HEATHER J. KULIK Ph:(617)-253-4584 77 Massachusetts Ave, 66-464 E: [email protected] Cambridge, MA 02139 W
Total Page:16
File Type:pdf, Size:1020Kb
MIT Dept. of Chemical Engineering HEATHER J. KULIK ph:(617)-253-4584 77 Massachusetts Ave, 66-464 e: [email protected] Cambridge, MA 02139 w: http://hjkgrp.mit.edu EDUCATION 2010-2013 Postdoctoral associate, Stanford University, Stanford, CA Postdoctoral advisor: Todd J. Martínez 2009-2010 Postdoctoral associate, Lawrence Livermore Lab, Livermore, CA Postdoctoral advisor: Felice C. Lightstone 2009 Ph.D. in Materials Science and Engineering, MIT, Cambridge, MA Doctoral advisor: Nicola Marzari (now at EPFL) 2004 B.E. in Chemical Engineering, The Cooper Union, New York, NY ACADEMIC APPOINTMENTS Department of Chemical Engineering, MIT 07/21 - Associate Professor (with Tenure) 07/19 - 06/21 Associate Professor 11/13 - 06/19 Assistant Professor SELECTED HONORS AND AWARDS 2021 Alfred P. Sloan Research Fellowship in Chemistry Molecular Systems Design & Engineering (2020) Outstanding Early-Career Paper Award 2020 DARPA Director’s Fellowship 2019 The Journal of Physical Chemistry B Lectureship (ACS PHYS Division) National Science Foundation CAREER Award Saville Lecture, Department of Chemical and Biological Engineering, Princeton Univ. AAAS Marion Milligan Mason Award 2018 DARPA Young Faculty Award Office of Naval Research Young Investigator Award ACS OpenEye Outstanding Junior Faculty Award in Computational Chemistry (ACS COMP Division) 2017 ACS Industrial & Engineering Chemistry Research “Class of Influential Researchers” 2012 Burroughs Wellcome Fund Career Award at the Scientific Interface 2004 National Science Foundation Graduate Research Fellow 2000 United States Presidential Scholar OTHER RECOGNITION 2020 Molecular Systems Design & Engineering Emerging Investigator 2019 Inorganic Chemistry Emerging Investigator Frontiers In Chemistry Rising Star Prize Reaction Chemistry & Engineering Emerging Investigator 2018 Resnick Young Investigator Symposium Speaker Journal of Chemical Theory and Computation ACS Editors’ Choice 2017 Journal of Chemical Physics 2016 Editors’ Choice 2016 Journal of Physical Chemistry ACS Editors’ Choice 2011 BIOL ACS Student & postdoc symposium speaker (1 of 8 from over 200). 2008 DMSE Research Image contest winner 2006 Award for outstanding paper by a 1st- or 2nd-Year graduate student 2005 LLNL CCMS Summer Institute Graduate Fellow 2004 Robert Spice Fund Prize for Excellence in Analytical Chemistry William C. and Esther Hoffman Beller Prize for Top Graduating Student in Chemical Engineering 2003 Elmer J. Badin Award for Excellence in Chemistry Rockefeller University Summer Undergraduate Research Fellow 2002 Elected to New York Iota Chapter of Tau Beta Pi Honors Society Last updated: 9/1/21. HEATHER J. KULIK 2 2000 Times Academic All-Star in Mathematics Association for Women in Science Scholar Robert Byrd Scholar Elks National Foundation Most Valuable Student PUBLICATIONS (corresponding author indicated by *). 100. D. R. Harper and H. J. Kulik* “Computational Scaling Relationships Predict Experimental Activity and Rate Limiting Behavior in Homogenous Water Oxidation”, in preparation. https://doi.org/10.33774/chemrxiv-2021-vjbh3 99. M. G. Taylor, A. Nandy, C. C. Lu, and H. J. Kulik* “Deciphering Cryptic Behavior in Bimetallic Transition Metal Complexes with Machine Learning”, submitted. https://arxiv.org/abs/2107.14280 98. C. Duan, A. Nandy, and H. J. Kulik* “Machine Learning for the Discovery, Design, and Engineering of Materials”, submitted. 