Pysimm: a Python Package for Simulation of Molecular Systems

Total Page:16

File Type:pdf, Size:1020Kb

Pysimm: a Python Package for Simulation of Molecular Systems SoftwareX 6 (2016) 7–12 Contents lists available at ScienceDirect SoftwareX journal homepage: www.elsevier.com/locate/softx pysimm: A python package for simulation of molecular systems Michael E. Fortunato a, Coray M. Colina a,b,∗ a Department of Chemistry, University of Florida, Gainesville, FL 32611, United States b Department of Materials Science and Engineering and Nuclear Engineering, University of Florida, Gainesville, FL 32611, United States article info a b s t r a c t Article history: In this work, we present pysimm, a python package designed to facilitate structure generation, simulation, Received 15 August 2016 and modification of molecular systems. pysimm provides a collection of simulation tools and smooth Received in revised form integration with highly optimized third party software. Abstraction layers enable a standardized 1 December 2016 methodology to assign various force field models to molecular systems and perform simple simulations. Accepted 5 December 2016 These features have allowed pysimm to aid the rapid development of new applications specifically in the area of amorphous polymer simulations. Keywords: ' 2016 The Authors. Published by Elsevier B.V. Amorphous polymers Molecular simulation This is an open access article under the CC BY license Python (http://creativecommons.org/licenses/by/4.0/). Code metadata Current code version v0.1 Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-16-00070 Legal Code License MIT Code versioning system used git Software code languages, tools, and services used python2.7 Compilation requirements, operating environments & Linux dependencies If available Link to developer documentation/manual http://pysimm.org/documentation/ Support email for questions [email protected] 1. Motivation and significance Molecular simulations have proven to be useful tools to explore and high performance computing techniques. However, there time and length scales often inaccessible through experimental is a potentially large user base of scientists that could employ means and can offer invaluable insight to supplement or explain computers for research if relatively easy to use applications were experimental data. As available computational power increases available to them. so does the practicality of simulating larger and more complex One area where computational studies can have a great impact molecular systems. It is important that the development of new is in the amorphous polymeric community. It is nontrivial to software keeps pace to take full advantage of this continual predict amorphous polymer chain geometries due to a lack of increase in computational power. well defined three dimensional structures. Once structures are New software is often developed to take advantage of new obtained, however, there are numerous in silico characterizations hardware or hardware acceleration, but that computational power that could be performed to interrogate material properties. While must also be accessible to researchers to solve scientific problems. there are many tools that exist designed to simplify simulation The use of highly optimized software is sometimes limited to setup for biomolecules fewer tools exist to simplify the structure those that have a deep understanding of computer programming preparation process for amorphous polymers. This may be due to the great diversity in polymer composition and morphology as compared to protein chains consisting of a small set of amino ∗ Corresponding author at: Department of Chemistry, University of Florida, acids. These tools often take known three dimensional structures Gainesville, FL 32611, United States. determined from experimental data, such as x-ray crystallography, E-mail address: [email protected] (C.M. Colina). and apply a given force field model. Predicting secondary, tertiary, http://dx.doi.org/10.1016/j.softx.2016.12.002 2352-7110/' 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 8 M.E. Fortunato, C.M. Colina / SoftwareX 6 (2016) 7–12 and quaternary structures of proteins from their linear sequence __init__.py. Very often the integration only requires knowledge of amino acids is still an area of active research, however. of the path to an executable. For example, to configure the use Additionally, it may be intractable to have a highly optimized but of the LAMMPS software package through the lmps module (see broadly applicable force field capable of capturing all polymer Section 2.1.3), a user can either set an environment variable physics given the variety of functional groups used in polymer `LAMMPS_EXEC' on their own or modify a line of code in __init__.py chemistry. The availability of software that simplifies the process to search for their executable (see directions in the README to study a system with various force fields can yield insight into included in the pysimm source code repository). which models can capture a subset of polymer physics applicable pysimm can be used interactively by invoking python at a to a given scientific inquiry as well as help guide force field Linux terminal and importing pysimm. This technique can be development in the polymer simulation community. extremely useful for examining and preparing molecular systems pysimm is a python package designed specifically to address for simulation. For example, it is often of interest to visually these issues by providing users simple but powerful tools to inspect a system under study in order to get an atom's tag, or build structures and apply various force fields models to study its unique identifier. Using