An Evolution of Trivalent Chromate Technologies

Total Page:16

File Type:pdf, Size:1020Kb

An Evolution of Trivalent Chromate Technologies Alternatives to the Hexavalent Chromates: An Evolution of Trivalent Chromate Technologies. By William Eckles and Rob Frischauf, Taskem, Inc. Fourth generation trivalent chromate hexavalent chrome in the work place, conversion coatings exhibit excellent except for hard chrome plating.1,2 The corrosion resistance and self-healing best alternative to hex-chrome is properties, not unlike hexavalent trivalent chromium for both chromate chromate conversion coatings. These conversion coatings and for decorative self-healing trivalent chromate chrome plating. Consequently, trivalent conversion coatings incorporate chromate conversion coatings are chemically inert nanoparticles in the replacing conversion coatings containing conversion coating. The nanoparticles hex-chrome. This process of replacing add thickness and corrosion resistance hex-chrome with trivalent chrome has a to the chromate film. The migration of history going back to the 1970s. the nanoparticles into scratches in the conversion coating film produces the First generation trivalent chromates were self-healing effect. mixtures that were similar in composition to hexavalent chromates, What surface coating technologies are except that the oxidizing power was available to fight against corrosion, now supplied by either hydrogen peroxide or that hexavalent chromates are no longer by nitrates, in place of chromic acid or available? Surface coatings increase chromate salts. These early trivalent service life with increased corrosion chromates were used to produce a blue protection, aesthetic appeal, and coating on alkaline non-cyanide zinc. increased wear resistance. Zinc The coatings were thin (~60 nm), electroplate with chromate coatings are powdery, and provide limited corrosion the low-cost, bulk-applied coatings that resistance. What corrosion resistance are widely specified. Electroplated zinc they did provide was often limited to the is given post-plating treatments prevention of “finger staining,’ but not consisting of chromate conversion much more. Typical neutral salt spray coatings, topcoats, and sealers. Until test (NSST) resistance was 3 or 4 hours recently, these chromate conversion to 5% white rust. coatings and sealers contained the hexavalent chromium ion from either Improvements that lead to what are chromic acid or chromates. referred to as second generation trivalent chromates, consisted of “more of the The End of Life Vehicles (ELVs) same.” Higher concentrations, higher Directive (2000/53/EC) of the European temperature, and the use of fluoride Union mandated the replacement of extended the NSST corrosion resistance hexavalent chrome by July 1, 2007 and to perhaps as high as 24 hours to 5% has effectively ended the use of white rust. 2006 SUR/FIN Proceedings 818 ©2006 SFIC The next step was the introduction of (sputtering), where the surface is “thick film” trivalent passivates that bombarded with ionized argon to relied upon the introduction of weak remove layers of the film. The revealed organic acids into the formulations.3 surface is then exposed to an electron This innovation provided corrosion beam that causes x-ray emission from resistance of about 48 hours to 5% white Auger electron transitions in the excited rust in salt spray corrosion testing for atoms within the film. films that were about 100 nm thick. True third generation trivalent chromates 100 90 were improvements based on the 80 70 Nano introduction of transition metals and 60 O 50 Cr higher operating temperatures, which 40 N 30 produced thick (~400nm), green Zn 4 20 coatings with red/green iridescence. 10 Elemental Percent 0 The corrosion resistance provided by 0 100 200 300 400 500 600 700 800 900 1000 these “green” coatings was a quantum Depth (Angstroms) leap beyond what could heretofore be th Figure 1. Ion milling of 4 generation achieved. NSST results were in excess trichromate film, using Auger detection. of 300 hours to 5% white rust. Another property of third generation trivalent As the sputtering proceeds, more and chromates is that they have little water more layers of the film are peeled away, of hydration in the film and are less as illustrated in Figure 1. At the surface affected by exposure to heat. Therefore, can be seen the presence of a baking will not significantly degrade spontaneously formed nano-particle them. topcoat, followed by the actual chromate conversion coating, that also contains Fourth generation trivalent chromate nano-particles. Finally, the milling films are also thick (~400nm), but with process reaches the zinc surface. The a blue, slightly iridescent color. These total film thickness milled is about films