97. R. Mehmood, V. Vennelakanti, and H. J. Kulik* “Spectroscopically Guided Simulations Reveal Distinct Strategies for Positioning Substrates to Achieve Selectivity in Non-heme Fe(II)/aKG-dependent Halogenases”, submitted. https://doi.org/10.33774/chemrxiv-2021-m7dh3 96. C. L. Ritt, M. Liu, T. A. Pham, R. Epsztein, H. J. Kulik*, and M. Elimelech* “Machine learning enables the discovery of key ion selectivity mechanisms in polymeric membranes with sub-nanometer pores”, submitted. 95. A. Nandy, C. Duan, and H. J. Kulik* “Using Machine Learning and Data Mining to Leverage Community Knowledge for the Engineering of Stable Metal-Organic Frameworks”, submitted. https://arxiv.org/abs/2106.13327 94. D. R. Harper#, A. Nandy#, N. Arunachalam, C. Duan, J. P. Janet, and H. J. Kulik* “Representations and Strategies for Transferable Machine Learning Models in Chemical Discovery”, submitted. https://arxiv.org/abs/2106.10768 93. D. G. A. Smith, A. T. Lolinco, Z. L. Glick, J. Lee, A. Alenaizan, T. A. Barnes, C. H. Borca, R. Di Remigio, D. L. Dotson, S. Ehlert, A. G. Heide, H. Kruse, S. J. R. Lee, J. P. Misiewicz, L. N. Naden, F. Ramezanghorbani, M. Scheurer, J. B. Schriber, A. C. Simmonnett, J. Steinmetzer, J. R. Wagner, L. Ward, M. Welborn, D. Altarawy, J. Anwar, J. D. Chodera, A. Dreuw, H. J. Kulik, F. Liu, T. J. Martinez, D. A. Matthews, H. F. Schaefer III, J. Sponer, J. M. Turney, L.-P. Wang, N. De Silva, R. A. King, J. F. Stanton, M. S. Gordon, T. L. Windus, C. D. Scherrill, and L. A. Burns “Quantum Chemistry Common Driver and Databases (QCDB) and Quantum Chemistry Engine (QCEngine): Automation and Interoperability among Computational Chemistry Programs”, submitted. 92. Y. Zeng, P. Gordiichuk, T. Ichihara, G. Zhang, E. Sandoz-Rosado, E. D. Wetzel, J. Tresback, J. Yang, Z. Yang, D. Kozawa, M. Kuehne, P. Liu, A. T. Liu, J. Yang, H. J. Kulik, and M. S. Strano “An Irreversible Synthetic Route to an Ultra-Strong Two-Dimensional Polymer”, submitted. https://arxiv.org/abs/2103.13925 91. C. Duan, S. Chen, M. G. Taylor, F. Liu, and H. J. Kulik* “Machine learning to tame divergent density functional approximations: a new path to consensus materials design principles”, Chemical Science, in press. https://arxiv.org/abs/2106.13109 90. M. G. Taylor and H. J. Kulik* “Mapping the Electronic Structure Origins of Surface- and Chemistry- Dependent Doping Trends in III-V Quantum Dots” Chemistry of Materials, in press. https://arxiv.org/abs/2107.04696 89. V. Vennelakanti, A. Nazemi, R. Mehmood, A. H. Steeves, and H. J. Kulik* “Harder, better, faster, stronger: large-scale QM and QM/MM for predictive modeling in enzymes and proteins”, Current Opinion in Structural Biology, 72, 9-17 (2022). 88. V. Vennelakanti, A. Nandy, and H. J. Kulik* “The Effect of Hartree-Fock Exchange on Scaling Relations and Reaction Energetics for C–H Activation Catalysts”, Topics in Catalysis, in press (2021). https://doi.org/10.1007/s11244-021-01482-5 87. A. Nandy#, C. Duan#, M. G. Taylor, F. Liu, A. H. Steeves, and H. J. Kulik* “Computational Discovery of Transition-Metal Complexes: From High-throughput Screening to Machine Learning”, Chemical HEATHER J. KULIK 3 Reviews, 121, 16, 9927–10000 (2021). 86. Z. Yang and H. J. Kulik* “Protein Dynamics and Substrate Protonation State Mediate the Catalytic Action of Trans-4-Hydroxy-L-Proline Dehydratase”, The Journal of Physical Chemistry B, 125, 7774- 7784 (2021). 