The Group a Streptococcus M1T1 Clone Post-Transcriptionally Modifies Innate Immune Signalling to Promote Infection

Total Page:16

File Type:pdf, Size:1020Kb

The Group a Streptococcus M1T1 Clone Post-Transcriptionally Modifies Innate Immune Signalling to Promote Infection Doctor of Philosophy The Group A Streptococcus M1T1 clone post-transcriptionally modifies innate immune signalling to promote infection by Amelia Soderholm Bachelor Science (Honours) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 School of Chemistry and Molecular Biosciences ABSTRACT Streptococcus pyogenes, the Group A Streptococcus (GAS), is the most common cause of bacterial pharyngitis in children and adults. Host innate and adaptive immune responses mediate defence against streptococcal pharyngitis and are also central to the clinical manifestation of the disease. The ability of GAS to invade the host and establish infection likely involves subversion of host immune defences, however the signalling pathways and immune responses elicited during streptococcal pharyngitis, particularly by epithelial cells, are currently not well understood. This thesis focuses on characterising the inflammatory responses of primary human tonsil epithelial (TEpi) cells during intracellular infection with two distinct GAS strains; the laboratory-adapted M6 strain JRS4 and the M1T1 clinical isolate 5448. M1T1 is a globally-disseminated GAS clone that is the most commonly isolated serotype (approximately 20% of all isolates) in high income countries (1). This thesis aims to investigate innate immune responses triggered and/or subverted by these different GAS strains in order to uncover why the M1T1 strain is such a successful pathogen. The pharyngeal and tonsil epithelia are important components of innate immune defence against GAS infection. They primarily act as a physical barrier, but also secrete antimicrobial peptides and cytokines/chemokines that have direct antimicrobial effects and/or signal to immune cells. Previous studies have investigated epithelial immune responses to GAS infection by utilising a number of different cell types, largely immortalised and nonpharyngeal-derived cell lines such as HEp-2 and HaCaT cells, which may not respond in the same manner as pharyngeal cells to GAS infection. Nonetheless, several studies that have used tonsil explant tissue or pharyngeal-derived cell lines appear to be congruent with studies that have used nonpharyngeal cell lines to examine a number of immune mediators secreted in response to GAS infection. Next generation Illumina RNA sequencing was employed to characterise the inflammatory gene expression profile of JRS4- and 5448-infected TEpi cells during early intracellular infection, as reported in Chapter 4. I found that, whilst infection with either GAS strain induced the mRNA expression of a similar array of host inflammatory genes, the transcriptional response to 5448- infection was of a much higher magnitude compared to JRS4-infection. Sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS) was also employed to characterise changes in the host proteome during early GAS infection, and proteins that significantly changed in abundance during 5448-infection consisted mainly of those involved in metabolic and trafficking pathways, as well as transcriptional regulation. 