are also able to achieve over 300 400 nm. Fourth generation trivalent hours in NSST to 5% white rust. A chromates contain the nano-particles in unique property of this fourth generation the chromating solution and are not a trivalent chromate is that it exhibits self- post-chromate topcoat. healing properties, somewhat like the self-healing of hexavalent chromate The chrome-containing layer in this film films. The unique ability to self-heal is is relatively thin for a chromate that the result of incorporating nano-particles achieves more than 300 hours in NSST in the formulations. These chemically testing, and consequently contains much inert particles spontaneously form a less trivalent chromium than third topcoat on the chromate, while the parts generation films. Corrosion resistance are being processed in the trivalent of 600 hours to 5% white rust has been chromating solution. reported; twice what is achievable with yellow hexavalent chromates! These layers can be seen in Figure 1, which illustrates the results of an “Self-healing” is the property of analytical process called ion milling chromate films which allows small 2006 SUR/FIN Proceedings 819 ©2006 SFIC imperfections or cracks in the film to be Figure 3 shows the relationship between filled with more “chromate” from the chrome concentration and NSST for a chemicals already present in the fourth generation iridescent, trivalent chromate film and water from the chromate. Figure 4 shows the very environment; i.e., the salt spray cabinet. important relationship between In the case of hexavalent chromates, temperature and time to white rust. It these “healing” chemicals include can be noticed that the optimum chromate ion that diffuse into scratches temperature is about 30 degrees in the film and further react with zinc to centigrade, a significantly lower repair the scratch with more chromate temperature than third generation conversion coating. trivalent chromates. Therefore, fourth generation trivalent chromates are considered “low temperature”. 500 400 300 Figure 2. Self-healing illustration using 200 nanoparticles to fill voids. 100 Hours to WR 0 Self-healing with nano-particles is 15 25 35 45 illustrated in Figure 2. Here the nano- Temperature particle coating can be seen filling a cut in the chromate film. Q-Panels with Figure 4. Corrosian resistance vs. operating crosscuts have gone more than 300 hours temperature. in NSST without corrosion. In Figure 5 the effect of immersion time Fourth generation chromates do not use on corrosion in salts spray can be seen. organic acids, so waste treatment It should be noted that most of the problems caused by complexed metals corrosion protection can be attributed to are avoided. These fourth generation the first 20 seconds of immersion at 30 films are totally inorganic. Baking will degrees. not significantly degrade them. 500 500 400 400 300 300 200 200 100 Hours to WR Hours to WR 0 100 1.534.56 0 Chrome concentration(g/L) 10 20 30 40 50 60 70 Immersion Time (sec.) Figure 3. Corrosion resistance vs. chrome concentration. Figure 5. Corrosion resistance vs. immersion time 2006 SUR/FIN Proceedings 820 ©2006 SFIC Figure 6 shows that for the best results in generation trivalent chromates, requiring salt spray, the optimum pH is 2.0, with a operators and vendors to work together fairly narrow range of operating pH from to achieve optimum performance. 1.8 to 2.2. At pH<1.8, the film is dissolving as well as forming, and at pH>2.2, the nano-particles begin to fall References: out of solution before they can form a 1. The Environment Agency, 2006, film. www.environmentagency.gov.uk 2. Directive 2002/95/EC of the European Parliament and Council. 500 3. Klos, US Patent 5,368,655; 1994. 400 4. Preikschat, et al, US Patent 6,946,201. 300 200 100 Hours to WR 0 1.6 1.8 2 2.2 2.4 2.6 pH Figure 6. Corrosion resistance vs. operating pH. Iron and zinc are the most significant contaminants in the chromating solution. Levels of iron can reach 300 ppm without any decrease in corrosion protection, whereas zinc can reach 20,000 ppm in these chromates without any detrimental effects. Iron will discolor (blacken) the film long before it reduces corrosion resistance. Self-healing and low temperature operation are unique characteristics of fourth generation trivalent chromates. As with all thick film trivalents, careful control of operating parameters is necessary to achieve the promised performance. This cannot be emphasized enough. Operating outside the recommended limits in the operating instructions will result in poor performance, in terms of corrosion resistance, but can also cause the chromating solution to decompose. Therefore, there is a new learning curve for successful operation of fourth 2006 SUR/FIN Proceedings 821 ©2006 SFIC.
