View This Volume's Front and Back Matter

Total Page:16

File Type:pdf, Size:1020Kb

View This Volume's Front and Back Matter GRADUATE STUDIES IN MATHEMATICS 193 A Tour of Representation Theory Martin Lorenz 10.1090/gsm/193 A Tour of Representation Theory GRADUATE STUDIES IN MATHEMATICS 193 A Tour of Representation Theory Martin Lorenz EDITORIAL COMMITTEE Daniel S. Freed (Chair) Bjorn Poonen Gigliola Staffilani Jeff A. Viaclovsky 2010 Mathematics Subject Classification. Primary 16Gxx, 16Txx, 17Bxx, 20Cxx, 20Gxx. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-193 Library of Congress Cataloging-in-Publication Data Names: Lorenz, Martin, 1951- author. Title: A tour of representation theory / Martin Lorenz. Description: Providence, Rhode Island : American Mathematical Society, [2018] | Series: Gradu- ate studies in mathematics ; volume 193 | Includes bibliographical references and indexes. Identifiers: LCCN 2018016461 | ISBN 9781470436803 (alk. paper) Subjects: LCSH: Representations of groups. | Representations of algebras. | Representations of Lie algebras. | Vector spaces. | Categories (Mathematics) | AMS: Associative rings and algebras – Representation theory of rings and algebras – Representation theory of rings and algebras. msc | Associative rings and algebras – Hopf algebras, quantum groups and related topics – Hopf algebras, quantum groups and related topics. msc | Nonassociative rings and algebras – Lie algebras and Lie superalgebras – Lie algebras and Lie superalgebras. msc | Group theory and generalizations – Representation theory of groups – Representation theory of groups. msc | Group theory and generalizations – Linear algebraic groups and related topics – Linear algebraic groups and related topics. msc Classification: LCC QA176 .L67 2018 | DDC 515/.7223–dc23 LC record available at https://lccn.loc.gov/2018016461 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions. Send requests for translation rights and licensed reprints to [email protected]. c 2018 by the American Mathematical Society. All rights reserved. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at https://www.ams.org/ 10987654321 232221201918 For Maria Contents Preface xi Conventions xvii Part I. Algebras Chapter 1. Representations of Algebras 3 1.1. Algebras 3 1.2. Representations 24 1.3. Primitive Ideals 41 1.4. Semisimplicity 50 1.5. Characters 65 Chapter 2. Further Topics on Algebras 79 2.1. Projectives 79 2.2. Frobenius and Symmetric Algebras 96 Part II. Groups Chapter 3. Groups and Group Algebras 113 3.1. Generalities 113 3.2. First Examples 124 3.3. More Structure 131 3.4. Semisimple Group Algebras 143 3.5. Further Examples 150 3.6. Some Classical Theorems 159 vii viii Contents 3.7. Characters, Symmetric Polynomials, and Invariant Theory 170 3.8. Decomposing Tensor Powers 179 Chapter 4. Symmetric Groups 187 4.1. Gelfand-Zetlin Algebras 189 4.2. The Branching Graph 192 4.3. The Young Graph 197 4.4. Proof of the Graph Isomorphism Theorem 205 4.5. The Irreducible Representations 217 4.6. The Murnaghan-Nakayama Rule 222 4.7. Schur-Weyl Duality 235 Part III. Lie Algebras Chapter 5. Lie Algebras and Enveloping Algebras 245 5.1. Lie Algebra Basics 246 5.2. Types of Lie Algebras 253 5.3. Three Theorems about Linear Lie Algebras 257 5.4. Enveloping Algebras 266 5.5. Generalities on Representations of Lie Algebras 278 5.6. The Nullstellensatz for Enveloping Algebras 287 5.7. Representations of sl2 300 Chapter 6. Semisimple Lie Algebras 315 6.1. Characterizations of Semisimplicity 316 6.2. Complete Reducibility 320 6.3. Cartan Subalgebras and the Root Space Decomposition 325 6.4. The Classical Lie Algebras 334 Chapter 7. Root Systems 341 7.1. Abstract Root Systems 342 7.2. Bases of a Root System 349 7.3. Classification 356 7.4. Lattices Associated to a Root System 361 Chapter 8. Representations of Semisimple Lie Algebras 373 8.1. Reminders 374 8.2. Finite-Dimensional Representations 377 8.3. Highest Weight Representations 379 Contents ix 8.4. Finite-Dimensional Irreducible Representations 385 8.5. The Representation Ring 390 8.6. The Center of the Enveloping Algebra 393 8.7. Weyl’s Character Formula 408 8.8. Schur Functors and Representations of sl(V ) 418 Part IV. Hopf Algebras Chapter 9. Coalgebras, Bialgebras, and Hopf Algebras 427 9.1. Coalgebras 427 9.2. Comodules 441 9.3. Bialgebras and Hopf Algebras 447 Chapter 10. Representations and Actions 465 10.1. Representations of Hopf Algebras 466 10.2. First Applications 476 10.3. The Representation Ring of a Hopf Algebra 485 10.4. Actions and Coactions of Hopf Algebras on Algebras 492 Chapter 11. Affine