Polarizations of Gravitational Waves in Horndeski Theory

Total Page:16

File Type:pdf, Size:1020Kb

Polarizations of Gravitational Waves in Horndeski Theory Eur. Phys. J. C (2018) 78:378 https://doi.org/10.1140/epjc/s10052-018-5869-y Regular Article - Theoretical Physics Polarizations of gravitational waves in Horndeski theory Shaoqi Houa , Yungui Gongb , Yunqi Liuc School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China Received: 27 January 2018 / Accepted: 6 May 2018 / Published online: 12 May 2018 © The Author(s) 2018 Abstract We analyze the polarization content of gravi- VIRGO, the future space-borne Laser Interferometer Space tational waves in Horndeski theory. Besides the familiar Antenna (LISA) [7] and TianQin [8], and pulsar timing arrays plus and cross polarizations in Einstein’s General Relativ- (e.g., the International Pulsar Timing Array and the European ity, there is one more polarization state which is the mix- Pulsar Timing Array [9,10]). In fact, in the recent GW170814 ture of the transverse breathing and longitudinal polariza- [4], the Advanced VIRGO detector joined the two aLIGO tions. The additional mode is excited by the massive scalar detectors, so they were able to test the polarization content field. In the massless limit, the longitudinal polarization dis- of gravitational waves for the first time. The result showed appears, while the breathing one persists. The upper bound that the pure tensor polarizations were favored against pure on the graviton mass severely constrains the amplitude of the vector and pure scalar polarizations [4,11]. Additionally, longitudinal polarization, which makes its detection highly GW170817 is the first observation of a binary neutron star unlikely by the ground-based or space-borne interferometers inspiral, and its electromagnetic counterpart, GRB 170817A, in the near future. However, pulsar timing arrays might be was later observed by the Fermi Gamma-ray Burst Moni- able to detect the polarization excited by the massive scalar tor and the International Gamma-Ray Astrophysics Labora- field. Since additional polarization states appear in alterna- tory [5,12,13]. The new era of multi-messenger astrophysics tive theories of gravity, the measurement of the polarizations comes. of gravitational waves can be used to probe the nature of In GR, the gravitational wave propagates at the speed of gravity. In addition to the plus and cross states, the detection light and it has two polarization states, the plus and cross of the breathing polarization means that gravitation is medi- modes. In alternative metric theories of gravity, there may ated by massless spin 2 and spin 0 fields, and the detection of exist up to six polarizations, so the detection of the polar- both the breathing and longitudinal states means that gravi- izations of gravitational waves can be used to distinguish tation is propagated by the massless spin 2 and massive spin different theories of gravity and probe the nature of gravity 0 fields. [14,15]. For null plane gravitational waves, the six polariza- tions are classified by the little group E(2) of the Lorentz group with the help of the six independent Newman-Penrose 1 Introduction (NP) variables Ψ2, Ψ3, Ψ4 and Φ22 [16–18]. In particular, the complex variable Ψ4 denotes the familiar plus and cross The detection of gravitational waves by the Laser Interferom- modes in GR, the variable Φ22 denotes the transverse breath- eter Gravitational-Wave Observatory (LIGO) Scientific Col- ing polarization, the complex variable Ψ3 corresponds to the laboration and VIRGO Collaboration further supports Ein- vector-x and vector-y modes, and the variable Ψ2 corresponds stein’s General Relativity (GR) and provides a new tool to to the longitudinal mode. Under the E(2) transformation, all study gravitational physics [1–6]. In order to confirm gravi- other modes can be generated from Ψ2,soifΨ2 = 0, then we tational waves predicted by GR, it is necessary to determine may see all six modes in some coordinates. The E(2) clas- the polarizations of gravitational waves. This can be done by sification tells us the general polarization states, but it fails the network of ground-based Advanced LIGO (aLIGO) and to tell us the correspondence between the polarizations and gravitational theories. In Brans-Dicke theory [19], in addi- a e-mail: [email protected] tion to the plus and cross modes Ψ4 of the massless gravitons, b e-mail: [email protected] there exists another breathing mode Φ22 due to the massless c e-mail: [email protected] Brans-Dicke scalar field [17]. 