Recommended publications
  • Methods to Improve the Corrosion Performance of Microporous Nickel Deposits
    Methods to Improve The Corrosion Performance Of Microporous Nickel Deposits By Robert A. Tremmel During the last several years, nickel, which is essentially sulfur- microporous nickel-chromium free, plus a thinner layer of bright coatings have been critically nickel. Duplex nickel provides scrutinized by the automotive corrosion protection that is far industry. Today these coatings must superior to single layer systems. In be free of all surface defects, even these duplex systems, when corrosion after long-term exposure to acceler- occurs through a pore in the chro- ated tests and in real-life service. mium plate, the bright nickel is While proper control of all the rapidly penetrated until the semi- multi-layer nickel deposits is bright nickel is reached. Because the important, blemish-free surfaces electrochemical potential of the semi- Fig. 1—Corrosion mechanism of decorative nickel- can only be obtained when the chromium deposits. bright deposit is greater than that of microdiscontinuity and the activity the bright nickel deposit, thereby of the post-nickel strike are prop- making it more noble, the bright erly achieved and maintained. This also be free of surface defects1. nickel layer will corrode preferen- edited version of a paper presented Simply meeting porosity specifica- tially to the semi-bright nickel layer. at SUR/FIN® ’96—Cleveland shows tions is not enough. The size of the As the pit widens, however, some that research indicates that the pores is important, as well as the attack will eventually occur in the most important factor is the electrochemical potential of the semi-bright nickel layer and ulti- electrochemical potential of the microporous nickel strike.
    [Show full text]
  • Analysis of Hard Chromium Coating Defects and Its Prevention Methods
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-2, Issue-5, June 2013 Analysis of Hard Chromium Coating Defects and its Prevention Methods L.Maria Irudaya Raj, Sathishkumar.J, B.Kumaragurubaran, P.Gopal Abstract — This paper mainly deals with various Chromium coating defects that occur while electro plating of different II. COATING mechanical components and methodology adopted to prevent it. It also covers suggestions to minimize this problem. This paper Coating may be defined as a coverage that is applied over contains new suggestions to minimize the problems by using the surface of any metal substrate part/object. The purpose of recent technological developments. Since the chemicals used for applying coatings is to improve surface properties of a bulk chromium coating are posing threat to environment it is need of material usually referred to as a substrate. One can improve the hour to minimise the use such chemical consumption. The amongst others appearance, adhesion, wetability, corrosion reduction in defective components will increase productivity as resistance, wear resistance, scratch resistance, etc. well as protect the environment to some extent It also describes the various alternate coating methods for chromium coating through III. HARD CHROME COATING PROCESS which we can achieve the required surface properties. India being a Developing country .for various coating application chromium The coating process consists of Chrome Chemical Bath, is used. Since the process is slow and involves lengthy cycle time Anode, Cathode potentials, part to be coated, Heaters, unless the defects are minimized the products cannot be delivered rectifiers & Electrical control systems. Initially the bath has to in time which will create loss to the Industries.