Algebraic Groups 503 11.1. Affine Group Schemes 503 11.2. Affine Algebraic Groups 508 11.3. Representations and Actions 512 11.4. Linearity 515 11.5. Irreducibility and Connectedness 520 11.6. The Lie Algebra of an Affine Algebraic Group 526 11.7. Algebraic Group Actions on Prime Spectra 530 Chapter 12. Finite-Dimensional Hopf Algebras 541 12.1. Frobenius Structure 541 12.2. The Antipode 549 12.3. Semisimplicity 552 12.4. Divisibility Theorems 559 12.5. Frobenius-Schur Indicators 567 Appendices Appendix A. The Language of Categories and Functors 575 A.1. Categories 575 x Contents A.2. Functors 578 A.3. Naturality 579 A.4. Adjointness 583 Appendix B. Background from Linear Algebra 587 B.1. Tensor Products 587 B.2. Hom-⊗ Relations 593 B.3. Vector Spaces 594 Appendix C. Some Commutative Algebra 599 C.1. The Nullstellensatz 599 C.2. The Generic Flatness Lemma 601 C.3. The Zariski Topology on a Vector Space 602 Appendix D. The Diamond Lemma 605 D.1. The Goal 605 D.2. The Method 606 D.3. First Applications 608 D.4. A Simplification 611 D.5. The Poincaré-Birkhoff-Witt Theorem 612 Appendix E. The Symmetric Ring of Quotients 615 E.1. Definition and Basic Properties 615 E.2. The Extended Center 617 E.3. Comparison with Other Rings of Quotients 619 Bibliography 623 Subject Index 633 Index of Names 645 Notation 649 Preface In brief, the objective of representation theory is to investigate the different ways in which a given algebraic object—such as an algebra, a group, or a Lie algebra—can act on a vector space. The benefits of such an action are at least twofold: the structure of the acting object gives rise to symmetries of the vector space on which it acts; and, in the other direction, the highly developed machinery of linear algebra can be brought to bear on the acting object itself to help uncover some of its hidden properties. Besides being a subject of great intrinsic beauty, representation theory enjoys the additional benefit of having applications in myriad contexts other than algebra, ranging from number theory, geometry, and combinatorics to probability and statistics [58], general physics [200], quantum field theory [212], the study of molecules in chemistry [49], and, more recently, machine learning [127]. This book has evolved from my lecture notes for a two-semester graduate course titled Representation Theory that I gave at Temple University during the academic years 2012/13 and 2015/16. Some traces of the informality of my original notes and the style of my lectures have remained intact: the text makes rather copious use of pictures and expansively displayed formulae; definitions are not numbered and neither are certain key results, such as Schur’s Lemma or Wedderburn’s Structure Theorem, which are referred to by name rather than number throughout the book. However, due to the restrictions imposed by having to set forth the material on the page in a linear fashion, the general format of this book does not in fact duplicate my actual lectures and it only locally reflects their content. I will comment more on this below. The title A Tour of Representation Theory (ToR) is meant to convey the panoramic view of the subject that I have aimed for.1 Rather than offering an 1The choice of title is also a nod to the Tour de France, and “Tor” in German is “gate” as well as “goal” (scored) and “fool”. xi xii Preface in-depth treatment of one particular area, ToR gives an introduction to three distinct flavors of representation theory—representations of groups, Lie algebras, and Hopf algebras—and all three are presented as incarnations of algebra representations. The book loops repeatedly through these topics, emphasizing similarities and con- nections. Group representations, in particular, are revisited frequently after their initial treatment in Part II. For example, Schur-Weyl duality is first discussed in Sec- tion 4.7 and later again in Section 8.8; Frobenius-Schur indicators are introduced in §3.6.3 in connection with the Brauer-Fowler Theorem and they are treated in their proper generality in Section 12.5; and Chapter 11, on affine algebraic groups, brings together groups, Lie algebras, and Hopf algebras. This mode of exposition owes much to the “holistic” viewpoint of the monograph [72] by Etingof et al., although ToR forgoes the delightful historical intermezzos that punctuate [72] and it omits quivers in favor of Hopf algebras. Our tour does not venture very far into any of the areas it passes through, but I hope that ToR will engender in some readers the desire to pursue the subject and that it will provide a platform for further explorations.