2 Work in Chapter 5 investigates the role of Streptococcus pyogenes Cell Envelope Protease (SpyCEP; also known as ScpC and PrtS) and its ability to dampen levels of secreted IL-8 during intracellular 5448-infection of TEpi cells. RNA sequencing detected a significant increase in IL-8 mRNA expression during JRS4- and 5448-infection, and pathway analysis revealed differentially expressed genes between mock and JRS4- or 5448-infected TEpi cells were enriched in transcription factor networks that regulate IL-8 expression, such as AP-1, ATF-2 and NFAT. Whilst JRS4-infection resulted in high levels of secreted IL-8, 5448-infection did not, suggesting that 5448 may post- transcriptionally dampen IL-8 production or accumulation. Infection with 5448ΔcepA, an isogenic mutant lacking the IL-8 protease SpyCEP, resulted in levels of secreted IL-8 that were comparable to JRS4 infection, whilst complementation of 5448ΔcepA significantly reduced IL-8 secretion by TEpi cells. These results suggest that intracellular infection with the pathogenic M1T1 strain 5448 induces a strong pro-inflammatory response in primary tonsil epithelial cells but is able to modulate this host response by the expression of SpyCEP, which selectively degrades IL-8. As IL-8 is a neutrophil- recruiting chemokine implicated in the host response to GAS, reducing IL-8 secretion may ultimately benefit GAS infection. Finally, in Chapter 6 the level of IL-6 production during GAS infection of TEpi cells was investigated. Both JRS4- and 5448-infection were found to induce IL-6 mRNA expression, however JRS4-infected TEpi cells secreted high levels of IL-6 in comparison to 5448-infected cells. By screening a collection of 5448-isogenic mutants I identified streptolysin O (SLO) as the GAS protein responsible for suppressing IL-6 secretion. Infection with 5448Δslo, an isogenic mutant lacking SLO, resulted in IL- 6 secretion at levels similar to that of JRS4-infected cells, whilst complementation of 5448Δslo significantly reduced IL-6 secretion during infection. 5448 was also found to induce significantly higher levels of haemolysis than JRS4, suggesting that the SLO-dependent effect on IL-6 may be due to a difference in SLO expression or activity during infection. Overall, this thesis characterises the transcriptome and proteome of TEpi cells during intracellular GAS infection and provides new insight into the roles of SpyCEP and SLO in host immune modulation during infection. I found that IL-8 secretion during 5448-infection was dampened by expression of the serine protease SpyCEP, an IL-8 protease whose production during intracellular infection of primary epithelial cells was previously not well defined. I also found that 5448 post- transcriptionally dampens host IL-6, and this effect was dependent on the expression of SLO; however, the mechanism by which SLO achieves this effect is as yet unknown. My fndings reinforce the hypothesis that the success of the M1T1 clone is due to its ability to modulate host inflammatory 3 responses to benefit infection. Better understanding of the host responses that mediate immunity to GAS infection should ultimately help facilitate the development of effective strategies to combat GAS pharyngitis. 4 DECLARATION BY AUTHOR This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis. Amelia Soderholm 1nd June, 2018 5 PUBLICATIONS DURING CANDIDATURE Yang Z, Soderholm AT, Wong Fok Lung T, Giogha C, Hill MM, Brown NF, Hartland E, Teasdale RD. 2015. SseK3 is a Salmonella effector that binds TRIM32 and modulates the host’s NF-κB signaling activity. PLoS ONE 10(9): e0138529. Barnett TC, Lim JY, Soderholm AT, Rivera-Hernandez T, West NP, Walker MJ. 2015. Host- pathogen interaction during bacterial vaccination. Current Opinion in Immunology 36:1-7. Soderholm AT, Barnett TC, Sweet MJ, Walker MJ. 2017. Group A streptococcal pharyngitis: immune responses involved in bacterial clearance and GAS-associated immunopathologies. Journal of Leukocyte Biology. 103:193-213. Soderholm AT, Barnett TC, Korn O, Rivera-Hernandez T, Seymour LM, Schulz B, Nizet V, Wells C, Sweet MJ, Walker MJ. 2018. Group A Streptococcus M1T1 intracellular infection of primary tonsil epithelial cells dampens levels of secreted IL-8 through the action of SpyCEP. Frontiers in Cellular Infection and Microbiology 8:160. Soderholm AT, Walker MJ 2018. A host proteome atlas of Streptococcus pyogenes. Cell Systems. 