pysimm interactively can allow users amorphous polymer morphologies. The software is built to exist to read system information from a file and visualize a system between other layers of software that can provide highly optimized to help determine specific tags. Upon closing the visualization execution of expensive calculations and user friendly (graphical) software the user is returned to the interactive python interpreter interfaces. Bridging this gap helps to open up doors to many to continue to configure or modify the molecular system. more researchers to utilize computational power to study polymer Alternatively pysimm scripts can be run in batches by passing a science. script to the python interpreter. There is a plethora of software that exists to do various tasks associated with molecular simulations from highly optimized sim- 2.1. Software architecture and functionality ulation packages such as LAMMPS [1], AMBER [2], GROMACS [3], CHARMM [4], HOOMD [5], OpenMM [6] and Cassandra [7], to soft- The pysimm python package is broken into three core parts. ware designed to prepare systems for simulation such as Am- The system module is capable of generating, modifying and berTools LEaP [2], PackMol [8], and mBuild [9], to computational interpreting molecular data. This includes the position of atoms chemistry packages such as RDKit [10] and OpenBabel [11], to post- and how they interact. The way in which the atoms interact in processing software such as AmberTools CPPTRAJ [2], LAMMPS molecular systems usually refers to force fields or inter-atomic Pizza.py [1], PoreBlazer [12], VMD [13], PyMol [14] and MD- potentials, for which the forcefield package exists in pysimm. Traj [15], and software specifically designed to create polymer This package interprets force field data and can assign these structures such as PolymerModeler [16], Polymatic [17] and As- parameters to a given molecular system. The last core module semble! [18]. Despite the length of this list of software, it is far handles how molecular simulations are performed. This task is from exhaustive. It is improbable that any computational scientist usually very computationally expensive and there are many highly would attempt to learn the intricate details of all of these software optimized software packages that have been designed specifically packages, but may want to use bits and pieces of each of them. to accomplish these tasks efficiently. For this reason, pysimm opts The goal of pysimm is not to replace any of the above to employ third party simulation software. While currently pysimm software packages for their specific purpose, but to facilitate the has been developed to integrate seamlessly with parts of the collaboration between them by providing simple API behavior to LAMMPS simulation package through the lmps module, the future integrate different features using the popular scripting language direction of the package involves expanding to integrate with of Python. For example, pysimm was used in the development numerous simulation packages, each which can provide unique of the web-based application nusimm: nanoHUB User Simulation functionality. Interface for Molecular Modeling [19] which provides a user The philosophy behind creating a python interface for a friendly interface for performing high performance molecular molecular simulation package is that the level of abstraction allows simulations. Integration with LAMMPS [1], PoreBlazer [12], users to take advantage of the inherent optimization without PyMol [14], and Polymatic [17] allows users to generate a polymer having to worry about the sometimes cryptic syntax required to set structure with Polymatic, sample conformational space of polymer up a simulation. The file formatting, organization, and execution chains through simulation with LAMMPS, visualize and analyze
Recommended publications
  • Olaseni Sode
    Olaseni Sode Work Address: 5735 S. Ellis Ave. [email protected] Searle 231 +1 (314) 856-2373 The University of Chicago Chicago, IL 60615 Home Address: 1119 E Hyde Park Blvd [email protected] Apt. 3E +1 (314) 856-2373 Chicago, IL 60615 http://www.olaseniosode.com Education University of Illinois at Urbana-Champaign Urbana, IL Ph.D. in Chemistry September 2012 – Supervisor: Professor So Hirata – Thesis title: A Theoretical Study of Molecular Crystals – Transferred from the University of Florida in 2010 with Prof. Hirata Morehouse College Atlanta, GA B.S. & B.A. in Chemistry and French December 2006 – Studied at the Université de Nantes, Nantes, France (2004-2005) Research Experience The University of Chicago Chicago, IL Postdoctoral Research – research advisor: Dr. Gregory A. Voth 2012–present – Studied proposed proton transport minimum free-energy pathways in [FeFe]-hydrogenase via molecular dynamics simulations and the multistate empirical valence bond technique. – Collaborated to develop the multiscale string method to accelerate refinement of chemical reaction pathways of adenosine triphosphate (ATP) hydrolysis in globular and filamentous actin proteins. University of California, San Diego La Jolla, CA Visiting Scholar – research advisor: Dr. Francesco Paesani 2014, 2015 – Developed and implemented a reactive molecular dynamics scheme for condensed phase systems of the hydrated hydronium ions. University of Illinois at Urbana-Champaign Urbana, IL Doctoral Research – research advisor: Dr. So Hirata 2010-2012 – Characterized the vibrational structure of extended systems including infrared and Raman-active vibrations, as well as phonon dispersions and densities of states in the first Brillouin zone. – Developed zero-point vibrational energy analysis scheme for molecular clusters using a fragmented, local basis scheme.
