Prediction of Carbon Dioxide and Nitrogen-Based Compounds Under Pressure Using Density Functional Theory and Evolutionary Algorithm Bowen Huang

Total Page:16

File Type:pdf, Size:1020Kb

Prediction of Carbon Dioxide and Nitrogen-Based Compounds Under Pressure Using Density Functional Theory and Evolutionary Algorithm Bowen Huang Computational materials discovery : prediction of carbon dioxide and nitrogen-based compounds under pressure using density functional theory and evolutionary algorithm Bowen Huang To cite this version: Bowen Huang. Computational materials discovery : prediction of carbon dioxide and nitrogen-based compounds under pressure using density functional theory and evolutionary algorithm. Other. Uni- versité de Poitiers, 2017. English. NNT : 2017POIT2301. tel-01980787 HAL Id: tel-01980787 https://tel.archives-ouvertes.fr/tel-01980787 Submitted on 14 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE Pour l’obtention du Grade de DτCTEUR DE L’UσIVERSITE DE PτITIERS (Faculté des Sciences Fondamentales et Appliquées) (Diplôme National - Arrêté du 25 mai 2016) Ecole Doctorale : Gay-Lussac n˚ 523 Secteur de Recherche : CHIMIE THÉORIQUE Présentée par : Bowen HUANG ************************ COMPUTATIONAL MATERIALS DISCOVERY: PREDICTION OF CARBON DIOXIDE- AND NITROGEN-BASED COMPOUNDS UNDER PRESSURE USING DENSITY FUNCTIONAL THEORY AND EVOLUTIONARY ALGORITHM ************************ Directeur de Thèse : Gilles FRAPPER ************************ Soutenue le 11 décembre 2017 devant la Commission d’Examen ************************ JURY M. Jean-François HALET Rapporteurs M. Artem R. OGANOV M. Florent BOUCHER Examinateurs M. Gilles FRAPPER M. Laurent PIZZAGALLI THESE Pour l’obtention du Grade de DτCTEUR DE L’UσIVERSITE DE PτITIERS (Faculté des Sciences Fondamentales et Appliquées) (Diplôme National - Arrêté du 25 mai 2016) Ecole Doctorale : Gay-Lussac n˚ 523 Secteur de Recherche : CHIMIE THÉORIQUE Présentée par : Bowen HUANG ************************ COMPUTATIONAL MATERIALS DISCOVERY: PREDICTION OF CARBON DIOXIDE- AND NITROGEN-BASED COMPOUNDS UNDER PRESSURE USING DENSITY FUNCTIONAL THEORY AND EVOLUTIONARY ALGORITHM ************************ Directeur de Thèse : Gilles FRAPPER ************************ Soutenue le 11 décembre 2017 devant la Commission d’Examen ************************ JURY M. Jean-François HALET Rapporteurs M. Artem R. OGANOV M. Florent BOUCHER Examinateurs M. Gilles FRAPPER M. Laurent PIZZAGALLI Acknowledgments Calculations were performed on the THτR supercomputer at the Mesocentre SPIσ (Poitiers University) and at HPC GEσCI (TGCC Curie and CIσES; grant 20160κι539 ; 2 millions cpu). The work was supported by Région Poitou-Charentes (PhD fellowship 2014-201ι), CσRS and Poitiers University, GDRI RFCCT CσRS (DσM-evol program), and Hubert Curien Partnerships PHC XU GUAσGQI 2015 (σo. 34455PE) program of the French Ministry of Foreign Affairs. τur Institute, « Institut de Chimie des Matériaux et Milieux de Poitiers » UMR ι2κ5, and our research team E4 “Catalyse et Milieux σon Conventionnels” are also acknowledged for their financial support (operating & HPC equipment, CPER 201ι). i I would like to thank, first and foremost, my supervisor Dr. Gilles Frapper, to whom I am deeply grateful for all of his help and guidance in my Ph.D. student’s lifetime. He has taught me how good theoretical chemistry is done. More important thing is the rigorous attitude toward to research. I appreciate all his contributions of time, ideas, and computing resources to make my experience productive. Beyond the science, Gilles introduced how marvelous and delicious the French cuisine is to me. And I appreciate his hospitality for the unforgettable journey in Saint- Cado. I would like to thank my family