    [Show full text]
  • Plating on Aluminum
    JJW o NBSiR 80-2142 (Aluminum Association) on Aluminum AUG 5 1981 D. S. Lashmore Corrosion and Electrodeposition Group Chemical Stability and Corrosion Division National Measurement Laboratory U.S. Department of Commence National Bureau of Standards Washington, DC 20234 November 1980 Final Report Prepared for The Aiuminum Association The American Electropiaters Society 818 Connecticut Avenue, N.W. 1201 Louisiana Ave. Washington, DC 20006 Winter Park, FL 32789 NBSIR 80-2142 (Aluminum Association) PLATING ON ALUMINUM D. S. Lashmore Corrosion and Electrodeposition Group Chemical Stability and Corrosion Division National Measurement Laboratory U.S. Department of Commerce National Bureau of Standards Washington, DC 20234 November 1980 Final Report Prepared for The Aluminum Association The American Electroplaters Society 818 Connecticut Avenue, N.W. 1201 Louisiana Ave. Washington, DC 20006 Winter Park, FL 32789 U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary Jordan J. Baruch, Assistant Secretary for Productivity, Technoiogy, and Innovation NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director Table of Contents Page 1. Introduction 1 2. Program Summary 2 3. Phosphoric Acid Anodizing Prior to Plating 10 3.1. Adhesion Data 10 3.2. Microstructure of the Anodic Film 17 3.2.1. Microstructure of nickel plated onto the anodic 19 film 3.2.2. Initial Stages of Oxidation 25 3.3. Electrochemical Measurements 32 3.3.1. Current Density versus Applied Potential 32 3.3.2. Scanning Voltammetry 33 4. Immersion Deposition 37 4.1. Scanning Voltammetry 37 4.2. Dissolution Data 41 4.3. Discussion 44 5. Adhesion Theory 45 5.1. Adhesion of Metallic Coatings 45 5.2. Pre-existing Crack--Griffith Criterion 52 5.3.
    [Show full text]
  • Electrodeposition of Nanocrystalline Cobalt Alloy Coatings As a Hard Chrome Alternative
    NAVAIR Public Release 09-776 Distribution: Statement A - "Approved for public release; distribution is unlimited." ELECTRODEPOSITION OF NANOCRYSTALLINE COBALT ALLOY COATINGS AS A HARD CHROME ALTERNATIVE Ruben A. Prado, CEF Naval Air Systems Command (FRCSE) Materials Engineering Laboratory, Code 4.3.4.6 Jacksonville, FL 32212-0016 Diana Facchini, Neil Mahalanobis, Francisco Gonzalez and Gino Palumbo Integran Technologies, Inc. 1 Meridian Rd. Toronto, Ontario, Canada M9W 4Z6 ABSTRACT Replacement of hard chromium (Cr) plating in aircraft manufacturing activities and maintenance depots is a high priority for the U.S. Department of Defense. Hard Cr plating is a critical process that is used extensively within military aircraft maintenance depots for applying wear and/or corrosion resistant coatings to various aircraft components and for general re-build of worn or corroded parts during repair and overhaul. However, chromium plating baths contain hexavalent chromium, a known carcinogen. Wastes generated from these plating operations must abide by strict EPA emissions standards and OSHA permissible exposure limits (PEL), which have recently been reduced from 52µg/m3 to 5µg/m3. The rule also includes provisions for employee protection such as: preferred methods for controlling exposure, respiratory protection, protective work clothing and equipment, hygiene areas and practices, medical surveillance, hazard communication, and record-keeping. Due to the expected increase in operational costs associated with compliance to the revised rules and the
    [Show full text]
  • UK HITEA Project for Chromate Replacement.Pdf
    REACH Compliant Hexavalent Chrome Replacement for Corrosion Protection (HITEA) Brad Wiley Rolls-Royce plc Image courtesy of Manchester University Trusted to deliver excellence The information in this document is the property of the members of the Project Consortium (Technology Strategy Board Project 101281) and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of the consortium members. Approved for distribution – Rolls Royce, 12/8/14 The Need 2 • On the 1st June 2007 the European Union enacted REACH – Registration, Evaluation, Authorisation and Restriction of Chemicals – legislation. • Hexavalent chrome compounds are classified as substances of very high concern (SVHC) because they are Carcinogenic, Mutagenic or Toxic for Reproduction (CMR). • The stringent regulation of these compounds means that suitable alternatives must be investigated and implemented to ensure that product performance and business continuity is maintained. • The sunset date for hexavalent chrome compounds is September 2017. Engine Guide Vane Actuator 3 Aluminium Housing •Forged / Make from Solid •Chromic acid anodised (CAA) externally. Aluminium Piston •Chromic Acid Anodised Head •Hard Chrome Plated Stem •Chromate Conversion Coating (CCC) Images courtesy of Rolls-Royce Controls & Data Services Ltd. The Role of the AAD and Materials KTNs 4 • A joint AAD and Materials KTN workshop in 2011 resulted in: - Definition of the hexavalent chromium replacement problem - Outline of a possible research strategy - Potential partnerships to address the problem • The KTNs influenced the TSB collaborative R&D competitions to ensure REACH was a priority theme. • Created the opportunity for the UK to position itself as the leading exponent of REACH-compliant materials science.