Recommended publications
  • The William Lowell Putnam Mathematical Competition 1985–2000 Problems, Solutions, and Commentary
    The William Lowell Putnam Mathematical Competition 1985–2000 Problems, Solutions, and Commentary i Reproduction. The work may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents. In any reproduction, the original publication by the Publisher must be credited in the following manner: “First published in The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commen- tary, c 2002 by the Mathematical Association of America,” and the copyright notice in proper form must be placed on all copies. Ravi Vakil’s photo on p. 337 is courtesy of Gabrielle Vogel. c 2002 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2002107972 ISBN 0-88385-807-X Printed in the United States of America Current Printing (last digit): 10987654321 ii The William Lowell Putnam Mathematical Competition 1985–2000 Problems, Solutions, and Commentary Kiran S. Kedlaya University of California, Berkeley Bjorn Poonen University of California, Berkeley Ravi Vakil Stanford University Published and distributed by The Mathematical Association of America iii MAA PROBLEM BOOKS SERIES Problem Books is a series of the Mathematical Association of America consisting of collections of problems and solutions from annual mathematical competitions; compilations of problems (including unsolved problems) specific to particular branches of mathematics; books on the art and practice of problem solving, etc. Committee on Publications Gerald Alexanderson, Chair Roger Nelsen Editor Irl Bivens Clayton Dodge Richard Gibbs George Gilbert Art Grainger Gerald Heuer Elgin Johnston Kiran Kedlaya Loren Larson Margaret Robinson The Inquisitive Problem Solver, Paul Vaderlind, Richard K.
    [Show full text]
  • I. Overview of Activities, April, 2005-March, 2006 …
    MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights
    [Show full text]
  • Pioneers of Representation Theory, by Charles W
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 37, Number 3, Pages 359{362 S 0273-0979(00)00867-3 Article electronically published on February 16, 2000 Pioneers of representation theory, by Charles W. Curtis, Amer. Math. Soc., Prov- idence, RI, 1999, xvi + 287 pp., $49.00, ISBN 0-8218-9002-6 The theory of linear representations of finite groups emerged in a series of papers by Frobenius appearing in 1896{97. This was at first couched in the language of characters but soon evolved into the formulation now considered standard, in which characters give the traces of representing linear transformations. There were of course antecedents in the number-theoretic work of Lagrange, Gauss, and others| especially Dedekind, whose correspondence with Frobenius suggested a way to move from characters of abelian groups to characters of arbitrary finite groups. In the past century this theory has developed in many interesting directions. Besides being a natural tool in the study of the structure of finite groups, it has turned up in many branches of mathematics and has found extensive applications in chemistry and physics. Marking the end of the first century of the subject, the book under review offers a somewhat unusual blend of history, biography, and mathematical exposition. Before discussing the book itself, it may be worthwhile to pose a general question: Does one need to know anything about the history of mathematics (or the lives of individual mathematicians) in order to appreciate the subject matter? Most of us are complacent about quoting the usual sloppy misattributions of famous theorems, even if we are finicky about the details of proofs.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Math 126 Lecture 4. Basic Facts in Representation Theory
