Performance Study of Popular Computational Chemistry Software Packages on Cray HPC Systems

Total Page:16

File Type:pdf, Size:1020Kb

Performance Study of Popular Computational Chemistry Software Packages on Cray HPC Systems Performance Study of Popular Computational Chemistry Software Packages on Cray HPC Systems Junjie Li ([email protected]) Shijie Sheng ([email protected]) Raymond Sheppard ([email protected]) Pervasive Technology Institute, Indiana University 535 W Michigan St, Indianapolis, IN, USA Abstract In this work, we evaluate the performance of Two Cray HPC systems, XE6/XK7 and three popular computational chemistry packages, XC30, are deployed at Indiana University serving NWChem [3], Gromacs [4] and Lammps [5] and scientific research across all the eight campuses. present the results of multiple configurations on Across over 130 different scientific disciplines each of our Cray machines. These software that are using HPC, the major source of workload packages support both quantum chemical comes from chemistry. Here, the performance of methods and classical molecular dynamics (MD). quantum chemistry package NWChem and Various theories are benchmarked, from the molecular dynamic software GROMACS and popular fast methods to the highly expensive LAMMPS are investigated in in terms of parallel accurate methods. scalability and different parallelization This paper is organized as follows: Section II paradigms. Parallel performance up to 12,288 introduces Indiana University’s two Cray HPC MPI ranks are studied, and the results from the systems, Section III outlines the functionality and two different Cray HPC systems are compared. features of the different computational chemistry software packages, Section IV discusses our I. Introduction benchmark methods, Section V presents the Indiana University currently focuses on the results, and the paper is then concluded in physical sciences, liberal arts and medical Section VI. sciences with very limited engineering. Research is supported by a long-serving 1,020-node II. Cray HPCs at Indiana University XE6/XK7 [1] and a recently installed 552-node XC30 [2]. Chemistry and physics are the two A. BigRed II (XE6/XK7) primary consumers of high performance Big Red II is Indiana University's primary computing (HPC). The chemistry department system for high-performance parallel computing. burns over 40% of the total workload. Chemistry With a theoretical peak performance (Rpeak) of has long been a scientific field that relies heavily one thousand trillion floating-point operations per on simulations. Computational chemistry second (1 petaFLOP) and a maximal achieved software are getting increasingly complicated. performance (Rmax) of 596.4 teraFLOPS, Big More advanced algorithms are being modelled, Red II is among the world's fastest research and multiple parallel programming paradigms are supercomputers. Owned and operated solely by often available for each model. Therefore, as an IU, Big Red II is designed to accelerate discovery HPC service provider, it is crucial to understand both through computational experimentation and the performance and limitation of these effective analysis of big data in a wide variety of applications so that we can improve our service fields, including medicine, physics, fine arts, and and help scientists generate the best throughput global climate research. for their scientific research. Big Red II features a hybrid architecture scalable, both in its ability to treat large problems based on two Cray’s supercomputer platforms. efficiently, and in its usage of available parallel As configured upon entering production in computing resources. NWChem has been August 2013, Big Red II comprised 344 XE6 developed by the Molecular Sciences Software (CPU-only) compute nodes and 676 XK7 "GPU- group of the Theory, Modeling & Simulation accelerated" compute nodes, all connected program in the Environmental Molecular through Cray's Gemini scalable interconnect, Sciences Laboratory (EMSL) at the Pacific providing a total of 1,020 compute nodes, 21,824 Northwest National Laboratory (PNNL). It was processor cores, and 43,648 GB of RAM. Each first was funded by the EMSL Construction XE6 node has two AMD Opteron 16-core Abu Project. Dhabi x86_64 CPUs and 64 GB of RAM; each XK7 node has one AMD Opteron 16-core B. GROMACS Interlagos x86_64 CPU, 32 GB of RAM, and one GROningen MAchine for Chemical NVIDIA Tesla K20 GPU accelerator. Simulations (GROMACS) was initially released in 1991 by the University of Groningen, in the B. BigRed II+ (XC30) Netherlands and has been developed at the Royal Big Red II+ is a supercomputer that Institute of Technology and Uppsala University complements Indiana University's Big Red II by in Sweden since 2001. It has gained popularity providing an environment dedicated to large- not only because it is easy to use and has a rich scale, compute-intensive research. Researchers, tool set for post-analysis, but also because its scholars, and artists with large-scale research algorithm has good performance