for all their love. For my loving, encouraging, and understanding wife Keyi whose faithful support is so appreciated. For my parents who raised me up and supported me in all my pursuits. Thank you. ii List of publications The text of this thesis contains material which has already been published, under review or in submission. These articles, oral and poster communications are listed thereafter. Articles B. Huang and G. Frapper “Pressure-induced polymerization of Cτ2 in lithium-carbon dioxide phases“ J. Am. Chem. Soc., vol. 140, no. 1, p. 413, 201κ E. Angot, B. Huang, C. Levelut, R. Le Parc, P. Hermet, A. S. Pereira, G. Aquilanti, G. Frapper, τ. Cambon, and J. Haines, “Experimental and first-principles calculation study of the pressure- induced transitions to ametastable phase in GaPτ4 and in the solid solution AlPτ4-GaPτ4” Phys. Rev. Mater., vol. 1, no. 3, p. 3360ι, 201ι. S. Yu, B. Huang, Q. Zeng, A. R. τganov, L. Zhang, and G. Frapper, “Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium–nitrogen Mgxσy phases under high pressure,” J. Phys. Chem. C, vol. 121, no. 21, p. 1103ι, 201ι. S. Yu, Q. Zeng, A. R. τganov, G. Frapper, B. Huang, H. σiu, and L. Zhang, “First-principles study of Zr–σ crystalline phases: phase stability, electronic and mechanical properties,” RSC Adv., vol. ι, no. κ, p. 469ι, 201ι. S. Yu, B. Huang, X. Jia, Q. Zeng, A. R. τganov, L. Zhang, and G. Frapper, “Exploring the real ground-state structures of molybdenum dinitride,” J. Phys. Chem. C, vol. 120, no. 20, p 11060, 2016. B. Huang and G. Frapper, “Binary phase diagrams of Ba-σ under pressure: a pressure-induced electride to insulator transition and others”, ACS, 201ι, submitted. B. Huang and G. Frapper , “Up to 10 nitrogen per alkaline earth metal: prediction of dipentazolate Ae(σ5)2 salts (Ae=Be, Mg, Ca, Sr, Ba) “, 201ι, in preparation B. Huang and G. Frapper, “κ-coordinated silicon in high-pressure silicon disulfide phases“, 201ι, in preparation iii Oral and poster communications 11. 201ι French theoretical chemistry network meeting in σantes “Promising high-energy-density material: prediction of bis-pentazolate Ba(σ5)2 and novel high- pressure Ba-σ phases.” B. Huang and G. Frapper (τral presentation) 01. 201ι TCCM winter school LTTC in Luchon “Pressure-induced polymerization of Cτ2 in lithium-carbon dioxide phases” B. Huang and G. Frapper (τral presentation) 01. 201ι 12th USPEX workshop in Poitiers “Pressure-induced polymerization of Cτ2 in lithium-carbon dioxide phases” B. Huang and G. Frapper (τral presentation & Poster) 10. 2016 The κth multiscale materials modeling international conference in Dijon “Exploring the Real Ground-State Structures of Molybdenum Dinitride” S. Yu, B. Huang, X. Jia, Q. Zeng, A. R. τganov, and G. Frapper (Poster) 03. 2016 Day of the center-west of France chemistry society in Poitiers “Exploring the real ground-state structures of molybdenum dinitride” B. Huang and G. Frapper (τral presentation) 11. 2015 Scientific day of IC2MP, University of Poitiers 0κ. 2015 10th USPEX workshop in Beijing, China 0κ. 2015 9th USPEX workshop in Poitiers “Emergence of novel nitrogen covalent networks in magnesium-nitrogen under high pressure” S. Yu, B. Huang , Q. Zeng, A. R. Oganov, G. Frapper (Poster) iv List of symbols Ae Alkalie eath atios AIMD A Iitio Moleula Dai siulatios BH Bo-Huag appoiatio BO Bo-Oppeheie appoiatio g Cui gauhe COOP Cstal Oital Oelap Populatio COHP Cstal Oelap Hailto Populatios CSP Cstal “tutue Peditio DFT Desit Futioal Theo DOS Desities of “tates EA Eolutioa Algoith Eg Bad gap EHT Eteded Hükel theo ELF Eleto Loalizatio Futio EXAFS Eteded X-a Asoptio Fie “tutue FWHM Full Width at Half Maiu GGA Geealized-Gadiet Appoiatio HEDM High-Eeg Desit Mateials HK Hoheeg-Koh HK theoies HOMO