123 378 Page 2 of 15 Eur. Phys. J. C (2018) 78 :378 Brans-Dicke theory is a simple extension to GR. In Brans- effect of the longitudinal polarization on the geodesic devi- Dicke theory, gravitational interaction is mediated by both ation depends on the mass and it is much smaller than that the metric tensor and the Brans-Dicke scalar field, and the of the transverse polarization in the aLIGO and LISA fre- Brans-Dicke field plays the role of Newton’s gravitational quency bands. In the massless limit, the longitudinal mode constant. In more general scalar-tensor theories of gravity, the disappears, while the breathing mode persists. scalar field φ has self-interaction and it is usually massive. In The paper is organized as follows. Section 2 briefly 1974, Horndeski found the most general scalar-tensor theory reviews ELLWW framework for classifying the polarizations of gravity whose action has higher derivatives of gμν and of null gravitational waves. In Sect. 3, the linearized equa- φ, but the equations of motion are at most the second order tions of motion and the plane gravitational wave solution [20]. Even though there are higher derivative terms, there is are obtained. In Sect. 3.1, the polarization states of gravita- no Ostrogradsky instability [21], so there are three physical tional waves in Horndeski theory are discussed by examining degrees of freedom in Horndeski theory, and we expect that the geodesic deviation equations, and Sect. 3.2 discusses the there is an extra polarization state in addition to the plus and failure of ELLWW framework for the massive Horndeski cross modes. If the scalar field is massless, then the additional theory. Section 4 discusses the possible experimental tests of polarization state should be the breathing mode Φ22. the extra polarizations. In particular, Sect. 4.1 mainly calcu- When the interaction between the quantized matter fields lates the interferometer response functions for aLIGO, and and the classical gravitational field is considered, the quadratic Section 4.2 determines the cross-correlation functions for the μναβ terms Rμναβ R and R2 are needed as counterterms to longitudinal and transverse breathing polarizations. Finally, remove the singularities in the energy-momentum tensor this work is briefly summarized in Sect. 5. In this work, we [22]. Although the quadratic gravitational theory is renor- use the natural units and the speed of light in vacuum c = 1. malizable [23], the theory has ghost due to the presence of higher derivatives [23,24]. However, the general nonlinear f (R) gravity [25] is free of ghost and it is equivalent to 2 Review of ELLWW Framework a scalar-tensor theory of gravity [26,27]. The effective mass squared of the equivalent scalar field is f (0)/3 f (0), and the Eardley et. al. devised a model-independent framework [17, massive scalar field excites both the longitudinal and trans- 18] to classify the null gravitational waves in a generic metric verse breathing modes [28–30]. The polarizations of gravi- theory of gravity based on the Newman-Penrose formalism ( ) μ μ μ tational waves in f R gravity were previously discussed in [16]. The quasiorthonormal, null tetrad basis Ea = (k , l , [31–37]. The authors in [33,34] calculated the NP variables mμ, m¯ μ) is chosen to be and found that Ψ2, Ψ4 and Φ22 are nonvanishing. They then μ 1 claimed that there are at least four polarization states in f (R) k = √ (1, 0, 0, 1), (1) gravity. Recently, it was pointed out that the direct applica- 2 μ 1 tion of the framework of Eardley et. al. (ELLWW frame- l = √ (1, 0, 0, −1), (2) work) [17,18] derived for the null plane gravitational waves 2 μ 1 to the massive field is not correct, and the polarization state m = √ (0, 1, i, 0), (3) of the equivalent massive field in f (R) gravity is the mixture 2 of the longitudinal and the transverse breathing modes [37]. μ 1 m¯ = √ (0, 1, −i, 0), (4) Furthermore, the longitudinal polarization is independent of 2 the effective mass of the equivalent scalar field, so it cannot where bar means the complex conjugation. They satisfy the be used to understand how the polarization reduces to the μ μ relation −k lμ = m m¯ μ = 1 and all other inner prod- transverse breathing mode in the massless limit. ucts vanish. Since the null gravitational wave propagates in Since the polarizations of gravitational waves in alterna- the +z direction, the Riemann tensor is a function of the tive theories of gravity are not known in general, so we need retarded time u = t − z, which implies that Rabcd,p = 0, to study it [38–40]. In this paper, the focus is on the polariza- where (a, b, c, d) range over (k, l, m, m¯ ) and (p, q, r, ···) tions of gravitational waves in the most general scalar-tensor range over (k, m, m¯ ). The linearized Bianchi identity and the theory, Horndeski theory. It is assumed that matter minimally symmetry properties of Rabcd imply that couples to the metric, so that test particles follow geodesics. The gravitational wave solutions are obtained from the lin- 1 R [ ; ] = Rab[pq,l] = Rabpq,l = 0. (5) earized equations of motion around the flat spacetime back- ab pq l 3 ground, and the geodesic deviation equations are used to reveal the polarizations of the massive scalar field.