6:5, 536-538. 6 PUBLICATIONS INCLUDED IN THIS THESIS Soderholm AT, Barnett TC, Sweet MJ, Walker MJ. 2017. Group A streptococcal pharyngitis: immune responses involved in bacterial clearance and GAS-associated immunopathologies. Journal of Leukocyte Biology. Doi:10.1189/jlb.4MR0617-227RR. Incorporated into literature review in Chapter 1. Conceived Wrote and project edited Soderholm AT 10 70 (Candidate) Barnett TC 30 10 Sweet MJ 20 10 Walker MJ 40 10 Total 100 100 Soderholm AT, Barnett TC, Korn O, Rivera-Hernandez T, Seymour LM, Schulz BL,
Recommended publications
  • Innate-, Adaptive- and Natural Immunity
    Basic Immunology (Dentistry) Lecture 1. Introduction, phylogenesis of the immune system (innate-, adaptive- and natural immunity). Ferenc Boldizsar MD, PhD Introducing the subject 1. • Please follow our website www.immbio.hu through the whole semester for up-to-date informations about our education. • Student preparation and learning will be controlled with the help of the www.medtraining.eu website. At the beginning of the semester all students will be registered automatically with their specific neptun codes. After activation you will use this platform for completing the weekly tests as well as the exam test. Login Name: neptun code Password: neptun code Introducing the subject 2. • 2 lectures / week (preparation of own lecture notes!) Name list will be led every week. Maximum 3 absences allowed! • Lecture tests: quick tests at the beginning of the lectures (first 10 minutes) from the previous week’s lectures (2 randomized test questions in medtraining system). 12 tests for 2 points for a max. of 24 points. For the acceptance of the semester a min. of 50% (12 points) must be collected. Points above 12 will be added to the exam test points. • Exam: online test exam in medtraining system from the lectures. Evaluation: minimum level: 66%; satisfactory 66- 71%, average 72- 77%, good 78-83%, excellent 84% • Website: www.immbio.hu University of Pécs, Medical School, Department of Immunology and Biotechnology Director: Prof. Dr. Timea Berki Address: 7624, Pécs, Szigeti út 12.; Tel.: 06-72-536- 288; Fax.:06-72- 536-289 Dr. Ferenc Dr. Péter www.immbio.hu Boldizsár Engelmann Introducing the subject 3.
    [Show full text]
  • Vicissitude of Curetted Adenoid Vegetations
    International Journal of Clinical Medicine, 2013, 4, 251-256 251 http://dx.doi.org/10.4236/ijcm.2013.45044 Published Online May 2013 (http://www.scirp.org/journal/ijcm) Vicissitude of Curetted Adenoid Vegetations Susumu Mukai Otorhinolaryngology, Mukai Clinic, Yamato, Kanagawa, Japan. Email: [email protected] Received January 23rd, 2013; revised March 20th, 2013; accepted April 28th, 2013 Copyright © 2013 Susumu Mukai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Weights of curetted adenoid were measured and were compared with both weights of tonsils and the rate of adenoidec- tomy among the tonsillectomized cases. This study included 603 patients whose adenoids were curetted during the 11-year period. 90% of patients were 2 to 9 years old. The rate of curetted adenoid vegetation among the tonsillec- tomized cases was 80% among patients from 1 to 6 years old and 70% among patients of 7 and 8 years old. The rate remarkably decreased from 9 years of age. The average weight of the curetted adenoids in each age group ranged from 0.7 g to 1.9 g. There was no statistical correlation in the distribution of the average weight of the curetted adenoids be- tween males and females as well as between the weight of the tonsils and the weight of the curetted adenoids. A hy- pothesis on the cause of adenoid hypertrophy was presented in this study. Keywords: Adenoid; Choanae; Sunusitis; Choanal Development; Ankyloglossia with Deviation of the Epiglottis and Larynx (ADEL) 1.