    Math 126 Lecture 4. Basic facts in representation theory. Notice. Definition of a representation of a group. The theory of group representations is the creation of Frobenius: Georg Frobenius lived from 1849 to 1917 Frobenius combined results from the theory of algebraic equations, geometry, and number theory, which led him to the study of abstract groups, the representation theory of groups and the character theory of groups. Find out more at: http://www-history.mcs.st-andrews.ac.uk/history/ Mathematicians/Frobenius.html Matrix form of a representation. Equivalence of two representations. Invariant subspaces. Irreducible representations. One dimensional representations. Representations of cyclic groups. Direct sums. Tensor product. Unitary representations. Averaging over the group. Maschke’s theorem. Heinrich Maschke 1853 - 1908 Schur’s lemma. Issai Schur Biography of Schur. Issai Schur Born: 10 Jan 1875 in Mogilyov, Mogilyov province, Russian Empire (now Belarus) Died: 10 Jan 1941 in Tel Aviv, Palestine (now Israel) Although Issai Schur was born in Mogilyov on the Dnieper, he spoke German without a trace of an accent, and nobody even guessed that it was not his first language. He went to Latvia at the age of 13 and there he attended the Gymnasium in Libau, now called Liepaja. In 1894 Schur entered the University of Berlin to read mathematics and physics. Frobenius was one of his teachers and he was to greatly influence Schur and later to direct his doctoral studies. Frobenius and Burnside had been the two main founders of the theory of representations of groups as groups of matrices. This theory proved a very powerful tool in the study of groups and Schur was to learn the foundations of this subject from Frobenius.
    [Show full text]
  • A Brief History of an Important Classical Theorem
    Advances in Group Theory and Applications c 2016 AGTA - www.advgrouptheory.com/journal 2 (2016), pp. 121–124 ISSN: 2499-1287 DOI: 10.4399/97888548970148 A Brief History of an Important Classical Theorem L.A. Kurdachenko — I.Ya.Subbotin (Received Nov. 6, 2016 – Communicated by Francesco de Giovanni) Mathematics Subject Classification (2010): 20F14, 20F19 Keywords: Schur theorem; Baer theorem; Neumann theorem This note is a by-product of the authors’ investigation of relations between the lower and upper central series in a group. There are some famous theorems laid at the foundation of any research in this area. These theorems are so well-known that, by the established tra- dition, they usually were named in honor of the mathematicians who first formulated and proved them. However, this did not always hap- pened. Our intention here is to talk about one among the fundamen- tal results of infinite group theory which is linked to Issai Schur. Issai Schur (January 10, 1875 in Mogilev, Belarus — January 10, 1941 in Tel Aviv, Israel) was a very famous mathematician who proved many important and interesting results, first in algebra and number theory. There is a biography sketch of I. Schur wonderfully written by J.J. O’Connor and E.F. Robertson [6]. The authors documented that I. Schur actively and successfully worked in many branches of mathematics, such as for example, finite groups, matrices, alge- braic equations (where he gave examples of equations with alterna- ting Galois groups), number theory, divergent series, integral equa- tions, function theory. We cannot add anything important to this, saturated with factual and emotional details, article of O’Connor 122 L.A.