Highest Oupied Moleula Oital HSE The Hed-“useia-Ezehof ehage-oelatio futioal KS Koh-“ha K“ ethod LDA Loal Desit Appoiatio LUMO Loest Uoupied Moleula Oital MD Moleula Dais v MIF Metal-Iogai Faeok MM Moleula Mehais MO Moleula Oital PAW Pojeto Augeted Wae PBE Pede, Buke ad Ezehof PES Potetial Eeg “ufae RDF Radial Distiutio Futios SCF “elf-Cosistet Field SG “pae Goup VASP Viea A-iitio “iulatio Pakage VC-EA Vaiale Copositio – Eoluatioa Algoith VEC Valee Eleto Coetatio VOD Veloit of Detoatio VRH Voigt-Reuss-Hill appoiatio VSEPR Valee-“hell Eleto-Pai Repulsio Theo XAS X-a Asoptio “petosop XRD X-a Pode Diffatio )KC )itl-Kle Coept )PE )eo-Poit Eeg vi Présentation en français du manuscrit Traduit par Dr Gilles Frapper, Directeur de thèse MC HdR Chimie théorique 31° section CσU Groupe Chimie Théorique, équipe E4, IC2MP UMR ι2κ5 Université de Poitiers-CσRS [email protected] Prédiction in silico de phases cristallines Lix(CO2)y ou nitrures par algorithme évolutionnaire et calculs en chimie quantique La découverte de nouveaux composés cristallins par simulation numérique est un défi majeur en Science des Matériaux. Ce travail de thèse s’inscrit dans ce champ de recherche et aborde trois familles de composés : (1) les composés constitués de lithium et de dioxyde de carbone, Lix(Cτ2)y ; (2) les phases de composés binaires M-azote avec M = Mg, Ba, Mo et Zr ; (3) les systèmes GaPτ4 et SiS2 isoélectroniques à la silice. Leurs structures cristallines sous contrainte de pression sont prédites à partir de l’unique connaissance de leur composition chimique. σos analyses basées sur une approche propre à la chimie quantique permettent de répondre entre autres à la question suivante : la polymérisation de molécules insaturées tels que Cτ2 et σ2 est-elle favorisée par l’ajout d’un élément chimique, lequel, en quelle quantité et dans quelles conditions de
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0000118A1 ZHAO Et Al
    US 2015 0000118A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0000118A1 ZHAO et al. (43) Pub. Date: Jan. 1, 2015 (54) METHOD FOR MANUFACTURING (52) U.S. Cl. GRAPHENE-INCORPORATED CPC ..................................... H0IM 10/04 (2013.01) RECHARGEABLE L-ION BATTERY USPC ......................... 29/623.3; 29/623.1; 29/623.5 (71) Applicants:XIN ZHAO, New York, NY (US); (57) ABSTRACT Minjie Li, New York, NY (US) A method for manufacturing a graphene-incorporated rechargeable Li-ion battery discloses a graphene-incorpo (72) Inventors: XIN ZHAO, New York, NY (US); rated rechargeable Li-ion battery with enhanced energy and Minjie Li, New York, NY (US) power delivery abilities. The method comprises the steps (a) fabricating a high-performance anode film based on graphene or graphene hybrid; (b) introducing a desired amount of (21) Appl. No.: 13/927,125 lithium into the anode material to produce a prelithiated graphene-based anode; (c) constructing a full cell utilizing a (22) Filed: Jun. 26, 2013 cathode film and the prelithiated anode film. The graphene based anodes incorporating exfoliated graphene layers over Publication Classification come the large irreversible capacity and initial lithium ion consumption upon pre-lithiation, and demonstrate remark (51) Int. Cl. ably enhanced specific capacity and rate capability over con HIM I/04 (2006.01) ventional anodes. Patent Application Publication Jan. 1, 2015 Sheet 1 of 4 US 2015/0000118A1 Figure 1A Figure 1B 20 Figure 2. Patent Application Publication Jan. 1, 2015 Sheet 2 of 4 US 2015/0000118A1 Graphene nanoplatelet Partially oxidized GP Molecule intercalation Further exfoliation Xaaaaad Wash and dry Partially oxidized few-layer Gnp Mixing with conductive additive and binder Formulated Gnp anode Lithiation Prelithiated Gnp anode Figure 3.
