Imocaris Tuberculata, N. Gen., N. Sp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Evidence That Both Ancient Vicariance and Dispersal Have Contributed to the Biogeographic Patterns of Anchialine Ca
www.nature.com/scientificreports OPEN Phylogenetic evidence that both ancient vicariance and dispersal have contributed to Received: 6 December 2016 Accepted: 25 April 2017 the biogeographic patterns of Published: xx xx xxxx anchialine cave shrimps José A. Jurado-Rivera1, Joan Pons2, Fernando Alvarez3, Alejandro Botello4, William F. Humphreys5,6, Timothy J. Page 7,8, Thomas M. Iliffe9, Endre Willassen10, Kenneth Meland11, Carlos Juan1,2 & Damià Jaume2 Cave shrimps from the genera Typhlatya, Stygiocaris and Typhlopatsa (Atyidae) are restricted to specialised coastal subterranean habitats or nearby freshwaters and have a highly disconnected distribution (Eastern Pacific, Caribbean, Atlantic, Mediterranean, Madagascar, Australia). The combination of a wide distribution and a limited dispersal potential suggests a large-scale process has generated this geographic pattern. Tectonic plates that fragment ancestral ranges (vicariance) has often been assumed to cause this process, with the biota as passive passengers on continental blocks. The ancestors of these cave shrimps are believed to have inhabited the ancient Tethys Sea, with three particular geological events hypothesised to have led to their isolation and divergence; (1) the opening of the Atlantic Ocean, (2) the breakup of Gondwana, and (3) the closure of the Tethys Seaway. We test the relative contribution of vicariance and dispersal in the evolutionary history of this group using mitochondrial genomes to reconstruct phylogenetic and biogeographic scenarios with fossil- based calibrations. Given that the Australia/Madagascar shrimp divergence postdates the Gondwanan breakup, our results suggest both vicariance (the Atlantic opening) and dispersal. The Tethys closure appears not to have been influential, however we hypothesise that changing marine currents had an important early influence on their biogeography. -
Pennsylvanian Boundary Unconformity in Marine Carbonate Successions
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences Summer 6-2014 ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING. Lucien Nana Yobo University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geoscidiss Part of the Geochemistry Commons, Geology Commons, Sedimentology Commons, and the Stratigraphy Commons Nana Yobo, Lucien, "ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING." (2014). Dissertations & Theses in Earth and Atmospheric Sciences. 59. http://digitalcommons.unl.edu/geoscidiss/59 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING. By Luscalors Lucien Nana Yobo A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Tracy D. -
Carboniferous Formations and Faunas of Central Montana
Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________ -
Revision of Some of Girty's Invertebrate Fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma Introduction by MACKENZIE GORDON, JR
Revision of Some of Girty's Invertebrate Fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma Introduction By MACKENZIE GORDON, JR. Corals By WILLIAM J. SANDO Pelecypods By JOHN POJETA, JR. Gastropods By ELLIS L. YOCHELSON Trilobites By MACKENZIE GORDON, JR. Ostracodes By I. G. SOHN GEOLOGICAL SURVEY PROFESSIONAL PAPER 606-A, B, C, D, E, F Papers illustrating and describing certain of G. H. Girty' s invertebrate fossils from the Fayetteville Shale UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 70-650224 For sale by the Superintendent of Documents, U.S. Government Printing Office Washing.ton, D.C. 20402 CONTENTS [The letters in parentheses preceding the titles are those used to designate the chapters] Page (A) Introduction, by Mackenzie Gordon, Jr _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 (B) Corals, by William J. Sando__________________________________________________________________________________ 9 (C) Pelecypods, by John Pojeta, Jr _____ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 15 (D) Gastropods, by Ellis L. -
Arkansas Geology: Bluffs, Crevices, Pedestals, and Fossils