and optimizes needs have benefited from Big Red II; these users well to different parallel paradigms. can now take advantage of faster processing capability and networking provided by Big Red C. LAMMPS II+. The system will help support programs at the Large-scale Atomic/Molecular Massively highest level of the university, such as the Grand Parallel Simulator (LAMMPS) was developed at Challenges Program. Sandia National Laboratory. It utilizes MPI for parallel communications and contains extensive Big Red II+ is a Cray XC30 supercomputer packages (GPU, USER-OMP) to enable other providing 552 compute nodes, each containing parallel models. Many of its models are two Intel Xeon E5 12-Core x86_64 CPUs and 64 optimized for CPUs and GPUs. It also contains GB of DDR3 RAM. Big Red II+ has a theoretical some features that other MD packages do not peak performance (Rpeak) of 286 trillion provide, for example, reactive force field floating-point operations per second (286 simulations. teraFLOPS). All compute nodes are connected through the Cray Aries interconnect. IV. Benchmark Methods III. Computational Chemistry Software NWChem represents the state-of-the-art Packages software for quantum chemistry, its parallel performance outperforms other programs like A. NWChem GAMMES. Here we choose two representative NWChem is an ab initio computational types of calculations for benchmarking. The most chemistry software package which also includes popular in general use due to its relative speed to quantum chemical and molecular dynamics completion is the Density Functional Theory functionality. It was designed to run on high- (DFT) energy calculation. It scales as O(N3~N4). performance, parallel supercomputers as well as The other is the so called “golden standard” conventional workstation clusters. It aims to be method for quantum chemistry – Coupled Cluster 12000 10000 8000 XE6 (32ppn) 6000 XE6 (16ppn) Time (s) XC30 (24ppn) 4000 XC30 (12ppn) 2000 0 2 4 8 16 32 64 Node Count Figure 1. Performance of DFT calculations in NWChem on Cray XE6/XK7 and XC30 using Single, Double and perturbative Triple Extreme Scalability Mode (ESM). This (CCSD(T)). This method has O(N7) scaling. A distinction is not applicable on the XC30. 240-atom Carbon nanotube was used for the DFT calculation with a PBE/6-31G* level of theory. V. Benchmark Results In total, this creates 3600 basis functions. A smaller system, Pentacene, with 378 basis A. NWChem functions, was used for testing CCSD(T) 1. DFT calculations calculations. Using 3600 localized basis functions is about For the molecular dynamics simulations using the upper limit that can be routinely used to LAMMPS and GROMACS, we prepared a box perform energy minimization or ab initio of SPC/E water molecules (~100k atoms) in a 10 dynamics using DFT. Thus, our test system well nm cubic box at room temperature and 1 represents actual research usage. Using only atmosphere pressure. The long-range Coulomb half of the cores on each node for large MPI jobs forces are treated with the particle mesh Ewald may improve performance by distributing the (PME) method. The system is pre-equilibrated MPI communication across a larger section of the and each performance test takes 5 min with 2 fs network and reducing the communication time step in the simulation. pressure from each individual node. In the case All programs are compiled using the GNU of the XE6, this also allows tying each core to a 4.9.3 compiler and its corresponding math single floating-point unit. Both full node (using library. Math library computations are proven to all cores on each node) and half node jobs were the main factor for performance [6]. While the tested. The results are summarized in Figure 1). XE6/XK7 uses AMD processors, the XC30 uses When comparing each test relative to others Intel, processors. For each machine, we chose within the same machine, the calculation’s timing the most recent Cray libsci math library available continues to improve up to 64 nodes on both (17.09.1 on XC30 and 16.03.1 on XE6/XK7). machines. The speedup for both machines in the Cray MPI was used for all applications and all 1 to 16 node range is about 80~90% every time tests. The XE6/XK7 was run exclusively in the node count is doubled, and about 60% in the range from 16 to 32 nodes. At 64 nodes, XE6 only gained ~4% extra speed with respect to the scales relatively well on both machines even up 32-node test. The XC30’s improvement at this to 512 nodes. On 32 nodes, XC30 outperforms range was still measured at 25%. The MPI XE6 by 32%. Using 64 nodes, the XC30 ran 60% libraries on both machines errored at 128 nodes. faster. This trend continued, but was attenuated at When comparing the machines against each other 128 nodes where the XC30 was 65% faster than with the same node counts, the XC30 was a clear the XE6. These timings are a result of not only winner over the XE6. For node counts less than the stronger processing power of the newer CPU 32, the new XC30 outperforms the old XE6 by but also the faster interconnect.