    [Show full text]
  • REACH Regulation: Replacement of Hard Chrome With
    REACH REGULATION: For many years hard chrome plating was an industrial standard process for wear and corrosion protection, but REPLACEMENT OF HARD due to the European REACH regulations the application CHROME WITH S³P of hard chrome plating will be highly regulated after 2017. Beside desired properties like wear resistance, medium corrosion resistance and galling resistance the application of hard chrome is limited by reduced fatigue strength and flaking of the coating. S³P surface-hardening of corrosion resistant materials is an efficient alternative to hard chrome, which is superior to a coating in many applications thanks to its technological properties. S³P – Specialty Stainless Steel Processes Replacement of Hard Chrome Corrosion resistant, hard yet ductile Bodycote S³P (Specialty Stainless Steel Processes) offers processes that produce a very hard yet ductile diffusion zone with a surface hardness of more than 1000 HV 'microhardness' on the surface of corrosion resistant steels, nickel-based and cobalt-chromium alloys. Benefits of the processes include considerably enhanced wear resistance, which is superior to hard chrome plating in many areas, fig. 1. Unlike coatings, the bending fatigue strength can also be significantly improved, which allows a more efficient design of Fig. 1 Wear width in pin-and-disc tribometer (Al2O3 ball Grade 25 components. No flaking occurs on the hard outer surface either. according to DIN 5402:2012), contact pressure: 100 N, sliding speed: 66 mm / s, wear tolerance: 5 m, base material: 1.4404; Especially product-contact applications of hard chromium can the S³P-treated component exhibits the strongest abrasion be safety-critical, fig.
    [Show full text]
  • The Chrome Plating Industry PFAS TECHNICAL UPDATE
    HALEY & ALDRICH PFAS TECHNICAL UPDATE The chrome plating industry Studies are showing that per- and polyfluoroalkyl California has issued PFAS assessment orders for substances (PFAS) may have potential adverse human airports, landfills, and most recently, to about 270 health and environmental impacts. This has led to the chrome plating operations. And California is not alone. setting of health-based standards, including mandatory A growing number of states are pursuing PFAS policies state orders for various entities requiring investigation of and may, in time, also assess the plating industry. potential PFAS contamination. The regulatory landscape THE CHROME PLATING PROCESS is evolving as the scientific and regulatory communities continue to learn about PFAS and their impacts. Manufacturers use plating, in which a metal cover is deposited on a conductive surface, for many purposes. It To make informed decisions about if, when, and how is used for corrosion inhibition and radiation shielding; to to investigate, manufacturers will need to understand harden, reduce friction, alter conductivity, and decorate the use of PFAS in their operations, including technical objects; and to improve wearability, paint adhesion, and historical details. Haley & Aldrich’s PFAS Technical infrared (IR) reflectivity, and solderability. Chrome plating Updates will help you stay informed. is one of the most common forms of metallic plating. www.haleyaldrich.com ► HALEY & ALDRICH PFAS TECHNICAL UPDATE: The chrome plating industry Chrome plating is one of the most widely used industrial processes and is a finishing treatment using electrolytic deposition of a coating of chromium onto a surface for decoration, corrosion protection, or durability. An electrical charge is applied to a tank (bath) containing an electrolytic salt solution.