    [Show full text]
  • United States Patent (19) (11) Patent Number: 4,859,572 Farid Et Al
    United States Patent (19) (11) Patent Number: 4,859,572 Farid et al. (45) Date of Patent: Aug. 22, 1989 54 DYE SENSTIZED PHOTOGRAPHIC IMAGING SYSTEM FOREIGN PATENT DOCUMENTS 0223587A 5/1987 European Pat. Off, . (75) Inventors: Samir Y. Farid; Roger E. Moody, 2083832A 3/1982 United Kingdom . both of Rochester, N.Y. OTHER PUBLICATIONS (73) Assignee: Eastman Kodak Company, Volman et al., Advances in Photochemistry, vol. 13, in the Rochester, N.Y. chapter titled "Dye Sensitized Photopolymerization' 21 Appl. No.: 189,002 by D. F. Eaton, pp. 427 to 488, John Wiley & Sons (1986). 22) Filed: May 2, 1988 Farid et al., U.S. Ser. Nos. 933,712, 933,658,933,660, 51 Int. Cl." ................................................ G03C 1/68 and 933,657, all filed Nov. 21, 1986, and commonly (52) U.S. Cl. ..... ... 430/281; 430/914; assigned (Now issued as Farid et al U.S. Pat. Nos. 430/915; 430/916; 522/25; 522/26; 522/27; 4,743,528; 4,743,529; 4,743,530; and 4,743,531). 522/28; 522/31 Primary Examiner-Paul R. Michl (58) Field of Search ............... 430/915, 281, 916,914; Assistant Examiner-C. D. R. Dee 522/25, 28, 63, 27, 26, 31 Attorney, Agent, or Firm-Carl O. Thomas 56) References Cited (57) ABSTRACT U.S. PATENT DOCUMENTS A photographic imaging system is disclosed comprised 4,050,934 9/1977 Turner .................................. 96/1 R of a hardenable organic component containing ethyl 4,289,842 9/1981 Tan et al. ... ... 430/270 enic unsaturation sites and an initiator system for ethyl 4,307,182 12/1981 Dalzell et al.