EWS - 08 STATE OF ARKANSAS ARKANSAS GEOLOGICAL SURVEY BEKKI WHITE, DIRECTOR AND STATE GEOLOGIST ______________________________________________________________________________ EDUCATIONAL WORKSHOP SERIES 08 ______________________________________________________________________________ Arkansas Geology: Blus, Crevices, Pedestals, and Fossils Angela Chandler Little Rock, Arkansas 2015 EWS - 08 STATE OF ARKANSAS ARKANSAS GEOLOGICAL SURVEY BEKKI WHITE, DIRECTOR AND STATE GEOLOGIST ______________________________________________________________________________ EDUCATIONAL WORKSHOP SERIES 08 ______________________________________________________________________________ Arkansas Geology: Blus, Crevices, Pedestals, and Fossils Angela Chandler Little Rock, Arkansas 2015 STATE OF ARKANSAS Mike Beebe, Governor Arkansas Geological Survey Bekki White, State Geologist and Director COMMISSIONERS Dr. Richard Cohoon, Chairman………………………. Russellville William Willis, Vice Chairman………………………… Hot Springs Gus Ludwig…….…………………………………......... Quitman Ken Fritsche……………………………………………. Greenwood William Cains…………………………………………… Altus Quin Baber……………………………………………… Benton David Lumbert………………………………………….. Little Rock Little Rock, Arkansas 2015 Table of Contents Geologic Setting..…………………………………………………….. 1 Deposition of rock formations – Upper Mississippian (331-323 million years ago ).......................................................................... 4 Description of rock formations – Boston Mountain Plateau – Pitkin Limestone………………………………….. 5 Deposition of rock formations -
Addition of Fossil Evidence to a Robust Morphological Cladistic Data Set
Bulletin of the Mizunami Fossil Museum, no. 31 (2004), p. 1-19, 7 figs., 1 table. c 2004, Mizunami Fossil Museum Decapod phylogeny: addition of fossil evidence to a robust morphological cladistic data set Frederick R. Schram 1 and Christopher J. Dixon 2 1 Zoological Museum, University of Amsterdam, Mauritskade 57, NL-1092 AD Amsterdam, The Netherlands <[email protected]> 2 Institut für Botanik, University of Vienna, Rennweg 14, A-1030 Vienna, Austria Abstract Incorporating fossils into schemes for the phylogenetic relationships of decapod crustaceans has been difficult because of the generally incomplete nature of the fossil record. Now a fairly robust data matrix of characters and taxa relevant to the phylogeny of decapods has been derived from consideration of living forms. We chose several taxa from the fossil record to test whether the robustness of the matrix can withstand insertion of fossils with various degrees of incomplete information. The essential structure of the original tree survives, and reasonable hypotheses about the affinities of selected fossils emerge. Sometimes we detected singular positions on our trees that indicate a high certainty about where certain taxa fit, while under other conditions there are alternative positions to choose from. Definitive answers are not to be expected. Rather, what is important is the demonstration of the usefulness of a method that can entertain and specifically document multiple alternative hypotheses. Key words: Decapoda, phylogeny, cladistics clades, viz., groups they termed Fractosternalia [Astacida Introduction + Thalassinida + Anomala + Brachyura], and Meiura [Anomala + Brachyura]. Schram (2001) later computerized Taxonomies of Decapoda have typically been constructed their analysis, allowing a more objective view of similar either with almost no regard to the fossil record, or, in a data. -
Exceptional Late Devonian Arthropods Document the Origin of Decapod
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.352971; this version posted October 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Exceptional Late Devonian arthropods document the origin of decapod 2 crustaceans 3 4 Pierre Gueriau1,*, Štěpán Rak2,3, Krzysztof Broda 4, Tomáš Kumpan5, Tomáš Viktorýn6, Petr 5 ValacH7, MicHał Zatoń4, Sylvain CHarbonnier8, Javier Luque9,10,11 6 7 1Institute of EartH Sciences, University of Lausanne, Géopolis, CH-1015 Lausanne, Switzerland. 8 2Charles University, Institute of Geology and Palaeontology, albertov 6, 128 43 Prague 2, CzecH 9 Republic. 10 3Department of Zoology, Faculty of Science, CHarles University, Viničná 7, 12800, Prague 2. 11 4University of Silesia in Katowice, Faculty of Natural Sciences, Institute of EartH Sciences, 12 Będzińska 60, 41-200 Sosnowiec, Poland. 13 5Department of Geological Sciences, Faculty of Sciences, Masaryk University, Kotlářská 2, Brno 14 602 00, CzecH Republic. 15 6SlavkovskéHo 864/9, 62700, Brno, CzecH Republic. 16 7Královopolská 34, 616, Brno, CzecH Republic. 17 8Muséum national d’Histoire naturelle, Sorbonne Université, CNRS UMR 7207, CR2P, Centre de 18 Recherche en Paléontologie - Paris, 8 rue Buffon, 75005, Paris, France 19 9Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, 20 Harvard University, 26 Oxford Street, Cambridge, Ma, 02138, USa. 21 10Department of EartH and Planetary Sciences, Yale University, New Haven, CT 06511, USa. 22 11SmitHsonian Tropical ResearcH Institute, Balboa–Ancón 0843–03092, Panamá, Panamá. -