    [Show full text]
  • U.S. Team Places Second in International Olympiad
    THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA VOLUME 5 NUMBER 4 SEPTEMBER 1985 u.s. Team Places Second in International Olympiad Stephen B. Maurer pearheaded with a first prize finish by Waldemar Hor­ problem. On the other hand, the Eastern Europeans (except wat, a recent U.S. citizen born in Poland, the U.S. team the Romanians) had trouble with a sequence problem which S finished second in the 26th International Mathematical the U.S. team handled easily. Olympiad (IMO), held in early July in Helsinki, Finland. Individually, Horwat, from Hoffman Estates,Illinois, obtained The U.S. team received 180 points out of a possible 252. 35 points. Jeremy Kahn, of New York City, also received a (Each of six students tackled six problems, each worth 7 first prize with 34. All the other team members received points.) Romania was first with 201. Following the U.S. were second prizes: David Grabiner, Claremont, California; Joseph Hungary, 168; Bulgaria, 165; Vietnam, 144; USSR, 140; and Keane, Pittsburgh, Pennsylvania; David Moews, Willimantic, West Germany, 139. Thirty-nine countries participated, up Connecticut; and Bjorn Poonen, Winchester, Massachusetts. from 34 last year. One student from Romania and one from Hungary obtained The exam this year was especially tough. For comparison, perfect scores. The top scorer for the USSR was female; she last year the USSR was first with 235 and the U.S. was tied obtained a first prize with 36 points. Two other young women with Hungary for fourth at 195. The U.S. contestants did very received second prizes. well on every problem this year except a classical geometry The U.S.
    [Show full text]
  • The William Lowell Putnam Mathematical Competition 1985–2000 Problems, Solutions, and Commentary
    The William Lowell Putnam Mathematical Competition 1985–2000 Problems, Solutions, and Commentary i Reproduction. The work may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents. In any reproduction, the original publication by the Publisher must be credited in the following manner: “First published in The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commen- tary, c 2002 by the Mathematical Association of America,” and the copyright notice in proper form must be placed on all copies. Ravi Vakil’s photo on p. 337 is courtesy of Gabrielle Vogel. c 2002 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2002107972 ISBN 0-88385-807-X Printed in the United States of America Current Printing (last digit): 10987654321 ii The William Lowell Putnam Mathematical Competition 1985–2000 Problems, Solutions, and Commentary Kiran S. Kedlaya University of California, Berkeley Bjorn Poonen University of California, Berkeley Ravi Vakil Stanford University Published and distributed by The Mathematical Association of America iii MAA PROBLEM BOOKS SERIES Problem Books is a series of the Mathematical Association of America consisting of collections of problems and solutions from annual mathematical competitions; compilations of problems (including unsolved problems) specific to particular branches of mathematics; books on the art and practice of problem solving, etc. Committee on Publications Gerald Alexanderson, Chair Roger Nelsen Editor Irl Bivens Clayton Dodge Richard Gibbs George Gilbert Art Grainger Gerald Heuer Elgin Johnston Kiran Kedlaya Loren Larson Margaret Robinson The Inquisitive Problem Solver, Paul Vaderlind, Richard K.
    [Show full text]
  • Notices of the American Mathematical Society
    OF THE 1994 AMS Election Special Section page 7 4 7 Fields Medals and Nevanlinna Prize Awarded at ICM-94 page 763 SEPTEMBER 1994, VOLUME 41, NUMBER 7 Providence, Rhode Island, USA ISSN 0002-9920 Calendar of AMS Meetings and Conferences This calendar lists all meetings and conferences approved prior to the date this issue insofar as is possible. Instructions for submission of abstracts can be found in the went to press. The summer and annual meetings are joint meetings with the Mathe· January 1994 issue of the Notices on page 43. Abstracts of papers to be presented at matical Association of America. the meeting must be received at the headquarters of the Society in Providence, Rhode Abstracts of papers presented at a meeting of the Society are published in the Island, on or before the deadline given below for the meeting. Note that the deadline for journal Abstracts of papers presented to the American Mathematical Society in the abstracts for consideration for presentation at special sessions is usually three weeks issue corresponding to that of the Notices which contains the program of the meeting, earlier than that specified below. Meetings Abstract Program Meeting# Date Place Deadline Issue 895 t October 28-29, 1994 Stillwater, Oklahoma Expired October 896 t November 11-13, 1994 Richmond, Virginia Expired October 897 * January 4-7, 1995 (101st Annual Meeting) San Francisco, California October 3 January 898 * March 4-5, 1995 Hartford, Connecticut December 1 March 899 * March 17-18, 1995 Orlando, Florida December 1 March 900 * March 24-25,