    [Show full text]
  • Effects of Adenoidectomy and Adenotonsillectomy on the Components of Waldeyer Ring
    International Journal of Otorhinolaryngology and Head and Neck Surgery Bhat VK et al. Int J Otorhinolaryngol Head Neck Surg. 2017 Apr;3(2):290-297 http://www.ijorl.com pISSN 2454-5929 | eISSN 2454-5937 DOI: http://dx.doi.org/10.18203/issn.2454-5929.ijohns20171180 Original Research Article Effects of adenoidectomy and adenotonsillectomy on the components of Waldeyer ring Vikram K. Bhat*, Deekshith Shetty, Preetham H. Nagaiah Department of ENT, Karnataka Institute of Medical Sciences, Hubli, India Received: 30 November 2016 Revised: 23 December 2016 Accepted: 26 December 2016 *Correspondence: Dr. Vikram K. Bhat, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Background: The consolidated effects of adenoidectomy alone and adenotonsillectomy on the Waldeyer ring need to be studied in children. Methods: This was a clinical trial with a sample size of 100 in each of the two arms [Group A: adenoidectomy alone, Group B: adenotonsillectomy]. Results: It was found that the association between adenoid recurrence (Risk 3 times) and palatine tonsil hypertrophy (Risk 11 times) in Group A patients at 3 and 6 months was extremely significant. Whereas lingual tonsil hypertrophy was found to be highly associated with Group B. Conclusions: If adenoidectomy alone is performed, there are high chances of hypertrophy of palatine tonsils, lateral pharyngeal bands and a high risk of adenoid recurrence.
    [Show full text]
  • First Nine Weeks Course: Human Anatomy and Physiology Grades 10-12
    Huntsville City Schools 2017-2018 Pacing Guide – First Nine Weeks Course: Human Anatomy and Physiology Grades 10-12 First Nine Weeks Key Terms: Standard 1: Anatomy, physiology Regional Terms: know all terms listed on Figure 1.7 & Figure 1.12 Directional Terms: know all terms listed on Table 1.1, including anatomical position Planes: know all terms listed on Figure 1.8, including parasagittal, and cross section Cavities: know all terms listed on Figure 1.9, including viscera, serosa, parietal serosa, visceral serosa, serous fluid Standard 2: Tissue, histology Epithelial Tissue: refer to Figure 4.2, 4.3, 4.4, 4.6, including epithelial tissue, apical surface, basal surface, microvilli, avascular, innervated, simple epithelia, stratified epithelia, squamous cells, cuboidal cells, columnar cells, pseudostratified columnar epithelium, transitional epithelium, gland, secretion, goblet cell, mucin, merocrine glands, holocrine glands Connective Tissue: refer to Table 4.1, Figure 4.8, including connective tissue, ground substance, matrix, collagen fibers, elastic fibers, reticular fibers, white blood cells, mast cells, macrophages, connective tissue proper, loose connective tissue, dense connective tissue (regular), dense connective tissue (irregular), dense connective tissue (elastic), areolar connective tissue, adipose tissue, brown adipose tissue, reticular connective tissue, stroma, elastic connective tissue, cartilage, hyaline, elastic, fibrocartilage, bone, blood Muscle Tissue: refer to Figure 4.9, including skeletal muscle, cardiac muscle,
    [Show full text]
  • Histology and Scanning Electron Microscopy of the Tubal Tonsil of Goats
    Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.8/August-2015/11.pdf Open Access Histology and scanning electron microscopy of the tubal tonsil of goats V. R. Indu1, K. M. Lucy1, J. J. Chungath1, N. Ashok1 and S. Maya2 1. Department of Veterinary Anatomy and Histology, College of Veterinary and Animal Sciences, Mannuthy, Kerala Veterinary and Animal Sciences University, Kerala, India; 2. Department of Veterinary Anatomy and Histology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Kerala, India. Corresponding author: V. R. Indu, e-mail: [email protected], KML: [email protected], JJC: [email protected], NA: [email protected], SM: [email protected] Received: 14-05-2015, Revised: 17-07-2015, Accepted: 24-07-2015, Published online: 25-08-2015 doi: 10.14202/vetworld.2015.1011-1014 How to cite this article: Indu VR, Lucy KM, Chungath JJ, Ashok N, Maya S (2015) Histology and scanning electron microscopy of the tubal tonsil of goats, Veterinary World 8(8): 1011-1014. Abstract Aim: To observe the light and scanning electron microscopy (SEM) of the caprine tubal tonsil. Materials and Methods: The study was conducted on six crossbred male goats of 6 months of age. From the median sections of the head, tissue pieces from the nasopharynx around the auditory tube were collected and fixed for histology and SEM. Results: Tonsillar lymphoid tissue was located in the nasopharynx ventral to the auditory tube opening in the lateral wall of the pharynx. The height of the surface epithelium of the tubal tonsil measured 80.17±1.08 μm and was a pseudostratified ciliated columnar type with basal, supporting, and goblet cells.