    [Show full text]
  • A Study on Cheminformatics and Its Applications on Modern Drug Discovery
    Available online at www.sciencedirect.com Procedia Engineering 38 ( 2012 ) 1264 – 1275 Internatio na l Conference on Modeling Optimisatio n and Computing (ICMOC 2012) A Study on Cheminformatics and its Applications on Modern Drug Discovery B.Firdaus Begama and Dr. J.Satheesh Kumarb aResearch Scholar, Bharathiar University, Coimbatore, India, [email protected] bAssistant Professor, Bharathiar University, Coimbatore, India, [email protected] Abstract Discovering drugs to a disease is still a challenging task for medical researchers due to the complex structures of biomolecules which are responsible for disease such as AIDS, Cancer, Autism, Alzimear etc. Design and development of new efficient anti-drugs for the disease without any side effects are becoming mandatory in the recent history of human life cycle due to changes in various factors which includes food habit, environmental and migration in human life style. Cheminformaticds deals with discovering drugs based in modern drug discovery techniques which in turn rectifies complex issues in traditional drug discovery system. Cheminformatics tools, helps medical chemist for better understanding of complex structures of chemical compounds. Cheminformatics is a new emerging interdisciplinary field which primarily aims to discover Novel Chemical Entities [NCE] which ultimately results in design of new molecule [chemical data]. It also plays an important role for collecting, storing and analysing the chemical data. This paper focuses on cheminformatics and its applications on drug discovery and modern drug discovery techniques which helps chemist and medical researchers for finding solution to the complex disease. © 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Noorul Islam Centre for Higher Education.
    [Show full text]
  • Reactive Molecular Dynamics Study of the Thermal Decomposition of Phenolic Resins
    Article Reactive Molecular Dynamics Study of the Thermal Decomposition of Phenolic Resins Marcus Purse 1, Grace Edmund 1, Stephen Hall 1, Brendan Howlin 1,* , Ian Hamerton 2 and Stephen Till 3 1 Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guilford, Surrey GU2 7XH, UK; [email protected] (M.P.); [email protected] (G.E.); [email protected] (S.H.) 2 Bristol Composites Institute (ACCIS), Department of Aerospace Engineering, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK; [email protected] 3 Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1483-686-248 Received: 6 March 2019; Accepted: 23 March 2019; Published: 28 March 2019 Abstract: The thermal decomposition of polyphenolic resins was studied by reactive molecular dynamics (RMD) simulation at elevated temperatures. Atomistic models of the polyphenolic resins to be used in the RMD were constructed using an automatic method which calls routines from the software package Materials Studio. In order to validate the models, simulated densities and heat capacities were compared with experimental values. The most suitable combination of force field and thermostat for this system was the Forcite force field with the Nosé–Hoover thermostat, which gave values of heat capacity closest to those of the experimental values. Simulated densities approached a final density of 1.05–1.08 g/cm3 which compared favorably with the experimental values of 1.16–1.21 g/cm3 for phenol-formaldehyde resins.
    [Show full text]
  • How to Modify LAMMPS: from the Prospective of a Particle Method Researcher
    chemengineering Article How to Modify LAMMPS: From the Prospective of a Particle Method Researcher Andrea Albano 1,* , Eve le Guillou 2, Antoine Danzé 2, Irene Moulitsas 2 , Iwan H. Sahputra 1,3, Amin Rahmat 1, Carlos Alberto Duque-Daza 1,4, Xiaocheng Shang 5 , Khai Ching Ng 6, Mostapha Ariane 7 and Alessio Alexiadis 1,* 1 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (I.H.S.); [email protected] (A.R.); [email protected] (C.A.D.-D.) 2 Centre for Computational Engineering Sciences, Cranfield University, Bedford MK43 0AL, UK; Eve.M.Le-Guillou@cranfield.ac.uk (E.l.G.); A.Danze@cranfield.ac.uk (A.D.); i.moulitsas@cranfield.ac.uk (I.M.) 3 Industrial Engineering Department, Petra Christian University, Surabaya 60236, Indonesia 4 Department of Mechanical and Mechatronic Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia 5 School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; [email protected] 6 Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia; [email protected] 7 Department of Materials and Engineering, Sayens-University of Burgundy, 21000 Dijon, France; [email protected] * Correspondence: [email protected] or [email protected] (A.A.); [email protected] (A.A.) Citation: Albano, A.; le Guillou, E.; Danzé, A.; Moulitsas, I.; Sahputra, Abstract: LAMMPS is a powerful simulator originally developed for molecular dynamics that, today, I.H.; Rahmat, A.; Duque-Daza, C.A.; also accounts for other particle-based algorithms such as DEM, SPH, or Peridynamics.