Regional Carbonate Deposition of the Pitkin Limestone (Chesterian): Washington and Crawford Counties, Arkansas Robert E
Journal of the Arkansas Academy of Science Volume 30 Article 35 1976 Regional Carbonate Deposition of the Pitkin Limestone (Chesterian): Washington and Crawford Counties, Arkansas Robert E. Tehan University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Sedimentology Commons, and the Stratigraphy Commons Recommended Citation Tehan, Robert E. (1976) "Regional Carbonate Deposition of the Pitkin Limestone (Chesterian): Washington and Crawford Counties, Arkansas," Journal of the Arkansas Academy of Science: Vol. 30 , Article 35. Available at: http://scholarworks.uark.edu/jaas/vol30/iss1/35 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 30 [1976], Art. 35 Regional Carbonate Deposition of the PitkinLimestone (Chesterian): Washington and Crawford Counties, Arkansas ROBERT E.TEHAN Geology Department, University of Arkansas Fayetteville, Arkansas 72701 ABSTRACT The Pitkin Limestone overlies black shale of the Fayetteville Formation and is the youngest Mississippian unit in the Paleozoic succession of northwest Arkansas. Five major fades have been delineated withinthe formation by apetrographic examination of samples collected from 17 measured sections: (1) oolith facies, (2) bioclast facies, (3) nodular limestone-shale facies, (4) mudstone facies, and (5) lime mud mound facies. -
The Stratigraphic Section in the Vicinity of Eureka, Nevada
The Stratigraphic Section in the Vicinity of Eureka, Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 276 The Stratigraphic Section in the Vicinity of Eureka, Nevada By T. B. NOLAN, C. W. MERRIAM, and J. S. WILLIAMS GEOLOGICAL SURVEY PROFESSIONAL PAPER 276 Revision of the pre- Tertiary stratigraphy of east-central Nevada UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1956 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $1.00 (paper cover) CONTENTS Page Page Abstract_ _____________________ 1 Silurian system.___________________________ 36 Introduction. _--___-______--___- 2 Roberts Mountains formation.__________ 36 Acknowledgments- --.-_---___-_-. 3 Lone Mountain dolomite__________... 37 Structural setting._______________ 3 Devonian system.__________-_-_-__--_____. 40 Economic significance. _-__._. 5 Nevada formation_________--______--. 40 Cambrian system.________________ 5 Beacon Peak dolomite member. 42 Prospect Mountain quartzite.. 6 Oxyoke Canyon sandstone member... 43 Pioche shale_______--_-_-_.__. 7 Sentinel Mountain dolomite member. 43 Eldorado dolomite___________ 9 Woodpecker limestone member. 44 Geddes limestone.___________ 11 Bay State dolomite member.--...--. 45 Secret Canyon shale._________ 12 Devils Gate limestone._________________ 48 Lower shale member. .... 13 Meister member.__________________ 49 Hayes Canyon member.____________ 49 Clarks Spring member.._ 14 Devonian and Mississippian systems. ________ 52 Hamburg dolomite.___-_.____ 16 Pilot shale________-__-_-___--__---_-_. 52 Dunderberg shale.___________ 18 Carboniferous systems_.____-__-______-__- 54 Windfall formation.__________ 19 Mississippian system._________--,___-_- 54 Catlin member._________ 20 Joana limestone,___________________ 54 Bullwhacker member. -
Pt07 003 Id229 00000026.Tif
CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN VOL. XIX, NO.,5, pp. 47-64 (5 pls., 1 fig.) SEPTEMBER22, 1964 RARE CRUSTACEANS FROM THE UPPER DEVONIAN CHAGRIN SHALE IN NORTHERN OHIO BY MYRON T. STURGEON, WILLIAM J. HLAVIN, AND ROBERT V. KESLING MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Director: LEWISB. KELLUM The series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collections in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan. VOLUMEXIX 1. Silicified Trilobites from the Devonian Jeffersonville Limestone at the Falls of the Ohio, by Erwin C. Stumm. Pages 1-14, with 3 plates. 2. Two Gastropods from the Lower Cretaceous (Albian) of Coahuila, Mexico, by Lewis B. Kellum and Kenneth E. Appelt. Pages 15-22, with 2 figures. 3. Corals of the Traverse Group of Michigan, Part XII, The Small-celled Species of Favosites and Emmonsia, by Erwin C. Stumm and John H. Tyler. Pages 23-36, with 7 plates. 4. Redescription of Syntypes of the Bryozoan Species ~hombotr~paquadrata (Rominger), by Roger J. Cuffey and T. G. Perry. Pages 37-45, with 2 plates. 5. Rare Crustaceans from the Upper Devonian Chagrin Shale in Northern Ohio, by Myron T. -
Decapod Phylogeny: Addition of Fossil Evidence to a Robust Morphological Cladistic Data Set
Bulletin of the Mizunami Fossil Museum, no. 31 (2004), p. 1-19, 7 figs., 1 table. c 2004, Mizunami Fossil Museum Decapod phylogeny: addition of fossil evidence to a robust morphological cladistic data set Frederick R. Schram 1 and Christopher J. Dixon 2 1 Zoological Museum, University of Amsterdam, Mauritskade 57, NL-1092 AD Amsterdam, The Netherlands <[email protected]> 2 Institut für Botanik, University of Vienna, Rennweg 14, A-1030 Vienna, Austria Abstract Incorporating fossils into schemes for the phylogenetic relationships of decapod crustaceans has been difficult because of the generally incomplete nature of the fossil record. Now a fairly robust data matrix of characters and taxa relevant to the phylogeny of decapods has been derived from consideration of living forms. We chose several taxa from the fossil record to test whether the robustness of the matrix can withstand insertion of fossils with various degrees of incomplete information. The essential structure of the original tree survives, and reasonable hypotheses about the affinities of selected fossils emerge. Sometimes we detected singular positions on our trees that indicate a high certainty about where certain taxa fit, while under other conditions there are alternative positions to choose from. Definitive answers are not to be expected. Rather, what is important is the demonstration of the usefulness of a method that can entertain and specifically document multiple alternative hypotheses. Key words: Decapoda, phylogeny, cladistics clades, viz., groups they termed Fractosternalia [Astacida Introduction + Thalassinida + Anomala + Brachyura], and Meiura [Anomala + Brachyura]. Schram (2001) later computerized Taxonomies of Decapoda have typically been constructed their analysis, allowing a more objective view of similar either with almost no regard to the fossil record, or, in a data. -
Oklahoma Geological Survey Publications on Fossils Bulletins
Oklahoma Geological Survey Publications on Fossils Bulletins Bulletin Part 1. Geology of a portion of northeastern Oklahoma. Part 2. Paleontology of the 24 Chester group in Oklahoma, by L. C. Snider. 1915. Bulletin Fossiliferous boulders in the Ouachita "Caney" shale, and the age of the shale 45 containing them, by E. O. Ulrich. 1927 Bulletin Micropaleontology of the Wetumka, Wewoka, and Holdenville formations, by A. S. 53 Warthin, Jr. 1930. Bulletin Ostracoda of the Simpson Group of Oklahoma, by R. W. Harris. 1957. 75 Stratigraphy and paleontology of the Hunton Group in the Arbuckle Mountain region. Bulletin Part II, Haragan articulate brachiopods, by Thomas W. Amsden. Part III, Supplement 78 to the Henryhouse brachiopods, by Thomas W. Amsden. Part IV, New genera of brachiopods, by Arthur J. Boucot and Thomas W. Amsden. 1958. Bulletin Stratigraphy and paleontology of the Hunton Group in the Arbuckle Mountain region. 82 Part V, Bois d’Arc articulate brachiopods, by Thomas W. Amsden. 1958. Bulletin Stratigraphy and paleontology of the Hunton Group in the Arbuckle Mountain region. 84 Part VI, Stratigraphy, by Thomas W. Amsden. 1960. Bulletin Stratigraphy and paleontology of the Hunton group in the Arbuckle Mountain region. 85 Part VI, Stratigraphy, by Thomas W. Amsden. 1960. Bulletin Late Desmoinesian crinoid faunule from Oklahoma, by Harrell L. Strimple. 1961. 93 Early Devonian brachiopods of Oklahoma. Part I, Articulate brachiopods of the Frisco Formation (Devonian), by Thomas W. Amsden and W. P. S. Ventress. Part II, Bulletin Articulate brachiopods of the Sallisaw Formation (Devonian), by Thomas W. Amsden. 94 Part III, Supplement to the Haragan (Devonian) brachiopods, by Thomas W.