Recommended publications
  • Olaseni Sode
    Olaseni Sode Work Address: 5735 S. Ellis Ave. [email protected] Searle 231 +1 (314) 856-2373 The University of Chicago Chicago, IL 60615 Home Address: 1119 E Hyde Park Blvd [email protected] Apt. 3E +1 (314) 856-2373 Chicago, IL 60615 http://www.olaseniosode.com Education University of Illinois at Urbana-Champaign Urbana, IL Ph.D. in Chemistry September 2012 – Supervisor: Professor So Hirata – Thesis title: A Theoretical Study of Molecular Crystals – Transferred from the University of Florida in 2010 with Prof. Hirata Morehouse College Atlanta, GA B.S. & B.A. in Chemistry and French December 2006 – Studied at the Université de Nantes, Nantes, France (2004-2005) Research Experience The University of Chicago Chicago, IL Postdoctoral Research – research advisor: Dr. Gregory A. Voth 2012–present – Studied proposed proton transport minimum free-energy pathways in [FeFe]-hydrogenase via molecular dynamics simulations and the multistate empirical valence bond technique. – Collaborated to develop the multiscale string method to accelerate refinement of chemical reaction pathways of adenosine triphosphate (ATP) hydrolysis in globular and filamentous actin proteins. University of California, San Diego La Jolla, CA Visiting Scholar – research advisor: Dr. Francesco Paesani 2014, 2015 – Developed and implemented a reactive molecular dynamics scheme for condensed phase systems of the hydrated hydronium ions. University of Illinois at Urbana-Champaign Urbana, IL Doctoral Research – research advisor: Dr. So Hirata 2010-2012 – Characterized the vibrational structure of extended systems including infrared and Raman-active vibrations, as well as phonon dispersions and densities of states in the first Brillouin zone. – Developed zero-point vibrational energy analysis scheme for molecular clusters using a fragmented, local basis scheme.
    [Show full text]
  • Pysimm: a Python Package for Simulation of Molecular Systems
    SoftwareX 6 (2016) 7–12 Contents lists available at ScienceDirect SoftwareX journal homepage: www.elsevier.com/locate/softx pysimm: A python package for simulation of molecular systems Michael E. Fortunato a, Coray M. Colina a,b,∗ a Department of Chemistry, University of Florida, Gainesville, FL 32611, United States b Department of Materials Science and Engineering and Nuclear Engineering, University of Florida, Gainesville, FL 32611, United States article info a b s t r a c t Article history: In this work, we present pysimm, a python package designed to facilitate structure generation, simulation, Received 15 August 2016 and modification of molecular systems. pysimm provides a collection of simulation tools and smooth Received in revised form integration with highly optimized third party software. Abstraction layers enable a standardized 1 December 2016 methodology to assign various force field models to molecular systems and perform simple simulations. Accepted 5 December 2016 These features have allowed pysimm to aid the rapid development of new applications specifically in the area of amorphous polymer simulations. Keywords: ' 2016 The Authors. Published by Elsevier B.V. Amorphous polymers Molecular simulation This is an open access article under the CC BY license Python (http://creativecommons.org/licenses/by/4.0/). Code metadata Current code version v0.1 Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-16-00070 Legal Code License MIT Code versioning system used git Software code languages, tools, and services used python2.7 Compilation requirements, operating environments & Linux dependencies If available Link to developer documentation/manual http://pysimm.org/documentation/ Support email for questions [email protected] 1.