85. Z. Yang, N. Hajlasz, A. H. Steeves, and H. J. Kulik* “Quantifying the long-range coupling of electronic properties in proteins with ab initio molecular dynamics”, Chemistry – Methods, 1, 362-373 (2021). 84. H. J. Kulik* “What’s Left for a Computational Chemist To Do in the Age of Machine Learning?”, Israel Journal of Chemistry, in press. https://doi.org/10.1002/ijch.202100016 83. C. Duan, F. Liu, A. Nandy, and H. J. Kulik* “Putting Density Functional Theory to the Test in Machine-Learning-Accelerated Materials Discovery”, The Journal of Physical Chemistry Letters, 12, 4628-4637 (2021). Featured by ACS on X-Mol. 82. A. Bajaj and H. J. Kulik* “Molecular DFT+U: a Transferable, Low-Cost Approach to Eliminate Delocalization Error”, The Journal of Physical Chemistry Letters, 12, 3633-3640 (2021). 81. C. Dawson, S. Irwin, L. Backman, C. Le, J. X. Wang, V. Vennelakanti, Z. Yang, H. J. Kulik*, C. L. Drennan*, and E. P. Balskus*, “Molecular Basis of C–S Bond Cleavage in the Glycyl Radical Enzyme Isethionate Sulfite-Lyase”, Cell Chemical Biology, 28, 1-14 (2021). 80. J. P. Janet, C. Duan, A. Nandy, F. Liu, and H. J. Kulik* “Navigating Transition-metal Chemical Space: Artificial Intelligence for First-principles Design”, Accounts of Chemical Research, 54, 532-545 (2021). Invited Article for Special Issue “Data Science Meets Chemistry” 79. R. Jonnalagadda, A. del rio Flores, W. Cai, R. Mehmood, M. Narayanamoorthy, C. Ren, J. P. T. Zaragoza, H. J. Kulik*, W. Zhang*, and C. L. Drennan* “Biochemical and crystallographic investigations into isonitrile formation by a non-heme iron-dependent oxidase/decarboxylase”, Journal of Biological Chemistry, 296, 100231 (2021). 78. V. Vennelakanti, H. W. Qi, R. Mehmood, and H. J. Kulik* “When are two hydrogen bonds better than one? Accurate first-principles models explain the balance of hydrogen bond donors and acceptors found in proteins”, Chemical Science, 12, 1147-1162 (2021). 77. A. Nandy and H. J. Kulik* “Why Conventional Design Rules for C–H Activation Fail for Open-Shell Transition-Metal Catalysts”, ACS Catalysis, 10, 15033-15047 (2020). 76. C. L. Ritt, J. R. Werber, M. Wang, Z. Yang, Y. Zhao, H. J. Kulik, and M. Elimelech* “Ionization behavior of nanoporous polyamide membranes”, Proceedings for the National Academy of Sciences, 117, 30191-30200 (2020). 75. F. Liu, C. Duan, and H. J. Kulik* “Rapid Detection of Strong Correlation with Machine Learning for Transition-Metal Complex High-Throughput Screening”, The Journal of Physical Chemistry Letters, 11, 8067-8076 (2020). Featured by ACS on X-Mol. 74. A. Nandy, D. B. K. Chu, D. R. Harper, C. Duan, N. Arunachalam, Y. Cytter, and H. J. Kulik* “Large- scale comparison of 3d and 4d transition metal complexes illuminates the reduced effect of exchange on second-row spin-state energetics”, Physical Chemistry Chemical Physics, 22, 19326-19341 (2020). Invited Article for Special Themed Collection “Quantum Theory: The Challenge of Transition Metal Complexes” 73. S. M. Moosavi, A. Nandy, K. M. Jablonka, D. Ongari, J. P. Janet, P. G. Boyd, Y. Lee, B. Smit*, and H. J. Kulik* “Understanding the diversity of the metal-organic framework ecosystem”, Nature Communications, 11, 4068 (2020). 72. C. Duan, F. Liu, A. Nandy, and H. J. Kulik* “Semi-Supervised Machine Learning Enables the Robust Detection of Multireference Character at Low Cost”, The Journal of Physical Chemistry Letters, 11, 6640- 6648 (2020).