Recommended publications
  • Arxiv:2009.10649V3 [Astro-Ph.CO] 30 Jul 2021
    CERN-TH-2020-157 DESY 20-154 From NANOGrav to LIGO with metastable cosmic strings Wilfried Buchmuller,1, ∗ Valerie Domcke,2, 3, † and Kai Schmitz2, ‡ 1Deutsches Elektronen Synchrotron DESY, 22607 Hamburg, Germany 2Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland 3Institute of Physics, Laboratory for Particle Physics and Cosmology, EPFL, CH-1015, Lausanne, Switzerland (Dated: August 2, 2021) We interpret the recent NANOGrav results in terms of a stochastic gravitational wave background from metastable cosmic strings. The observed amplitude of a stochastic signal can be translated into a range for the cosmic string tension and the mass of magnetic monopoles arising in theories of grand unification. In a sizable part of the parameter space, this interpretation predicts a large stochastic gravitational wave signal in the frequency band of ground-based interferometers, which can be probed in the very near future. We confront these results with predictions from successful inflation, leptogenesis and dark matter from the spontaneous breaking of a gauged B−L symmetry. Introduction nal is too small to be observed by Virgo [17], LIGO [18] The direct observation of gravitational waves (GWs) and KAGRA [19] but will be probed by LISA [20] and generated by merging black holes [1{3] has led to an in- other planned GW observatories. creasing interest in further explorations of the GW spec- In this Letter we study a further possibility, metastable trum. Astrophysical sources can lead to a stochastic cosmic strings. Recently, it has been shown that GWs gravitational background (SGWB) over a wide range of emitted from a metastable cosmic string network can frequencies, and the ultimate hope is the detection of a probe the seesaw mechanism of neutrino physics and SGWB of cosmological origin.
    [Show full text]
  • Physical Review D
    PHYSICAL REVIEW D PERIODICALS For editorial and subscription correspondence, Postmaster send address changes to: please see inside front cover (ISSN: 1550-7998) APS Subscription Services P.O. Box 41 Annapolis Junction, MD 20701 THIRD SERIES, VOLUME 99, NUMBER 12 CONTENTS D15 JUNE 2019 The Table of Contents is a total listing of Parts A and B. Part A consists of articles 121301–124004, and Part B articles 124005–126016(A) PART A RAPID COMMUNICATIONS Equation of state of dense matter in the multimessenger era (6 pages) .......................................................... 121301(R) Ying Zhou, Lie-Wen Chen, and Zhen Zhang Dark matter decaying in the late Universe can relieve the H0 tension (6 pages) ............................................... 121302(R) Kyriakos Vattis, Savvas M. Koushiappas, and Abraham Loeb Steady flows, nonlinear gravitostatic waves, and Zeldovich pancakes in a Newtonian gas (6 pages) ....................... 121303(R) Eugene B. Kolomeisky Constraint of void bias on primordial non-Gaussianity (7 pages) ................................................................. 121304(R) Kwan Chuen Chan, Nico Hamaus, and Matteo Biagetti New constraint from supernova explosions on light particles beyond the Standard Model (6 pages) ....................... 121305(R) Allan Sung, Huitzu Tu, and Meng-Ru Wu ARTICLES Constraints on the ultrahigh-energy cosmic neutrino flux from the fourth flight of ANITA (11 pages) .................... 122001 P. W. Gorham et al. (ANITA Collaboration) Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run (20 pages) .... 122002 B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) LISA Pathfinder micronewton cold gas thrusters: In-flight characterization (10 pages) ....................................... 122003 M. Armano et al. (LISA Pathfinder Collaboration) Observation of seasonal variation of atmospheric multiple-muon events in the NOvA Near Detector (11 pages) .......