    [Show full text]
  • Control Technology Assessment: Metal Plating and Cleaning Operations
    TECHNICAL REPORT Control Technology Assessment: Metal Plating and Cleaning Operations u.s. DEPARTMENT OF HeALHI AND HUMAN SERVICES Public Health Service centers for Disease Control National Institute for Occupational Safety and Health NIOSH TECHNICAL REPORT CONTROL TECHNOLOGY ASSESSMENT: METAL PLATING AND CLEANING OPERATIONS John W. Sheehy Vincent D. Mortimer James H. Jones Stephanie E. Spottswood U. S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Centers for Disease Control National Institute for Occupational Safety and Health Division of Physical Sciences and Engineering Cincinnati, Ohio 45226 December 1984 For aale by the Superi.ntendent of Documents. U.S. Government Printing Offlet', Washington, D.C. 20402 /-- ()." DISCLAIMER Mention of company names or products does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). DHHS (NIOSH) Publication No. 85-102 ii ABSTRACT A control technology assessment of electroplating and cleaning operations was conducted by the National Institute for Occupational Safety and Health (NIOSH). Walk-through surveys were conducted at about 30 electroplating plants and 9 in-depth studies at 8 plants. Air sampling and ventilation data and other control information were collected for 64 plating and cleaning tanks. Thirty-one of these were hard chrome plating tanks but cadmium, copper, nickel, silver, and zinc plating tanks were also evaluated. Acid, caustic and solvent cleaning tanks were also evaluated. Worker exposures were found to be controlled below existing and recommended standards. i11 CONTENTS ABSTRACT • iii ACKNOWLEDGEMENTS ix I. INTRODUCTION • 1 II. METAL PLATING INDUSTRY 3 Mechanical Processes 3 Bath Composition • 4 Cleaning Tanks 4 Electroplating Baths 6 III. HEALTH HAZARD ANALYSIS 11 Overview of Chromium Health Effects 11 Acids, Alkalies, and Solvents 16 Metals and Salts 18 IV.
    [Show full text]
  • A Hybrid Predictive Approach for Chromium Layer Thickness in The
    mathematics Article A Hybrid Predictive Approach for Chromium Layer Thickness in the Hard Chromium Plating Process Based on the Differential Evolution/Gradient Boosted Regression Tree Methodology Paulino José Garcia Nieto 1, Esperanza García Gonzalo 1 , Fernando Sanchez Lasheras 1,* and Antonio Bernardo Sánchez 2 1 Department of Mathematics, Faculty of Sciences, University of Oviedo, c/Federico García Lorca 18, 33007 Oviedo, Spain; [email protected] (P.J.G.N.); [email protected] (E.G.G.) 2 Department of Mining Technology, Topography and Structures, University of León, 24071 León, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-985-103376; Fax: +34-985-103354 Received: 10 May 2020; Accepted: 9 June 2020; Published: 11 June 2020 Abstract: The purpose of the industrial process of chromium plating is the creation of a hard and wear-resistant layer of chromium over a metallic surface. One of the main properties of chromium plating is its resistance to both wear and corrosion. This research presents an innovative nonparametric machine learning approach that makes use of a hybrid gradient boosted regression tree (GBRT) methodology for hard chromium layer thickness prediction. GBRT is a non-parametric statistical learning technique that produces a prediction model in the form of an ensemble of weak prediction models. The motivation for boosting is a procedure that combines the output of many weak classifiers to produce a powerful committee. In this study, the GBRT hyperparameters were optimized with the help of differential evolution (DE). DE is an optimization technique within evolutionary computing. The results found that this model was able to predict the thickness of the chromium layer formed in this industrial process with a determination coefficient equal to 0.9842 and a root-mean-square error value of 0.01590.