    [Show full text]
  • Preparing and Analyzing Large Molecular Simulations With
    Preparing and Analyzing Large Molecular Simulations with VMD John Stone, Senior Research Programmer NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign VMD Tutorials Home Page • http://www.ks.uiuc.edu/Training/Tutorials/ – Main VMD tutorial – VMD images and movies tutorial – QwikMD simulation preparation and analysis plugin – Structure check – VMD quantum chemistry visualization tutorial – Visualization and analysis of CPMD data with VMD – Parameterizing small molecules using ffTK Overview • Introduction • Data model • Visualization • Scripting and analytical features • Trajectory analysis and visualization • High fidelity ray tracing • Plugins and user-extensibility • Large system analysis and visualization VMD – “Visual Molecular Dynamics” • 100,000 active users worldwide • Visualization and analysis of: – Molecular dynamics simulations – Lattice cell simulations – Quantum chemistry calculations – Cryo-EM densities, volumetric data • User extensible scripting and plugins • http://www.ks.uiuc.edu/Research/vmd/ Cell-Scale Modeling MD Simulation VMD – “Visual Molecular Dynamics” • Unique capabilities: • Visualization and analysis of: – Trajectories are fundamental to VMD – Molecular dynamics simulations – Support for very large systems, – “Particle” systems and whole cells now reaching billions of particles – Cryo-EM densities, volumetric data – Extensive GPU acceleration – Quantum chemistry calculations – Parallel analysis/visualization with MPI – Sequence information MD Simulations Cell-Scale
    [Show full text]
  • Biomolecular Simulation Data Management In
    BIOMOLECULAR SIMULATION DATA MANAGEMENT IN HETEROGENEOUS ENVIRONMENTS Julien Charles Victor Thibault A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biomedical Informatics The University of Utah December 2014 Copyright © Julien Charles Victor Thibault 2014 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Julien Charles Victor Thibault has been approved by the following supervisory committee members: Julio Cesar Facelli , Chair 4/2/2014___ Date Approved Thomas E. Cheatham , Member 3/31/2014___ Date Approved Karen Eilbeck , Member 4/3/2014___ Date Approved Lewis J. Frey _ , Member 4/2/2014___ Date Approved Scott P. Narus , Member 4/4/2014___ Date Approved And by Wendy W. Chapman , Chair of the Department of Biomedical Informatics and by David B. Kieda, Dean of The Graduate School. ABSTRACT Over 40 years ago, the first computer simulation of a protein was reported: the atomic motions of a 58 amino acid protein were simulated for few picoseconds. With today’s supercomputers, simulations of large biomolecular systems with hundreds of thousands of atoms can reach biologically significant timescales. Through dynamics information biomolecular simulations can provide new insights into molecular structure and function to support the development of new drugs or therapies. While the recent advances in high-performance computing hardware and computational methods have enabled scientists to run longer simulations, they also created new challenges for data management. Investigators need to use local and national resources to run these simulations and store their output, which can reach terabytes of data on disk.
    [Show full text]
  • Introduction to Bioinformatics (Elective) – SBB1609
    SCHOOL OF BIO AND CHEMICAL ENGINEERING DEPARTMENT OF BIOTECHNOLOGY Unit 1 – Introduction to Bioinformatics (Elective) – SBB1609 1 I HISTORY OF BIOINFORMATICS Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biologicaldata. As an interdisciplinary field of science, bioinformatics combines computer science, statistics, mathematics, and engineering to analyze and interpret biological data. Bioinformatics has been used for in silico analyses of biological queries using mathematical and statistical techniques. Bioinformatics derives knowledge from computer analysis of biological data. These can consist of the information stored in the genetic code, but also experimental results from various sources, patient statistics, and scientific literature. Research in bioinformatics includes method development for storage, retrieval, and analysis of the data. Bioinformatics is a rapidly developing branch of biology and is highly interdisciplinary, using techniques and concepts from informatics, statistics, mathematics, chemistry, biochemistry, physics, and linguistics. It has many practical applications in different areas of biology and medicine. Bioinformatics: Research, development, or application of computational tools and approaches for expanding the use of biological, medical, behavioral or health data, including those to acquire, store, organize, archive, analyze, or visualize such data. Computational Biology: The development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavioral, and social systems. "Classical" bioinformatics: "The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information.” The National Center for Biotechnology Information (NCBI 2001) defines bioinformatics as: "Bioinformatics is the field of science in which biology, computer science, and information technology merge into a single discipline.