    [Show full text]
  • Integrated Tools for Computational Chemical Dynamics
    UNIVERSITY OF MINNESOTA Integrated Tools for Computational Chemical Dynamics • Developpp powerful simulation methods and incorporate them into a user- friendly high-throughput integrated software su ite for c hem ica l d ynami cs New Models (Methods) → Modules → Integrated Tools UNIVERSITY OF MINNESOTA Development of new methods for the calculation of potential energy surface UNIVERSITY OF MINNESOTA Development of new simulation methods UNIVERSITY OF MINNESOTA Applications and Validations UNIVERSITY OF MINNESOTA Electronic Software structu re Dynamics ANT QMMM GCMC MN-GFM POLYRATE GAMESSPLUS MN-NWCHEMFM MN-QCHEMFM HONDOPLUS MN-GSM Interfaces GaussRate JaguarRate NWChemRate UNIVERSITY OF MINNESOTA Electronic Structure Software QMMM 1.3: QMMM is a computer program for combining quantum mechanics (QM) and molecular mechanics (MM). MN-GFM 3.0: MN-GFM is a module incorporating Minnesota DFT functionals into GAUSSIAN 03. MN-GSM 626.2:MN: MN-GSM is a module incorporating the SMx solvation models and other enhancements into GAUSSIAN 03. MN-NWCHEMFM 2.0:MN-NWCHEMFM is a module incorporating Minnesota DFT functionals into NWChem 505.0. MN-QCHEMFM 1.0: MN-QCHEMFM is a module incorporating Minnesota DFT functionals into Q-CHEM. GAMESSPLUS 4.8: GAMESSPLUS is a module incorporating the SMx solvation models and other enhancements into GAMESS. HONDOPLUS 5.1: HONDOPLUS is a computer program incorporating the SMx solvation models and other photochemical diabatic states into HONDO. UNIVERSITY OF MINNESOTA DiSftDynamics Software ANT 07: ANT is a molecular dynamics program for performing classical and semiclassical trajjyectory simulations for adiabatic and nonadiabatic processes. GCMC: GCMC is a Grand Canonical Monte Carlo (GCMC) module for the simulation of adsorption isotherms in heterogeneous catalysts.
    [Show full text]
  • Open Babel Documentation Release 2.3.1
    Open Babel Documentation Release 2.3.1 Geoffrey R Hutchison Chris Morley Craig James Chris Swain Hans De Winter Tim Vandermeersch Noel M O’Boyle (Ed.) December 05, 2011 Contents 1 Introduction 3 1.1 Goals of the Open Babel project ..................................... 3 1.2 Frequently Asked Questions ....................................... 4 1.3 Thanks .................................................. 7 2 Install Open Babel 9 2.1 Install a binary package ......................................... 9 2.2 Compiling Open Babel .......................................... 9 3 obabel and babel - Convert, Filter and Manipulate Chemical Data 17 3.1 Synopsis ................................................. 17 3.2 Options .................................................. 17 3.3 Examples ................................................. 19 3.4 Differences between babel and obabel .................................. 21 3.5 Format Options .............................................. 22 3.6 Append property values to the title .................................... 22 3.7 Filtering molecules from a multimolecule file .............................. 22 3.8 Substructure and similarity searching .................................. 25 3.9 Sorting molecules ............................................ 25 3.10 Remove duplicate molecules ....................................... 25 3.11 Aliases for chemical groups ....................................... 26 4 The Open Babel GUI 29 4.1 Basic operation .............................................. 29 4.2 Options .................................................