    [Show full text]
  • Continuous Gravitational Waves from Neutron Stars: Current Status and Prospects
    Continuous gravitational waves from neutron stars: current status and prospects Magdalena Sieniawska∗1 and Michał Bejger1 1Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00–716 Warszawa, Poland Abstract Gravitational waves astronomy allows us to study objects and events invisi- ble in electromagnetic waves. It is crucial to validate the theories and models of the most mysterious and extreme matter in the Universe: the neutron stars. In addition to inspirals and mergers of neutrons stars, there are currently a few pro- posed mechanisms that can trigger radiation of long-lasting gravitational radiation from neutron stars, such as e.g., elastically and/or magnetically driven deforma- tions: mountains on the stellar surface supported by the elastic strain or magnetic field, free precession, or unstable oscillation modes (e.g., the r-modes). The as- trophysical motivation for continuous gravitational waves searches, current LIGO and Virgo strategies of data analysis and prospects are reviewed in this work. 1 Introduction Gravitational-wave (GW) astronomy has been one of the fastest-growing fields in astro- physics since the first historical detection of a binary black-hole (BH) system GW150814 (Abbott et al., 2016a). In addition to studying the nature of gravitation itself, it may be used to infer information about the astrophysical sources emitting the GWs. This re- view concentrates on a specific kind of prospective GWs: persistent (continuous) grav- itational waves (CGWs), emitted by neutron stars (NSs). The article is arranged as follows. Section1 gathers introductory material: Section 1.1 presents the basics of the GWs theory, Section 1.2 contains a brief overview of GWs detections, Section 1.3 de- arXiv:1909.12600v2 [astro-ph.HE] 5 Nov 2019 scribes properties of NSs and features of hitherto detected NSs-related GWs—a binary NS merger GW170817 (Abbott et al., 2017d), Section 1.4 gathers general information about CGWs, whereas Section 1.5 is devoted to the main data analysis methods used in CGWs searches.
    [Show full text]
  • Search for Electron-Antineutrinos Associated with Gravitational-Wave Events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay*
    Chinese Physics C Vol. 45, No. 5 (2021) 055001 Editors′ Suggestion Search for electron-antineutrinos associated with gravitational-wave events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay* F. P. An1 A. B. Balantekin2 H. R. Band3 M. Bishai4 S. Blyth5 G. F. Cao6 J. Cao6 J. F. Chang6 Y. Chang7 H. S. Chen6 S. M. Chen8 Y. Chen9,10 Y. X. Chen11 J. Cheng6 Z. K. Cheng10 J. J. Cherwinka2 M. C. Chu12 J. P. Cummings13 O. Dalager14 F. S. Deng15 Y. Y. Ding6 M. V. Diwan4 T. Dohnal16 J. Dove17 M. Dvořák16 D. A. Dwyer18 J. P. Gallo19 M. Gonchar20 G. H. Gong8 H. Gong8 W. Q. Gu4 J. Y. Guo10 L. Guo8 X. H. Guo21 Y. H. Guo22 Z. Guo8 R. W. Hackenburg4 S. Hans4,* M. He6 K. M. Heeger3 Y. K. Heng6 A. Higuera23 Y. K. Hor10 Y. B. Hsiung5 B. Z. Hu5 J. R. Hu6 T. Hu6 Z. J. Hu10 H. X. Huang24 X. T. Huang25 Y. B. Huang26 P. Huber27 D. E. Jaffe4 K. L. Jen28 X. L. Ji6 X. P. Ji4 R. A. Johnson29 D. Jones30 L. Kang31 S. H. Kettell4 S. Kohn32 M. Kramer18,32 T. J. Langford3 J. Lee18 J. H. C. Lee33 R. T. Lei31 R. Leitner16 J. K. C. Leung33 F. Li6 J. J. Li8 Q. J. Li6 S. Li31 S. C. Li27 W. D. Li6 X. N. Li6 X. Q. Li34 Y. F. Li6 Z. B. Li10 H. Liang15 C. J. Lin18 G. L. Lin28 S. Lin31 J. J. Ling10 J. M. Link27 L. Littenberg4 B.