    [Show full text]
  • Development of a High-Density Initiation Mechanism for Supercritical Nitromethane Decomposition
    The Pennsylvania State University The Graduate School DEVELOPMENT OF A HIGH-DENSITY INITIATION MECHANISM FOR SUPERCRITICAL NITROMETHANE DECOMPOSITION A Thesis in Mechanical Engineering by Christopher N. Burke © 2020 Christopher N. Burke Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2020 The thesis of Christopher N. Burke was reviewed and approved by the following: Richard A. Yetter Professor of Mechanical Engineering Thesis Co-Advisor Adrianus C. van Duin Professor of Mechanical Engineering Thesis Co-Advisor Jacqueline A. O’Connor Professor of Mechanical Engineering Karen Thole Professor of Mechanical Engineering Mechanical Engineering Department Head ii Abstract: This thesis outlines the bottom-up development of a high pressure, high- density initiation mechanism for nitromethane decomposition. Using reactive molecular dynamics (ReaxFF), a hydrogen-abstraction initiation mechanism for nitromethane decomposition that occurs at initial supercritical densities of 0.83 grams per cubic centimeter was investigated and a mechanism was constructed as an addendum for existing mechanisms. The reactions in this mechanism were examined and the pathways leading from the new initiation set into existing mechanism are discussed, with ab-initio/DFT level data to support them, as well as a survey of other combustion mechanisms containing analogous reactions. C2 carbon chemistry and soot formation pathways were also included to develop a complete high-pressure mechanism to compare to the experimental results of Derk. C2 chemistry, soot chemistry, and the hydrogen-abstraction initiation mechanism were appended to the baseline mechanism used by Boyer and analyzed in Chemkin as a temporal, ideal gas decomposition. The analysis of these results includes a comprehensive discussion of the observed chemistry and the implications thereof.
    [Show full text]
  • Advances in Computational Fluid Mechanics in Cellular Flow Manipulation: a Review
    applied sciences Review Advances in Computational Fluid Mechanics in Cellular Flow Manipulation: A Review Masoud Arabghahestani 1,* , Sadegh Poozesh 2 and Nelson K. Akafuah 1 1 Institute of Research for Technology Development (IR4TD), University of Kentucky, Lexington, KY 40506, USA; [email protected] 2 Mechanical Engineering Department, Tuskegee University, Tuskegee, AL 36088, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-(859)-898-7700 Received: 28 August 2019; Accepted: 25 September 2019; Published: 27 September 2019 Abstract: Recently, remarkable developments have taken place, leading to significant improvements in microfluidic methods to capture subtle biological effects down to single cells. As microfluidic devices are getting sophisticated, design optimization through experimentations is becoming more challenging. As a result, numerical simulations have contributed to this trend by offering a better understanding of cellular microenvironments hydrodynamics and optimizing the functionality of the current/emerging designs. The need for new marketable designs with advantageous hydrodynamics invokes easier access to efficient as well as time-conservative numerical simulations to provide screening over cellular microenvironments, and to emulate physiological conditions with high accuracy. Therefore, an excerpt overview on how each numerical methodology and associated handling software works, and how they differ in handling underlying hydrodynamic of lab-on-chip microfluidic is crucial. These numerical means rely on molecular and continuum levels of numerical simulations. The current review aims to serve as a guideline for researchers in this area by presenting a comprehensive characterization of various relevant simulation techniques. Keywords: computational fluid mechanics; microfluidic devices; cellular flow; numerical simulations; molecular and continuum levels 1. Introduction 1.1.