    [Show full text]
  • The Tonsils Revisited: Review of the Anatomical Localization and Histological Characteristics of the Tonsils of Domestic and Laboratory Animals
    Hindawi Publishing Corporation Clinical and Developmental Immunology Volume 2011, Article ID 472460, 14 pages doi:10.1155/2011/472460 Review Article The Tonsils Revisited: Review of the Anatomical Localization and Histological Characteristics of the Tonsils of Domestic and Laboratory Animals Christophe Casteleyn, Sofie Breugelmans, Paul Simoens, and Wim Van den Broeck Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium Correspondence should be addressed to Christophe Casteleyn, [email protected] Received 30 December 2010; Accepted 9 June 2011 Academic Editor: Enrico Maggi Copyright © 2011 Christophe Casteleyn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper gives an overview of the anatomical localization and histological characteristics of the tonsils that are present in ten conventional domestic animal species, including the sheep, goat, ox, pig, horse, dog, cat, rabbit, rat, and pigeon. Anatomical macrographs and histological images of the tonsils are shown. Six tonsils can be present in domestic animals, that is, the lingual, palatine, paraepiglottic, pharyngeal, and tubal tonsils and the tonsil of the soft palate. Only in the sheep and goat, all six tonsils are present. Proper tonsils are absent in the rat, and pigeon. In the rabbit, only the palatine tonsils can be noticed, whereas the pig does not present palatine tonsils. The paraepiglottic tonsils lack in the ox, horse, and dog. In addition, the dog and cat are devoid of the tubal tonsil and the tonsil of the soft palate.
    [Show full text]
  • GLOSSARY of HISTOLOGICAL & MICRO-ANATOMICAL TERMS
    GLOSSARY of HISTOLOGICAL & MICRO-ANATOMICAL TERMS Abbreviations: ( ) plural form in brackets • A. Arabic abb. abbreviation • c. circa (= about) • F. French adj. adjective • G. Greek • Ge. German cf. compare • L. Latin dim. diminutive • NA. Nomina anatomica q.v. which see • OF. Old French A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat.
    [Show full text]
  • Pharyngeal Pouches
    Pharyngeal Arches Revisited and the 10. PHARYNGEAL POUCHES Letty Moss-Salentijn DDS, PhD Dr. Edwin S.Robinson Professor of Dentistry (in Anatomy and Cell Biology) E-mail: [email protected] READING ASSIGNMENT: Larsen 3rd edition: p.352; pp. 371-378; pp. 393 bottom-398 SUMMARY: The transient structures that are known as pharyngeal grooves and pharyngeal pouches disappear toward the end of the embryonic period. The first pharyngeal groove will give rise to the external auditory meatus of the adult ear. The other three grooves will disappear without having any further role in the development of adult structures. The pharyngeal pouches develop into a series of structures that include the pharyngotympanic tube, middle ear cavity, palatine tonsil, thymus, the four parathyroid glands, and the ultimobranchial bodies of the thyroid gland. The related development of the external ear by contributions of the first and second pharyngeal arches is reviewed, as is the development of the tongue, which is formed by contributions from the first through fourth arches. Finally, the development of the thyroid gland, which is spatially related to the derivatives of the third and fourth pharyngeal pouches, is discussed briefly. LEARNING OBJECTIVES You should be able to: a. List the derivatives of the first pharyngeal groove and describe the pattern of obliteration of pharyngeal grooves 2-4. b. List the derivatives of the different pharyngeal pouches. c. Describe briefly the development of the external and middle ear. d. List the different swellings and explain the process of merging of these swellings in the development of external ear and tongue. You should be able to list the pharyngeal arches that contribute to these swellings.