    [Show full text]
  • Electronic Structure, Magnetic Ordering and Phonons in Molecules and Solids
    Electronic structure, magnetic ordering and phonons in molecules and solids Von der Fakultat¨ fur¨ Chemie und Physik der TU Bergakademie Freiberg angenommene Habilitationsschrift zur Erlangung des akademischen Grades doctor rerum naturalium habilitatus Dr. rer. nat. habil. vorgelegt von Dr. rer. nat. Jens Kortus geboren am 1. Oktober 1967 in Potsdam eingereicht am 21. Marz¨ 2003 Gutachter: Prof. Dr. rer. nat. habil. Jochen Monecke, Freiberg Prof. Dr. rer. nat. Ole K. Andersen, Stuttgart Prof. Dr. rer. nat. habil. Gotthard Seifert, Dresden Tag der Verleihung: 9. Dezember 2003 Contents Preface 6 1 Introduction to DFT 7 1.1 Kohn-Sham equation . 8 1.2 The exchange-correlation energy . 9 1.2.1 Local Spin Density Approximation: LSDA . 9 1.2.2 Generalized Gradient Approximations: GGA . 10 1.3 Basis Set Expansion . 10 1.4 NRLMOL implementation . 11 1.4.1 Calculation of vibrational properties . 13 2 Applications 15 2.1 The superconductor MgB . 15 2.1.1 Electronic structure . 16 2.1.2 de Haas-van Alphen effect . 18 2.1.3 Angle resolved photoemission spectroscopy . 19 2.1.4 X-ray spectroscopy . 21 2.1.5 What is special about MgB ? . 21 2.2 Electric field gradients . 22 2.3 Vibrational properties . 25 2.3.1 Host guest interaction in a clathrate . 25 2.3.2 Octanitrocubane . 27 2.3.3 Azidopentazole . 30 2.4 Magnetic ordering . 31 ¤ 2.4.1 Magnetic and vibrational properties of the Fe ¡£¢ O cluster . 31 ¦ 2.4.2 Magnetic moment and anisotropy in Fe ¥ Co clusters . 33 2.5 Molecular magnets . 35 2.5.1 Spin-orbit coupling and magnetic anisotropy energy .
    [Show full text]
  • Ocean Storage
    277 6 Ocean storage Coordinating Lead Authors Ken Caldeira (United States), Makoto Akai (Japan) Lead Authors Peter Brewer (United States), Baixin Chen (China), Peter Haugan (Norway), Toru Iwama (Japan), Paul Johnston (United Kingdom), Haroon Kheshgi (United States), Qingquan Li (China), Takashi Ohsumi (Japan), Hans Pörtner (Germany), Chris Sabine (United States), Yoshihisa Shirayama (Japan), Jolyon Thomson (United Kingdom) Contributing Authors Jim Barry (United States), Lara Hansen (United States) Review Editors Brad De Young (Canada), Fortunat Joos (Switzerland) 278 IPCC Special Report on Carbon dioxide Capture and Storage Contents EXECUTIVE SUMMARY 279 6.7 Environmental impacts, risks, and risk management 298 6.1 Introduction and background 279 6.7.1 Introduction to biological impacts and risk 298 6.1.1 Intentional storage of CO2 in the ocean 279 6.7.2 Physiological effects of CO2 301 6.1.2 Relevant background in physical and chemical 6.7.3 From physiological mechanisms to ecosystems 305 oceanography 281 6.7.4 Biological consequences for water column release scenarios 306 6.2 Approaches to release CO2 into the ocean 282 6.7.5 Biological consequences associated with CO2 6.2.1 Approaches to releasing CO2 that has been captured, lakes 307 compressed, and transported into the ocean 282 6.7.6 Contaminants in CO2 streams 307 6.2.2 CO2 storage by dissolution of carbonate minerals 290 6.7.7 Risk management 307 6.2.3 Other ocean storage approaches 291 6.7.8 Social aspects; public and stakeholder perception 307 6.3 Capacity and fractions retained
    [Show full text]
  • High Energy Materials Related Titles
    Jai Prakash Agrawal High Energy Materials Related Titles M. Lackner, F. Winter, A.K. Agrawal M. Hattwig, H. Steen (Eds.) (Eds.) Handbook of Explosion Prevention Handbook of Combustion and Protection 5 Volumes 2004 2010 ISBN: 978-3-527-30718-0 ISBN: 978-3-527-32449-1 R. Meyer, J. Köhler, A. Homburg R. Meyer, J. Köhler, A. Homburg Explosivstoffe Explosives 2008 2007 ISBN: 978-3-527-32009-7 ISBN: 978-3-527-31656-4 J.P. Agrawal, R.D. Hodgson N. Kubota Organic Chemistry of Explosives Propellants and Explosives Thermochemical Aspects of 2007 ISBN: 978-0-470-02967-1 Combustion 2007 ISBN: 978-3-527-31424-9 U. Teipel (Ed.) Energetic Materials Particle Processing and Characterization 2005 ISBN: 978-3-527-30240-6 Jai Prakash Agrawal High Energy Materials Propellants, Explosives and Pyrotechnics The Author All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and Dr. Jai Prakash Agrawal publisher do not warrant the information C Chem FRSC (UK) contained in these books, including this book, to Former Director of Materials be free of errors. Readers are advised to keep in Defence R&D Organization mind that statements, data, illustrations, DRDO Bhawan, New Delhi, India procedural details or other items may [email protected] inadvertently be inaccurate. Library of Congress Card No.: applied for Sponsored by the Department of Science and Technology under its Utilization of Scientifi c British Library Cataloguing-in-Publication Data Expertise of Retired Scientists Scheme A catalogue record for this book is available from the British Library. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografi e; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.