    [Show full text]
  • GW190814: Gravitational Waves from the Coalescence of a 23 M Black Hole 4 with a 2.6 M Compact Object
    1 Draft version May 21, 2020 2 Typeset using LATEX twocolumn style in AASTeX63 3 GW190814: Gravitational Waves from the Coalescence of a 23 M Black Hole 4 with a 2.6 M Compact Object 5 LIGO Scientific Collaboration and Virgo Collaboration 6 7 (Dated: May 21, 2020) 8 ABSTRACT 9 We report the observation of a compact binary coalescence involving a 22.2 { 24.3 M black hole and 10 a compact object with a mass of 2.50 { 2.67 M (all measurements quoted at the 90% credible level). 11 The gravitational-wave signal, GW190814, was observed during LIGO's and Virgo's third observing 12 run on August 14, 2019 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector 2 +41 13 network. The source was localized to 18.5 deg at a distance of 241−45 Mpc; no electromagnetic 14 counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured +0:008 15 with gravitational waves, 0:112−0:009, and its secondary component is either the lightest black hole 16 or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless 17 spin of the primary black hole is tightly constrained to 0:07. Tests of general relativity reveal no ≤ 18 measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at −3 −1 19 high confidence. We estimate a merger rate density of 1{23 Gpc yr for the new class of binary 20 coalescence sources that GW190814 represents.
    [Show full text]
  • Gravitational Waves with the SKA
    Spanish SKA White Book, 2015 Font, Sintes & Sopuerta 29 Gravitational waves with the SKA Jos´eA. Font1;2, Alicia M. Sintes3, and Carlos F. Sopuerta4 1 Departamento de Astronom´ıay Astrof´ısica,Universitat de Val`encia,Dr. Moliner 50, 46100, Burjassot (Val`encia) 2 Observatori Astron`omic,Universitat de Val`encia,Catedr´aticoJos´eBeltr´an2, 46980, Paterna (Val`encia) 3 Departament de F´ısica,Universitat de les Illes Balears and Institut d'Estudis Espacials de Catalunya, Cra. Valldemossa km. 7.5, 07122 Palma de Mallorca 4 Institut de Ci`enciesde l'Espai (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, 08193 Cerdanyola del Vall´es(Barcelona) Abstract Through its sensitivity, sky and frequency coverage, the SKA will be able to detect grav- itational waves { ripples in the fabric of spacetime { in the very low frequency band (10−9 − 10−7 Hz). The SKA will find and monitor multiple millisecond pulsars to iden- tify and characterize sources of gravitational radiation. About 50 years after the discovery of pulsars marked the beginning of a new era in fundamental physics, pulsars observed with the SKA have the potential to transform our understanding of gravitational physics and provide important clues about the early history of the Universe. In particular, the gravi- tational waves detected by the SKA will allow us to learn about galaxy formation and the origin and growth history of the most massive black holes in the Universe. At the same time, by analyzing the properties of the gravitational waves detected by the SKA we should be able to challenge the theory of General Relativity and constraint alternative theories of gravity, as well as to probe energies beyond the realm of the standard model of particle physics.
    [Show full text]
  • Arxiv:2009.06555V3 [Astro-Ph.CO] 1 Feb 2021
    KCL-PH-TH/2020-53, CERN-TH-2020-150 Cosmic String Interpretation of NANOGrav Pulsar Timing Data John Ellis,1, 2, 3, ∗ and Marek Lewicki1, 4, y 1Kings College London, Strand, London, WC2R 2LS, United Kingdom 2Theoretical Physics Department, CERN, Geneva, Switzerland 3National Institute of Chemical Physics & Biophysics, R¨avala10, 10143 Tallinn, Estonia 4Faculty of Physics, University of Warsaw ul. Pasteura 5, 02-093 Warsaw, Poland Pulsar timing data used to provide upper limits on a possible stochastic gravitational wave back- ground (SGWB). However, the NANOGrav Collaboration has recently reported strong evidence for a stochastic common-spectrum process, which we interpret as a SGWB in the framework of cosmic strings. The possible NANOGrav signal would correspond to a string tension Gµ 2 (4×10−11; 10−10) at the 68% confidence level, with a different frequency dependence from supermassive black hole mergers. The SGWB produced by cosmic strings with such values of Gµ would be beyond the reach of LIGO, but could be measured by other planned and proposed detectors such as SKA, LISA, TianQin, AION-1km, AEDGE, Einstein Telescope and Cosmic Explorer. Introduction: Stimulated by the direct discovery of for cosmic string models, discussing how experiments gravitational waves (GWs) by the LIGO and Virgo Col- could confirm or disprove such an interpretation. Upper laborations [1{8] of black holes and neutron stars at fre- limits on the SGWB are often quoted assuming a spec- 2=3 quencies f & 10 Hz, there is widespread interest in ex- trum described by a GW abundance proportional to f , periments exploring other parts of the GW spectrum.