    [Show full text]
  • A Comparative Study on the Tubal Tonsil in Goats and Pigs
    Int.J.Curr.Microbiol.App.Sci (2020) 9(11): 2000-2004 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 11 (2020) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2020.911.237 A Comparative Study on the Tubal Tonsil in Goats and Pigs V. R. Indu1*, K. M. Lucy1, K. S. Prashanth Kumar2, N. Ashok1 and S. Maya1 1Department of Veterinary Anatomy & Histology, College of Veterinary and Animal Sciences, Mannuthy, Kerala, India 2Department of Veterinary Anatomy, Veterinary College, Bangalore, Karnataka, India *Corresponding author ABSTRACT A comparative study was conducted on the tubal tonsil of six adult male crossbred goats and Large White Yorkshire pigs. Macroscopically the tubal tonsil were found in the nasopharynx, caudal to and around the openings of the auditory tubes as a thick raised mass of small nodules 4 to 5 cm in length in the pigs while in goats the small nodules were K e yw or ds seen scattered. In histological sections the tubal tonsil in goats and pigs were lined by pseudostratified ciliated columnar epithelium. Surface of the tubal tonsil showed folds and Pigs, Goats, invaginations which formed crypts where, the epithelium was modified into follicle- Histology, associated epithelium (FAE), also called lympho-epithelium. There was no significant Morphology, Tubal difference in the height of crypt epithelium between both the groups of animals used in the tonsil present study. Propria-submucosa was filled with primary and secondary lymphoid nodules and diffuses lymphoid tissue arranged as crypto-lymphatic units (CLU) and Article Info tonsillar nodules in the superficial lamina propria.
    [Show full text]
  • Tubal Tonsil Hypertrophy a Cause of Recurrent Symptoms After Adenoidectomy
    ORIGINAL ARTICLE Tubal Tonsil Hypertrophy A Cause of Recurrent Symptoms After Adenoidectomy Kevin S. Emerick, MD; Michael J. Cunningham, MD Objectives: To assess the incidence of symptomatic tubal was 7 years 2 months, at an average time interval of 4 years tonsil hypertrophy (TTH) after adenoidectomy and to 2 months after adenoidectomy. The comparative incidence attempt to differentiate the clinicoradiographic presenta- of recurrent or residual adenoid was 54%. The symptom- tion of TTH from that of recurrent or residual adenoid. atic manifestations of TTH included nasal obstruction, ob- Design: Retrospective case series review. structive sleep disorder, rhinosinusitis, recurrent otitis me- dia,andotitismediawitheffusion.Preoperativeradiographic Setting: Pediatric otolaryngology practice in a tertiary evaluation was not useful in distinguishing TTH from re- care hospital. current or residual adenoid; nasopharyngoscopy appears to Patients: The charts of all patients scheduled to undergo have better diagnostic potential. Thermal ablation with suc- revision adenoidectomy or nasopharyngeal examination tion cautery was therapeutically effective. under anesthesia over a 5-year period in 1 pediatric oto- Conclusions: Tubal tonsil hypertrophy is a significant clini- laryngologist’s practice were reviewed. cal entity as a cause of recurrent symptoms after adenoid- Main Outcome Measure: Presence of TTH in patients ectomy. The study patients demonstrated the entire spec- with recurrent symptoms after previous adenoidectomy. trum of signs and symptoms seen in patients with adenoid hypertrophy. Operative nasopharyngeal examination is Results: Forty-two patients were identified, 24 of whom required to definitively distinguish TTH from recurrent or satisfied the established criteria of recurrent symptoms af- residual adenoid. terpreviousadenoidectomy.Ten(42%)ofthesepatientswere identified as having TTH.