    [Show full text]
  • Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
    Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging.
    [Show full text]
  • Emission Load of Car Service Interiors
    Vol. 62, 2016 (3): 122–128 Res. Agr. Eng. doi: 10.17221/5/2015-RAE Emission load of car service interiors I. Vitázek1, D. Michalíková1, B. Vitázková2, J. Klúčik1 1Department of Transport and Handling, Faculty of Engineering, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic 2Department of Machines and Production Systems, Faculty of Engineering, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic Abstract Vitázek I., Michalíková D., Vitázková B., Klúčik J. (2016): Emission load of car service interiors. Res. Agr. Eng., 62: 122–128. Car service centres are specific in terms of production of pollutants. The aim of the paper is to assess the quality of indoor environment of car service interiors with respect to the safe range of oxocarbon emission limits, concentration of gaseous and solid aerosols of selected chemical pollutants and occupational noise exposure. Measurements of concen- tration and exposure time indicated that the permitted limits were kept. CO concentration reached values in the range from 0 to 10 ppm, CO2 concentration was observed in the range from 493 to 967 ppm. Concentration of solid aerosol of polyester bitumen reached the maximum value of 0.37 mg/m3, while for gaseous aerosol (e.g. toluene) it equalled 8.114 mg/m3. Measurements of chemical factors were carried out and evaluated by companies with appropriate accredi- tation. Occupational Exposure Limits (OELs) were higher in case of all selected substances. OEL was not demonstrably exceeded at any chemical factor. Noise emissions approached the limit values; therefore, hearing protection is required. Keywords: indoor environment; gaseous emissions; chemical factor; emission limits; noise When undertaking the occupation, time spent in climate of workplaces, residential premises and the workplace may add up to more than a half of the other spaces.
    [Show full text]
  • Titanium Dioxide Production Final Rule: Mandatory Reporting of Greenhouse Gases
    Titanium Dioxide Production Final Rule: Mandatory Reporting of Greenhouse Gases Under the Mandatory Reporting of Greenhouse Gases (GHGs) rule, owners or operators of facilities that contain titanium dioxide production processes (as defined below) must report emissions from titanium dioxide production and all other source categories located at the facility for which methods are defined in the rule. Owners or operators are required to collect emission data; calculate GHG emissions; and follow the specified procedures for quality assurance, missing data, recordkeeping, and reporting. How Is This Source Category Defined? The titanium dioxide production source category consists of any facility that uses the chloride process to produce titanium dioxide. What GHGs Must Be Reported? Each titanium dioxide production facility must report carbon dioxide (CO2) process emissions from each chloride process line. In addition, each facility must report GHG emissions for other source categories for which calculation methods are provided in the rule. For example, facilities must report CO2, nitrous oxide (N2O), and methane (CH4) emissions from each stationary combustion unit on site by following the requirements of 40 CFR part 98, subpart C (General Stationary Fuel Combustion Sources). Please refer to the relevant information sheet for a summary of the rule requirements for calculating and reporting emissions from any other source categories at the facility. How Must GHG Emissions Be Calculated? Reporters must calculate CO2 process emissions using one of two methods, as appropriate: • Installing and operating a continuous emission monitoring system (CEMS) according to the requirements specified in 40 CFR part 98, subpart C. • Calculating the process CO2 emissions for each process line using monthly measurements of the mass and carbon content of calcined petroleum coke.