    [Show full text]
  • Gravitational Wave Astronomy and Cosmology
    Gravitational wave astronomy and cosmology The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Hughes, Scott A. “Gravitational Wave Astronomy and Cosmology.” Physics of the Dark Universe 4 (September 2014): 86–91. As Published http://dx.doi.org/10.1016/j.dark.2014.10.003 Publisher Elsevier Version Final published version Citable link http://hdl.handle.net/1721.1/98059 Terms of Use Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported Detailed Terms http://creativecommons.org/licenses/by-nc-nd/3.0/ Physics of the Dark Universe 4 (2014) 86–91 Contents lists available at ScienceDirect Physics of the Dark Universe journal homepage: www.elsevier.com/locate/dark Gravitational wave astronomy and cosmology Scott A. Hughes Department of Physics and MIT Kavli Institute, 77 Massachusetts Avenue, Cambridge, MA 02139, United States article info a b s t r a c t Keywords: The first direct observation of gravitational waves' action upon matter has recently been reported by Gravitational waves the BICEP2 experiment. Advanced ground-based gravitational-wave detectors are being installed. They Cosmology will soon be commissioned, and then begin searches for high-frequency gravitational waves at a sen- Gravitation sitivity level that is widely expected to reach events involving compact objects like stellar mass black holes and neutron stars. Pulsar timing arrays continue to improve the bounds on gravitational waves at nanohertz frequencies, and may detect a signal on roughly the same timescale as ground-based detectors. The science case for space-based interferometers targeting millihertz sources is very strong.
    [Show full text]
  • Deep Learning Ensemble for Real-Time Gravitational Wave Detection of Spinning Binary Black Hole Mergers ∗ Wei Wei A,B,C, , Asad Khan A,B,C, E.A
    Physics Letters B 812 (2021) 136029 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Deep learning ensemble for real-time gravitational wave detection of spinning binary black hole mergers ∗ Wei Wei a,b,c, , Asad Khan a,b,c, E.A. Huerta a,b,c,d,e, Xiaobo Huang a,b,f, Minyang Tian a,b,c a National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA b NCSA Center for Artificial Intelligence Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA c Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA d Illinois Center for Advanced Studies of the Universe, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA e Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA f Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA a r t i c l e i n f o a b s t r a c t Article history: We introduce the use of deep learning ensembles for real-time, gravitational wave detection of Received 29 October 2020 spinning binary black hole mergers. This analysis consists of training independent neural networks Accepted 10 December 2020 that simultaneously process strain data from multiple detectors. The output of these networks is then Available online 15 December 2020 combined and processed to identify significant noise triggers. We have applied this methodology in Editor: G.F. Giudice O2 and O3 data finding that deep learning ensembles clearly identify binary black hole mergers in open source data available at the Gravitational-Wave Open Science Center.
    [Show full text]
  • Stochastic Gravitational Wave Backgrounds
    Stochastic Gravitational Wave Backgrounds Nelson Christensen1;2 z 1ARTEMIS, Universit´eC^oted'Azur, Observatoire C^oted'Azur, CNRS, 06304 Nice, France 2Physics and Astronomy, Carleton College, Northfield, MN 55057, USA Abstract. A stochastic background of gravitational waves can be created by the superposition of a large number of independent sources. The physical processes occurring at the earliest moments of the universe certainly created a stochastic background that exists, at some level, today. This is analogous to the cosmic microwave background, which is an electromagnetic record of the early universe. The recent observations of gravitational waves by the Advanced LIGO and Advanced Virgo detectors imply that there is also a stochastic background that has been created by binary black hole and binary neutron star mergers over the history of the universe. Whether the stochastic background is observed directly, or upper limits placed on it in specific frequency bands, important astrophysical and cosmological statements about it can be made. This review will summarize the current state of research of the stochastic background, from the sources of these gravitational waves, to the current methods used to observe them. Keywords: stochastic gravitational wave background, cosmology, gravitational waves 1. Introduction Gravitational waves are a prediction of Albert Einstein from 1916 [1,2], a consequence of general relativity [3]. Just as an accelerated electric charge will create electromagnetic waves (light), accelerating mass will create gravitational waves. And almost exactly arXiv:1811.08797v1 [gr-qc] 21 Nov 2018 a century after their prediction, gravitational waves were directly observed [4] for the first time by Advanced LIGO [5, 6].