    [Show full text]
  • Algebra & Number Theory
    Algebra & Number Theory Volume 4 2010 No. 2 mathematical sciences publishers Algebra & Number Theory www.jant.org EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Andrei Okounkov Princeton University, USA John H. Coates University of Cambridge, UK Raman Parimala Emory University, USA J-L. Colliot-Thel´ ene` CNRS, Universite´ Paris-Sud, France Victor Reiner University of Minnesota, USA Brian D. Conrad University of Michigan, USA Karl Rubin University of California, Irvine, USA Hel´ ene` Esnault Universitat¨ Duisburg-Essen, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universitat,¨ Germany Michael Singer North Carolina State University, USA Edward Frenkel University of California, Berkeley, USA Ronald Solomon Ohio State University, USA Andrew Granville Universite´ de Montreal,´ Canada Vasudevan Srinivas Tata Inst. of Fund. Research, India Joseph Gubeladze San Francisco State University, USA J. Toby Stafford University of Michigan, USA Ehud Hrushovski Hebrew University, Israel Bernd Sturmfels University of California, Berkeley, USA Craig Huneke University of Kansas, USA Richard Taylor Harvard University, USA Mikhail Kapranov Yale
    [Show full text]
  • Ferdinand Georg Frobenius
    Ferdinand Georg Frobenius Born: 26 Oct 1849 in Berlin-Charlottenburg, Prussia (now Germany) Died: 3 Aug 1917 in Berlin, Germany Georg Frobenius's father was Christian Ferdinand Frobenius, a Protestant parson, and his mother was Christine Elizabeth Friedrich. Georg was born in Charlottenburg which was a district of Berlin which was not incorporated into the city until 1920. He entered the Joachimsthal Gymnasium in 1860 when he was nearly eleven years old and graduated from the school in 1867. In this same year he went to the University of Göttingen where he began his university studies but he only studied there for one semester before returning to Berlin. Back at the University of Berlin he attended lectures by Kronecker, Kummer and Weierstrass. He continued to study there for his doctorate, attending the seminars of Kummer and Weierstrass, and he received his doctorate (awarded with distinction) in 1870 supervised by Weierstrass. In 1874, after having taught at secondary school level first at the Joachimsthal Gymnasium then at the Sophienrealschule, he was appointed to the University of Berlin as an extraordinary professor of mathematics. For the description of Frobenius's career so far, the attentive reader may have noticed that no mention has been made of him receiving his habilitation before being appointed to a teaching position. This is not an omission, rather it is surprising given the strictness of the German system that this was allowed. Details of this appointment are given in [3] but we should say that it must ultimately have been made possible due to strong support from Weierstrass who was extremely influential and considered Frobenius one of his most gifted students.
    [Show full text]
  • An Interview with Martin Davis
    Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Geometry Ramanujan‘s Lost Notebook An Introduction to Mathematical of the American Mathematical Society Selected Topics in Plane and Solid Part II Cryptography May 2008 Volume 55, Number 5 Geometry G. E. Andrews, Penn State University, University J. Hoffstein, J. Pipher, J. Silverman, Brown J. Aarts, Delft University of Technology, Park, PA, USA; B. C. Berndt, University of Illinois University, Providence, RI, USA Mediamatics, The Netherlands at Urbana, IL, USA This self-contained introduction to modern This is a book on Euclidean geometry that covers The “lost notebook” contains considerable cryptography emphasizes the mathematics the standard material in a completely new way, material on mock theta functions—undoubtedly behind the theory of public key cryptosystems while also introducing a number of new topics emanating from the last year of Ramanujan’s life. and digital signature schemes. The book focuses Interview with Martin Davis that would be suitable as a junior-senior level It should be emphasized that the material on on these key topics while developing the undergraduate textbook. The author does not mock theta functions is perhaps Ramanujan’s mathematical tools needed for the construction page 560 begin in the traditional manner with abstract deepest work more than half of the material in and security analysis of diverse cryptosystems. geometric axioms. Instead, he assumes the real the book is on q- series, including mock theta Only basic linear algebra is required of the numbers, and begins his treatment by functions; the remaining part deals with theta reader; techniques from algebra, number theory, introducing such modern concepts as a metric function identities, modular equations, and probability are introduced and developed as space, vector space notation, and groups, and incomplete elliptic integrals of the first kind and required.
    [Show full text]