    [Show full text]
  • Selected Aspects of Camel Immune System and Immune Responses
    Open Journal of Veterinary Medicine, 2021, 11, 177-211 https://www.scirp.org/journal/ojvm ISSN Online: 2165-3364 ISSN Print: 2165-3356 Selected Aspects of Camel Immune System and Immune Responses Saeed Y. Al Ramadan1*, Kazem T. Al-Mohammed Salem2, Ibrahim H. Alshubaith3, Ahmed M. Al-Ali4, Salah Abohelaika5, Mohammed S. Moqbel1, Ahmed M. Alluwaimi6 1Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsaa, Saudi Arabia 2Animal Resources Management, Ministry of Environment, Water and Agriculture Al-Ahsaa, Saudi Arabia 3Environmental Health Department, Al-Ahsaa Municipality, Al-Ahsa, Saudi Arabia 4Central Biotechnology Laboratory, Veterinary Teaching Hospital, College of Veterinary Medicine, King Faisal University, Al-Ahsaa, Saudi Arabia 5Clinical Pharmacology Department, Qatif Central Hospital, Ministry of Health, Saudi Arabia 6Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al-Ahsaa, Saudi Arabia How to cite this paper: Al Ramadan, S.Y., Abstract Al-Mohammed Salem, K.T., Alshubaith, I.H., Al-Ali, A.M., Abohelaika, S., Moqbel, The camel economy is of considerable importance for arid countries. In the M.S. and Alluwaimi, A.M. (2021) Selected last decade, studies about camel immune system and immune responses have Aspects of Camel Immune System and recorded increasing interest. However, drawing a comprehensive picture of Immune Responses. Open Journal of Vete- rinary Medicine, 11, 177-211. the camel immune system remains far from reached. A major part of this re- https://doi.org/10.4236/ojvm.2021.116013 view is to cover the studies of the primary and secondary immune organs and the markers of the camel immune cells and certain lymphoid tissues.
    [Show full text]
  • Prenatal Development of Palatine Tonsil in Sheep (Ovis Aries)
    Original article http://dx.doi.org/10.4322/jms.073414 Prenatal development of palatine tonsil in sheep (Ovis aries) RAJU, N. K. B.1*, RAMESH, G.2, BASHA, S. H.2 and USHAKUMARY, S.2 1Departament of Veterinary Anatomy, College of Veterinary Science, Tirupati - 517 502, Chittoor (Dt), Andhra Pradesh, India 2Departament of Veterinary Anatomy, Madras Veterinary College, Chennai - 600 007, Tamilnadu, India *E-mail: [email protected] Abstract Introduction: The palatine tonsil play a key role in initiating immune responses against the antigenic material entering the mouth. Materials and Methods: Tissue pieces of oropharynx for the palatine tonsilwere collected from different prenatal age groups of sheep. These tissue pieces were fixed and processed for routine paraffin embedding technique to get 3-5µm thick sections. The paraffin sections were subjected to routine haematoxylin and eosin and some other special staining methods. Results: In three months foetal age of sheep, the palatine tonsils appeared as diffused lymphocytic infiltration in the propria submucosa overlaid by the mucosa of the oropharynx. The surface epithelium of the mucosa of the oropharynx formed primary crypts. The primary crypts in turn invaginated to form secondary crypts. The collagen fibres from the submucosa appeared to enter at the base of the developing tonsil. In the fourth month of foetus, the tonsillar surface epithelium became thicker and many crypts arose from that of primary crypts. Organized lymphocytic infiltration as isolated units was noticed near or around the secondary crypts. In five months of foetal age, the crypt epithelium was found to be infiltrated with lymphocytes, macrophages, plasma cells and mesenchymal cells.
    [Show full text]