    [Show full text]
  • Km-Scale Space Gravitational Wave Detector
    Formation Flying Meetup May 9, 2019 km-scale Space Gravitational Wave Detector Yuta Michimura Department of Physics, University of Tokyo Science-Driven Approach C-DECIGO (10 kg, 10 km Fabry-Perot) Motivations • Demonstration of multiband gravitational wave detection - Detect BBHs and BNSs a few days before the merger • IMBH search with unprecedented sensitivity • km-scale space mission A. Sesana, Phys. Rev. Lett. 116, 231102 (2016) • Demonstration of interferometry and formation flight for B-DECIGO and DECIGO 3 Existing Space GW Projects LISA TianQin B-DECIGO Arm length 2.5e6 km 1.7e5 km 100 km Interferometry Optical Optical Fabry-Pérot transponder transponder cavity Laser frequency Reference cavity, Reference cavity, Iodine, 515 nm stabilization 1064 nm 1064 nm Orbit Heliocentric Geocentric, facing Geocentric (TBD) J0806.3+1527 Flight Constellation Constellation Formation flight configuration flight flight Test mass 1.96 kg 2.45 kg 30 kg Force noise req. 8e-15 N/rtHz 7e-15 N/rtHz 1e-16 N/rtHz Achieved CQG 33, 035010 (2016) PRL 120, 061101 (2018) 4 Sensitivity Comparison LISA: https://perf-lisa.in2p3.fr/ KAGRA: PRD 97, 122003 (2018) TianQin: arXiv:1902.04423 (from Yi-Ming Hu) aLIGO: LIGO-T1800044 B-DECIGO: PTEP 2016, 093E01 (2016) ET: http://www.et-gw.eu/index.php/etdsdocument CE: CQG 34, 044001 (2017) TianQin LISA KAGRA B-DECIGO ET aLIGO CE 5 Horizon Distance B-DECIGO LISA ET CE TianQin z=10 aLIGO B-DECIGO x 30 z=1 KAGRA GW150914 GW170817 Optimal direction and polarization 6 SNR threshold 8 Horizon Distance B-DECIGO LISA ET CE TianQin z=10 aLIGO B-DECIGO x 30 z=1 We can barely detect O1/O2 KAGRA binaries with B-DECIGO x 30 sensitivity GW150914 We can also search for 3 GW170817 O(10 ) Msun IMBH upto z=10 Optimal direction and polarization 7 SNR threshold 8 C-DECIGO • Target sensitivity C-DECIGO = B-DECIGO x 30 = DECIGO x 300 • For GW150914 and GW170817 like binaries, C-DECIGO can measure coalescence time to < ~150 sec a few days before the merger S.
    [Show full text]
  • Forecasts on the Speed of Gravitational Waves at High Ζ
    Prepared for submission to JCAP Forecasts on the speed of gravitational waves at high z Alexander Bonillaa, Rocco D'Agostinob;c, Rafael C. Nunesd, Jos´e C. N. de Araujod aDepartamento de F´ısica,Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil. bDipartimento di Fisica, Universit`adi Napoli \Federico II", Via Cinthia 21, I-80126, Napoli, Italy. cIstituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Via Cinthia 9, I-80126 Napoli, Italy. dDivis~aode Astrof´ısica,Instituto Nacional de Pesquisas Espaciais, Avenida dos Astronautas 1758, S~aoJos´edos Campos, 12227-010, SP, Brazil. E-mail: abonilla@fisica.ufjf.br, [email protected], [email protected], [email protected] Abstract. The observation of GW170817 binary neutron star (BNS) merger event has imposed strong bounds on the speed of gravitational waves (GWs) locally, inferring that the speed of GWs propagation is equal to the speed of light. Current GW detectors in operation will not be able to observe BNS merger to long cosmological distance, where possible cosmo- logical corrections on the cosmic expansion history are expected to play an important role, specially for investigating possible deviations from general relativity. Future GW detectors designer projects will be able to detect many coalescences of BNS at high z, such as the third generation of the ground GW detector called Einstein Telescope (ET) and the space-based detector deci-hertz interferometer gravitational wave observatory (DECIGO). In this paper, we relax the condition cT =c = 1 to investigate modified GW propagation where the speed of GWs propagation is not necessarily equal to the speed of light.
    [Show full text]