    [Show full text]
  • A Study on Cheminformatics and Its Applications on Modern Drug Discovery
    Available online at www.sciencedirect.com Procedia Engineering 38 ( 2012 ) 1264 – 1275 Internatio na l Conference on Modeling Optimisatio n and Computing (ICMOC 2012) A Study on Cheminformatics and its Applications on Modern Drug Discovery B.Firdaus Begama and Dr. J.Satheesh Kumarb aResearch Scholar, Bharathiar University, Coimbatore, India, [email protected] bAssistant Professor, Bharathiar University, Coimbatore, India, [email protected] Abstract Discovering drugs to a disease is still a challenging task for medical researchers due to the complex structures of biomolecules which are responsible for disease such as AIDS, Cancer, Autism, Alzimear etc. Design and development of new efficient anti-drugs for the disease without any side effects are becoming mandatory in the recent history of human life cycle due to changes in various factors which includes food habit, environmental and migration in human life style. Cheminformaticds deals with discovering drugs based in modern drug discovery techniques which in turn rectifies complex issues in traditional drug discovery system. Cheminformatics tools, helps medical chemist for better understanding of complex structures of chemical compounds. Cheminformatics is a new emerging interdisciplinary field which primarily aims to discover Novel Chemical Entities [NCE] which ultimately results in design of new molecule [chemical data]. It also plays an important role for collecting, storing and analysing the chemical data. This paper focuses on cheminformatics and its applications on drug discovery and modern drug discovery techniques which helps chemist and medical researchers for finding solution to the complex disease. © 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Noorul Islam Centre for Higher Education.
    [Show full text]
  • Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
    processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi
    [Show full text]
  • An Efficient Hardware-Software Approach to Network Fault Tolerance with Infiniband
    An Efficient Hardware-Software Approach to Network Fault Tolerance with InfiniBand Abhinav Vishnu1 Manoj Krishnan1 and Dhableswar K. Panda2 Pacific Northwest National Lab1 The Ohio State University2 Outline Introduction Background and Motivation InfiniBand Network Fault Tolerance Primitives Hybrid-IBNFT Design Hardware-IBNFT and Software-IBNFT Performance Evaluation of Hybrid-IBNFT Micro-benchmarks and NWChem Conclusions and Future Work Introduction Clusters are observing a tremendous increase in popularity Excellent price to performance ratio 82% supercomputers are clusters in June 2009 TOP500 rankings Multiple commodity Interconnects have emerged during this trend InfiniBand, Myrinet, 10GigE …. InfiniBand has become popular Open standard and high performance Various topologies have emerged for interconnecting InfiniBand Fat tree is the predominant topology TACC Ranger, PNNL Chinook 3 Typical InfiniBand Fat Tree Configurations 144-Port Switch Block Diagram Multiple leaf and spine blocks 12 Spine Available in 144, 288 and 3456 port Blocks combinations 12 Leaf Blocks Multiple paths are available between nodes present on different switch blocks Oversubscribed configurations are becoming popular 144-Port Switch Block Diagram Better cost to performance ratio 12 Spine Blocks 12 Spine 12 Spine Blocks Blocks 12 Leaf 12 Leaf Blocks Blocks 4 144-Port Switch Block Diagram 144-Port Switch Block Diagram Network Faults Links/Switches/Adapters may fail with reduced MTBF (Mean time between failures) Fortunately, InfiniBand provides mechanisms to handle
    [Show full text]
  • Ee9e60701e814784783a672a9
    International Journal of Technology (2017) 4: 611‐621 ISSN 2086‐9614 © IJTech 2017 A PRELIMINARY STUDY ON SHIFTING FROM VIRTUAL MACHINE TO DOCKER CONTAINER FOR INSILICO DRUG DISCOVERY IN THE CLOUD Agung Putra Pasaribu1, Muhammad Fajar Siddiq1, Muhammad Irfan Fadhila1, Muhammad H. Hilman1, Arry Yanuar2, Heru Suhartanto1* 1Faculty of Computer Science, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia 2Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia (Received: January 2017 / Revised: April 2017 / Accepted: June 2017) ABSTRACT The rapid growth of information technology and internet access has moved many offline activities online. Cloud computing is an easy and inexpensive solution, as supported by virtualization servers that allow easier access to personal computing resources. Unfortunately, current virtualization technology has some major disadvantages that can lead to suboptimal