    [Show full text]
  • Recent Advances in Tio2-Based Photocatalysts for Reduction of CO2 to Fuels
    nanomaterials Review Recent Advances in TiO2-Based Photocatalysts for Reduction of CO2 to Fuels 1,2, 3, 4 5 Thang Phan Nguyen y, Dang Le Tri Nguyen y , Van-Huy Nguyen , Thu-Ha Le , Dai-Viet N. Vo 6 , Quang Thang Trinh 7 , Sa-Rang Bae 8, Sang Youn Chae 9,* , Soo Young Kim 8,* and Quyet Van Le 3,* 1 Laboratory of Advanced Materials Chemistry, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; [email protected] 2 Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam 3 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; [email protected] 4 Key Laboratory of Advanced Materials for Energy and Environmental Applications, Lac Hong University, Bien Hoa 810000, Vietnam; [email protected] 5 Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University–Ho Chi Minh City (VNU–HCM), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Vietnam; [email protected] 6 Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; [email protected] 7 Cambridge Centre for Advanced Research and Education in Singapore (CARES), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; [email protected] 8 Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; [email protected] 9 Department of Materials Science, Institute for Surface Science and Corrosion, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany * Correspondence: [email protected] (S.Y.C.); [email protected] (S.Y.K.); [email protected] (Q.V.L.); Tel.: +42-01520-2145321 (S.Y.C.); +82-109-3650-910 (S.Y.K.); +84-344-176-848 (Q.V.L.) These authors contributed equally to this work.
    [Show full text]
  • Chocs FOCUS N°6 [PDF
    CHOCS N°6 FOCUSACTUALITÉS SCIENTIFIQUES À LA DIRECTION DES APPLICATIONS MILITAIRES NOVEMBRE 2019 LA CHIMIE AU CŒUR DES ENJEUX DU FUTUR 3ES JOURNÉES DE LA CHIMIE AU CEA – DAM SOMMAIRE AVANT-PROPOS ANALYSES ET 01 M. LEROY 26 INSTRUMENTATION 26. Caractérisation de formulations INTRODUCTION énergétiques pré- et post-détonation 02 G. BOURGÈS M. C. BRIDOUX, G. GAIFFE, R. B. COLE, X. ARCHER 28. Spectrométrie d’émission appliquée CHIMIE à la mesure de la composition chimique 04 ET PROCÉDÉS des produits de détonation S. PŒUF, G. BAUDIN, M. GENETIER, A. OSMONT, A. LEFRANÇOIS, A. CHINNAYYA 04. Propriétés thermodynamiques du plutonium dans les milieux fluorés fondus 30. Vers une spectrométrie de masse de terrain J. CLAQUESIN, O. LEMOINE, G. BOURGÈS, L. MASSOT, M. GIBILARO, P. CHAMELOT F. PROGENT, A. SONNETTE, S. VIGNE, P.-E. BUTHIER, J. TUPINIER, T. ALAVA 06. Préparation de composites à matrice 32. Mesures de données nucléaires à l’aide céramique par la voie gaz d’une cible active scintillante – Exemple G. L. VIGNOLES, A. ALLEMAND, G. CHOLLON, A. DELEHOUZE, S. JACQUES, de mesure sur la fission spontanée Y. LEPETITCORPS, L. MAILLE, P. DAVID G. BÉLIER, J. AUPIAIS, G. SIBBENS, A. MOENS, D. VANLEEUW 08. Voie de synthèse pour de nouveaux 34. Étude des gaz émis par une batterie Li-ion pentazoles soumise à une surcharge C.-N. NARBONI, G. JACOB, L. EL KAIM Y. FERNANDES, A. BRY, S. DE PERSIS 10. Séparation des isotopes de l’hydrogène sur zéolithes faujasites SIMULATION M. GIRAUDET, M. MACAUD, E. PICHOT, I. BEZVERKHYY, C. DIRAND, J.-P. BELLAT 36 NUMÉRIQUE 12. Étude des mécanismes de croissance 36.