    [Show full text]
  • Research on Chrome Plating of Steel Bars
    The Scientific Bulletin of VALAHIA University – MATERIALS and MECHANICS – Nr. 10 (year 13) 2015 RESEARCH ON CHROME PLATING OF STEEL BARS Elena Valentina STOIAN 1, Vasile BRATU 1, Florina Violeta ANGHELINA 1, Maria Cristiana ENESCU 1 1 Valahia University of Targoviste, Faculty of Materials Engineering and Mechanics, Department of Materials Engineering, Mechatronics and Robotics, Str. Aleea Sinaia, No. 13, Targoviste, Romania, E-mail: [email protected] Abstract: The main objective of this work was to achieve for steel bars according to EN 10083 C45E, a uniform thickness of the layer of chromium deposited on them, after hard chrome plating process. Chrome plating process was occurred by electrochemical and chromium layer deposited. This deposited on the steel bars, must ensure increased corrosion resistance, low friction coefficient, high hardness and high wear resistance. Also following treatment hardening (HI – hardening by induction using medium frequency, induction currents 3400-10.000Hz at a temperature 9500C) on the bars, were determined hardness HV 01 and HRC. Variation of hardness layer with the depth of it, are shown graphs .We can see that the surface induction hardened material has high hardness, and that decrease as we get it chrome plating layer. Keywords: C45E steel, hardening induction (HI), hard chrome plating, hardness HV 01 and HRC ratio of chromic anhydride and sulfuric acid in the 1. INTRODUCTION electrolyte is kept constant, most preferably of 90-120. The chromium electrolytically deposited is silver colored The reduction of this ratio leads to reduced diffusion of - opaque and is very hard (600-1200 HB). Chromium is the electrolyte, and the yield.
    [Show full text]
  • 19. the Galvanic (Electrochemical) Series
    19. THE GALVANIC (ELECTROCHEMICAL) SERIES INTRODUCTION All conductive elements (all metals) have different electrical potentials. These electrical potentials put each metal in a hierarchy of activity, with the most active metals at the top of the lists, and the least active at the bottom. This order of electrochemical activity is called the Galvanic Series. A metal higher in the Galvanic Series will corrode preferentially to a metal below it in the Series. The greater the distance apart the metals are in the Galvanic Series, the higher the current that will fl ow between them if they are connected in the presence of an electrolyte (a conducting solution; usually water containing dissolved salts). Some metals like aluminium and zinc develop tough oxide fi lms. These fi lms give them exceptionally good corrosion resistance, although they are among the most active metals. The position of zinc on the Galvanic Series, above most other metals, means that it will corrode preferentially if it contacts any of these metals and moisture is present. This characteristic of zinc is an important part of its exceptional performance in protecting steel from corrosion. Many steel products are galvanized using continuous galvanizing processes. These semi-fabricated steel items (columns, beams, angles etc.) are subject to further processes like slitting, cutting, drilling, punching and welding. This leaves the steel uncoated on cut edges and other areas damaged by processing. The galvanic protection provided by the adjacent zinc coating provides these steel products with their anti-corrosion performance, otherwise rapid corrosion would occur on these exposed areas. A counter example occurs with chrome-plated steel.
    [Show full text]
  • Pavco Brochure
    Pre-Plate / Plating / Post-Plate / Waste Treatment Complete Finishing Solutions Our Company It is likely that every day you come in contact with products protected and beautified with a PAVCO® finish; cars, appliances, housewares, hardware, and a host of other products for consumers and industry. Since our founding in 1948, PAVCO, Inc. has developed a reputation for developing products and delivering services of the highest quality at a reasonable cost. Development has since delivered new, innovative technologies for zinc, nickel, tin, alloys, cadmium, chrome, copper, and phosphate systems. PAVCO ‘s entrance into these fields has given the marketplace fresh technological options in sectors that began to accept the “status quo” in these systems. It is these same ideals that continue to guide PAVCO into the 21st century, further fostering our position in the global marketplace. 2 The Future Looks Bright As we approach seven decades in business, we look back with pride on our numerous technologies that have moved the industry forward, and look forward to a future full of promise. Stay tuned. The finishing products that will power our industry tomorrow are being developed in the PAVCO labs today. Contents Compliant Chemistries. 5 Pre-Plate Products ...................6 Plating Technologies .................7 Post-Plate Products ................ 10 Wate Treatment .................... 14 3 Compliant Chemistry The Pavco Compliant Chemistry division markets and manages one of the industries most comprehensive and prominent lines of technologies meant to meet the ever-increasing list of compliant chemistry directives. Our HyPro™ family of compliant chemistries can be found around the globe. HyPro™ has long been a leading brand name for metal finishers that seek compliant chemistries across a wide range of industry.
    [Show full text]