server performance. As a result, some companies have begun to move from virtual machines to containers. While containers are not new technology, their use has increased recently due to the Docker container platform product. Docker’s features can provide easier solutions. In this work, insilico drug discovery applications from molecular modelling to virtual screening were tested to run in Docker. The results are very promising, as Docker beat the virtual machine in most tests and reduced the performance gap that exists when using a virtual machine (VirtualBox). The virtual machine placed third in test performance, after the host itself and Docker. Keywords: Cloud computing; Docker container; Molecular modeling; Virtual screening 1. INTRODUCTION In recent years, cloud computing has entered the realm of information technology (IT) and has been widely used by the enterprise in support of business activities (Foundation, 2016).
    [Show full text]
  • Computer-Assisted Catalyst Development Via Automated Modelling of Conformationally Complex Molecules
    www.nature.com/scientificreports OPEN Computer‑assisted catalyst development via automated modelling of conformationally complex molecules: application to diphosphinoamine ligands Sibo Lin1*, Jenna C. Fromer2, Yagnaseni Ghosh1, Brian Hanna1, Mohamed Elanany3 & Wei Xu4 Simulation of conformationally complicated molecules requires multiple levels of theory to obtain accurate thermodynamics, requiring signifcant researcher time to implement. We automate this workfow using all open‑source code (XTBDFT) and apply it toward a practical challenge: diphosphinoamine (PNP) ligands used for ethylene tetramerization catalysis may isomerize (with deleterious efects) to iminobisphosphines (PPNs), and a computational method to evaluate PNP ligand candidates would save signifcant experimental efort. We use XTBDFT to calculate the thermodynamic stability of a wide range of conformationally complex PNP ligands against isomeriation to PPN (ΔGPPN), and establish a strong correlation between ΔGPPN and catalyst performance. Finally, we apply our method to screen novel PNP candidates, saving signifcant time by ruling out candidates with non‑trivial synthetic routes and poor expected catalytic performance. Quantum mechanical methods with high energy accuracy, such as density functional theory (DFT), can opti- mize molecular input structures to a nearby local minimum, but calculating accurate reaction thermodynamics requires fnding global minimum energy structures1,2. For simple molecules, expert intuition can identify a few minima to focus study on, but an alternative approach must be considered for more complex molecules or to eventually fulfl the dream of autonomous catalyst design 3,4: the potential energy surface must be frst surveyed with a computationally efcient method; then minima from this survey must be refned using slower, more accurate methods; fnally, for molecules possessing low-frequency vibrational modes, those modes need to be treated appropriately to obtain accurate thermodynamic energies 5–7.
    [Show full text]
  • Reactive Molecular Dynamics Study of the Thermal Decomposition of Phenolic Resins
    Article Reactive Molecular Dynamics Study of the Thermal Decomposition of Phenolic Resins Marcus Purse 1, Grace Edmund 1, Stephen Hall 1, Brendan Howlin 1,* , Ian Hamerton 2 and Stephen Till 3 1 Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guilford, Surrey GU2 7XH, UK; [email protected] (M.P.); [email protected] (G.E.); [email protected] (S.H.) 2 Bristol Composites Institute (ACCIS), Department of Aerospace Engineering, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK; [email protected] 3 Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1483-686-248 Received: 6 March 2019; Accepted: 23 March 2019; Published: 28 March 2019 Abstract: The thermal decomposition of polyphenolic resins was studied by reactive molecular dynamics (RMD) simulation at elevated temperatures. Atomistic models of the polyphenolic resins to be used in the RMD were constructed using an automatic method which calls routines from the software package Materials Studio. In order to validate the models, simulated densities and heat capacities were compared with experimental values. The most suitable combination of force field and thermostat for this system was the Forcite force field with the Nosé–Hoover thermostat, which gave values of heat capacity closest to those of the experimental values. Simulated densities approached a final density of 1.05–1.08 g/cm3 which compared favorably with the experimental values of 1.16–1.21 g/cm3 for phenol-formaldehyde resins.
