tissues energy-demand. Therefore, interference with mitochon- Adenine nucleotide translocator (ANT) drial function leads to cell death and organ failure. In this work, the effects of DBF on isolated rat liver Cyclophilin D (CypD) mitochondria were analyzed. Dibenzofuran (DBF) Mitochondria DBF exposure caused a markedly increase in the lag phase that follows depolarization induced by ADP, Mitochondrial permeability transition (MPT) indicating an effect in the phosphorylative system.
    [Show full text]
  • Hydrothermal Vent Plume at the Mid-Atlantic Ridge
    https://doi.org/10.5194/bg-2019-189 Preprint. Discussion started: 20 June 2019 c Author(s) 2019. CC BY 4.0 License. 1 Successional patterns of (trace) metals and microorganisms in the Rainbow 2 hydrothermal vent plume at the Mid-Atlantic Ridge 3 Sabine Haalboom1,*, David M. Price1,*,#, Furu Mienis1, Judith D.L van Bleijswijk1, Henko C. de 4 Stigter1, Harry J. Witte1, Gert-Jan Reichart1,2, Gerard C.A. Duineveld1 5 1 NIOZ Royal Netherlands Institute for Sea Research, department of Ocean Systems, and Utrecht University, PO Box 59, 6 1790 AB Den Burg, Texel, The Netherlands 7 2 Utrecht University, Faculty of Geosciences, 3584 CD Utrecht, The Netherlands 8 * These authors contributed equally to this work 9 # Current address: University of Southampton, Waterfront Campus, European Way, Southampton, UK, 10 SO14 3ZH. 11 [email protected]; [email protected] 12 13 Keywords: Rainbow vent; Epsilonproteobacteria; Hydrothermal vent plume; Deep-sea mining; Rare 14 earth elements; Seafloor massive sulfides 15 16 Abstract 17 Hydrothermal vent fields found at mid-ocean ridges emit hydrothermal fluids which disperse as neutrally 18 buoyant plumes. From these fluids seafloor massive sulfides (SMS) deposits are formed which are being 19 explored as possible new mining sites for (trace) metals and rare earth elements (REE). It has been 20 suggested that during mining activities large amounts of suspended matter will appear in the water column 21 due to excavation processes, and due to discharge of mining waste from the surface vessel. Understanding 22 how natural hydrothermal plumes evolve as they spread away from their source and how they affect their 23 surrounding environment may provide some analogies for the behaviour of the dilute distal part of 24 chemically enriched mining plumes.
    [Show full text]