    [Show full text]
  • Open Source Molecular Modeling
    Accepted Manuscript Title: Open Source Molecular Modeling Author: Somayeh Pirhadi Jocelyn Sunseri David Ryan Koes PII: S1093-3263(16)30118-8 DOI: http://dx.doi.org/doi:10.1016/j.jmgm.2016.07.008 Reference: JMG 6730 To appear in: Journal of Molecular Graphics and Modelling Received date: 4-5-2016 Accepted date: 25-7-2016 Please cite this article as: Somayeh Pirhadi, Jocelyn Sunseri, David Ryan Koes, Open Source Molecular Modeling, <![CDATA[Journal of Molecular Graphics and Modelling]]> (2016), http://dx.doi.org/10.1016/j.jmgm.2016.07.008 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Open Source Molecular Modeling Somayeh Pirhadia, Jocelyn Sunseria, David Ryan Koesa,∗ aDepartment of Computational and Systems Biology, University of Pittsburgh Abstract The success of molecular modeling and computational chemistry efforts are, by definition, de- pendent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. 1. Introduction What is Open Source? Free and open source software (FOSS) is software that is both considered \free software," as defined by the Free Software Foundation (http://fsf.org) and \open source," as defined by the Open Source Initiative (http://opensource.org).
    [Show full text]
  • Olaseni Sode Education Research Experience Skills & Expertise
    1119 E Hyde Park Blvd Apt. 3E Olaseni Sode http://www.olaseniosode.com Chicago, Il 60615 [email protected], 1 (314) 856-2373 Education University of Illinois at Urbana-Champaign Urbana, IL • Ph.D. in Chemistry September 2012 { Supervisor: Professor So Hirata { Thesis title: A Theoretical Study of Molecular Crystals { Transferred from Chemistry Department at the University of Florida in 2010 with Prof. Hirata Morehouse College Atlanta, GA • B.S. & B.A. in Chemistry and French Dec 2006 { Studied at the Universit´ede Nantes, Nantes, France (2004-2005) Research Experience University of Chicago Chicago, IL • Postdoctoral Research { research advisor: Dr. Gregory Voth 2012 - present { Helped develop the multiscale string method to accelerate refinement of chemical reaction pathways of adenosine triphosphate (ATP) hydrolysis in globular and filamentous actin proteins. { Studied proposed proton transport minimum free-energy pathways in [FeFe]-Hydrogenase via molecular dynamics simulations and the multistate empirical valence bond technique. University of Illinois at Urbana-Champaign Urbana, IL • Doctoral Research - research adviser: Dr. So Hirata 2010 - 2012 { Studied the structural parameters of molecular crystals such as hydrogen fluoride, carbon dioxide, and phases of ice, including finite pressure effects using ab initio quantum chemistry calculations. { Characterized the vibrational structure of extended systems including infrared and Raman-active vibrations, as well as k 6= 0 phonon dispersions and densities of states in the first Brillouin zone. { Developed zero-point vibrational energy analysis scheme for molecular clusters using a fragmented, local basis scheme. Morehouse College Atlanta, GA • Undergraduate Research - adviser: Dr. Subhash Bhatia 2006 - 2007 { Performed computational investigation of alpha-D-glucosamine with Spartan quantum chemistry software package.
    [Show full text]
  • Coarse-Grained Simulation of DNA Using LAMMPS*
    Eur. Phys. J. E (2018) 41:57 THE EUROPEAN DOI 10.1140/epje/i2018-11669-8 PHYSICAL JOURNAL E Regular Article Coarse-grained simulation of DNA using LAMMPS An implementation of the oxDNA model and its applications Oliver Henrich1,a, Yair Augusto Guti´errez Fosado2, Tine Curk3,4, and Thomas E. Ouldridge5,6 1 Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, Scotland, UK 2 School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, Scotland, UK 3 CAS Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 4 Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK 5 Department of Bioengineering, Imperial College London, London SW7 2AZ, UK 6 Centre of Synthetic Biology, Imperial College London, London SW7 2AZ, UK Received 20 February 2018 and Received in final form 13 April 2018 Published online: 10 May 2018 c The Author(s) 2018. This article is published with open access at Springerlink.com Abstract. During the last decade coarse-grained nucleotide models have emerged that allow us to study DNA and RNA on unprecedented time and length scales. Among them is oxDNA, a coarse-grained, sequence-specific model that captures the hybridisation transition of DNA and many structural prop- erties of single- and double-stranded DNA. oxDNA was previously only available as standalone software, but has now been implemented into the popular LAMMPS molecular dynamics code. This article describes the new implementation and analyses its parallel performance. Practical applications are presented that focus on single-stranded DNA, an area of research which has been so far under-investigated.
    [Show full text]