    [Show full text]
  • How to Modify LAMMPS: from the Prospective of a Particle Method Researcher
    chemengineering Article How to Modify LAMMPS: From the Prospective of a Particle Method Researcher Andrea Albano 1,* , Eve le Guillou 2, Antoine Danzé 2, Irene Moulitsas 2 , Iwan H. Sahputra 1,3, Amin Rahmat 1, Carlos Alberto Duque-Daza 1,4, Xiaocheng Shang 5 , Khai Ching Ng 6, Mostapha Ariane 7 and Alessio Alexiadis 1,* 1 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (I.H.S.); [email protected] (A.R.); [email protected] (C.A.D.-D.) 2 Centre for Computational Engineering Sciences, Cranfield University, Bedford MK43 0AL, UK; Eve.M.Le-Guillou@cranfield.ac.uk (E.l.G.); A.Danze@cranfield.ac.uk (A.D.); i.moulitsas@cranfield.ac.uk (I.M.) 3 Industrial Engineering Department, Petra Christian University, Surabaya 60236, Indonesia 4 Department of Mechanical and Mechatronic Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia 5 School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; [email protected] 6 Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia; [email protected] 7 Department of Materials and Engineering, Sayens-University of Burgundy, 21000 Dijon, France; [email protected] * Correspondence: [email protected] or [email protected] (A.A.); [email protected] (A.A.) Citation: Albano, A.; le Guillou, E.; Danzé, A.; Moulitsas, I.; Sahputra, Abstract: LAMMPS is a powerful simulator originally developed for molecular dynamics that, today, I.H.; Rahmat, A.; Duque-Daza, C.A.; also accounts for other particle-based algorithms such as DEM, SPH, or Peridynamics.
    [Show full text]
  • Preparing and Analyzing Large Molecular Simulations With
    Preparing and Analyzing Large Molecular Simulations with VMD John Stone, Senior Research Programmer NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign VMD Tutorials Home Page • http://www.ks.uiuc.edu/Training/Tutorials/ – Main VMD tutorial – VMD images and movies tutorial – QwikMD simulation preparation and analysis plugin – Structure check – VMD quantum chemistry visualization tutorial – Visualization and analysis of CPMD data with VMD – Parameterizing small molecules using ffTK Overview • Introduction • Data model • Visualization • Scripting and analytical features • Trajectory analysis and visualization • High fidelity ray tracing • Plugins and user-extensibility • Large system analysis and visualization VMD – “Visual Molecular Dynamics” • 100,000 active users worldwide • Visualization and analysis of: – Molecular dynamics simulations – Lattice cell simulations – Quantum chemistry calculations – Cryo-EM densities, volumetric data • User extensible scripting and plugins • http://www.ks.uiuc.edu/Research/vmd/ Cell-Scale Modeling MD Simulation VMD – “Visual Molecular Dynamics” • Unique capabilities: • Visualization and analysis of: – Trajectories are fundamental to VMD – Molecular dynamics simulations – Support for very large systems, – “Particle” systems and whole cells now reaching billions of particles – Cryo-EM densities, volumetric data – Extensive GPU acceleration – Quantum chemistry calculations – Parallel analysis/visualization with MPI – Sequence information MD Simulations Cell-Scale
    [Show full text]