    [Show full text]
  • Carbon Dioxide Exposure Effects – Fact Sheet
    CARBON DIOXIDE EXPOSURE EFFECTS – FACT SHEET Studies by NIOSH in 1976 dispelled the myth that carbon dioxide is an asphyxiant gas and only causes adverse health effects when it displaces oxygen. Symptoms of overexposure by inhalation include dizziness, headache, nausea, rapid breathing, shortness of breath, deeper breathing, increased heart rate (tachycardia), eye and extremity twitching, cardiac arrhythmia, memory disturbances, lack of concentration, visual and hearing disturbances (including photophobia, blurred vision, transient blindness, hearing loss and ringing in the ears), sweating, restlessness, vomiting, shaking, confusion, flushed skin, panic, parathesis (a sensation of numbness in the extremities), disorientation, convulsions, unconsciousness, coma, and death. CO2 Duration Physiological Impact/Health Effect Concentration 1,000 ppm Less than Impairs judgment, decision-making ability, and thinking skills on a 2½ hrs. short-term basis, even for healthy individuals. 2,500 ppm Less than Many individuals are rendered cognitively marginal or 2½ hrs. dysfunctional. 5,000 ppm with Headache, lethargy, mental slowness, emotional irritation, and 20.9% Oxygen sleep disruption. 6% 1-2 mins. Hearing and visual disturbances 7% (70,000 ppm) 5 mins. death with 20.9% Oxygen 10% to 15% Dizziness, drowsiness, severe muscle twitching, unconsciousness and death within a few minutes. Within 1 Loss of controlled and purposeful activity, unconsciousness, coma, 17% to 30% min. convulsions, and death 30% carbon 30 secs. Unconsciousness, with some subjects having seizures that were dioxide, with 70% characterized as decerebrate (no cerebral functioning). oxygen Even though oxygen is necessary to carry out cell functions, it is not the lack of oxygen that stimulates breathing. Breathing is stimulated by an excess of CO2.
    [Show full text]
  • Some Unusual, Astronomically Significant Organic Molecules
    'lL-o Thesis titled: Some Unusual, Astronomically Significant Organic Molecules submitted for the Degree of Doctor of Philosophy (Ph,D.) by Salvatore Peppe B.Sc. (Hons.) of the Department of Ghemistty THE UNIVERSITY OF ADELAIDE AUSTRALIA CRUC E June2002 Preface Gontents Contents Abstract IV Statement of Originality V Acknowledgments vi List of Figures..... ix 1 I. Introduction 1 A. Space: An Imperfect Vacuum 1 B. Stellff Evolution, Mass Outflow and Synthesis of Molecules 5 C. Astronomical Detection of Molecules......... l D. Gas Phase Chemistry.. 9 E. Generation and Detection of Heterocumulenes in the Laboratory 13 L.2 Gas Phase Generation and Characterisation of Ions.....................................16 I. Gas Phase Generation of Ions. I6 A. Positive Ions .. I6 B. Even Electron Negative Ions 17 C. Radical Anions 2t tr. Mass Spectrometry 24 A. The VG ZAB 2}lF Mass Spectrometer 24 B. Mass-Analysed Ion Kinetic Energy Spectrometry......... 25 III. Characterisation of Ions.......... 26 A. CollisionalActivation 26 B. Charge Reversal.... 28 C. Neutralisation - Reionisation . 29 D. Neutral Reactivity. JJ rv. Fragmentation Behaviour ....... 35 A. NegativeIons.......... 35 Preface il B. Charge Inverted Ions 3l 1.3 Theoretical Methods for the Determination of Molecular Geometries and Energetics..... ....o........................................ .....39 L Molecular Orbital Theory........ 39 A. The Schrödinger Equation.... 39 B. Hartree-Fock Theory ..44 C. Electron Correlation ..46 D. Basis sets............ .51 IL Transition State Theory of Unimolecular Reactions ......... ................... 54 2. Covalently Bound Complexes of CO and COz ....... .........................58 L Introduction 58 tr. Results and Discussion........... 59 Part A: Covalently bound COz dimers (OzC-COr)? ............ 59 A. Generation of CzO¿ Anions 6I B. NeutralCzO+........
    [Show full text]