Electronic Structure, Magnetic Ordering and Phonons in Molecules and Solids

Total Page:16

File Type:pdf, Size:1020Kb

Electronic Structure, Magnetic Ordering and Phonons in Molecules and Solids Electronic structure, magnetic ordering and phonons in molecules and solids Von der Fakultat¨ fur¨ Chemie und Physik der TU Bergakademie Freiberg angenommene Habilitationsschrift zur Erlangung des akademischen Grades doctor rerum naturalium habilitatus Dr. rer. nat. habil. vorgelegt von Dr. rer. nat. Jens Kortus geboren am 1. Oktober 1967 in Potsdam eingereicht am 21. Marz¨ 2003 Gutachter: Prof. Dr. rer. nat. habil. Jochen Monecke, Freiberg Prof. Dr. rer. nat. Ole K. Andersen, Stuttgart Prof. Dr. rer. nat. habil. Gotthard Seifert, Dresden Tag der Verleihung: 9. Dezember 2003 Contents Preface 6 1 Introduction to DFT 7 1.1 Kohn-Sham equation . 8 1.2 The exchange-correlation energy . 9 1.2.1 Local Spin Density Approximation: LSDA . 9 1.2.2 Generalized Gradient Approximations: GGA . 10 1.3 Basis Set Expansion . 10 1.4 NRLMOL implementation . 11 1.4.1 Calculation of vibrational properties . 13 2 Applications 15 2.1 The superconductor MgB . 15 2.1.1 Electronic structure . 16 2.1.2 de Haas-van Alphen effect . 18 2.1.3 Angle resolved photoemission spectroscopy . 19 2.1.4 X-ray spectroscopy . 21 2.1.5 What is special about MgB ? . 21 2.2 Electric field gradients . 22 2.3 Vibrational properties . 25 2.3.1 Host guest interaction in a clathrate . 25 2.3.2 Octanitrocubane . 27 2.3.3 Azidopentazole . 30 2.4 Magnetic ordering . 31 ¤ 2.4.1 Magnetic and vibrational properties of the Fe ¡£¢ O cluster . 31 ¦ 2.4.2 Magnetic moment and anisotropy in Fe ¥ Co clusters . 33 2.5 Molecular magnets . 35 2.5.1 Spin-orbit coupling and magnetic anisotropy energy . 36 2.5.2 Electronic structure of the Fe ¤ magnet . 39 2.5.3 Magnetic anisotropy in single molecule magnets . 42 2.5.4 The V ¡£§ spin system . 46 3 Summary 51 3 CONTENTS Bibliography 53 Appendices 62 A Kortus J., Mazin I.I., Belashchenko K.D., Antropov V.P., and Boyer L.L. Superconductivity of metallic boron in MgB Phys. Rev. Lett. 86, 4656-4659 (2001) 63 B Mazin I.I. and Kortus J. Interpretation of the de Haas - van Alphen experiments in MgB Phys. Rev. B 65, 180510-1/4 (R) (2002) 69 C Kurmaev E.Z., Lyakhovskaya I.I., Kortus J., Moewes A., Miyata N., Deme- ter M., Neumann M., Yanagihara M., Watanabe M., Muranaka T. and Akimitsu J. Electronic structure of MgB : X-ray emission and absorption studies Phys. Rev. B 65 134509-1/4 (2002) 75 D Dietrich M., Kortus J., Cordts W. and Unterricker S. Electric Field Gradients in Wurtzite - Type Semiconductors phys. stat. sol. (b) 207, 13-17 (1998) 81 E Kortus J., Irmer G., Monecke J. and Pederson M.R. Influence of cage structures on the vibrational modes and Raman activity of methane Modelling Simul. Mater. Sci. Eng. 8, 403-411 (2000) 87 F Kortus J., Pederson M. R. and Richardson S. L. Density functional based prediction of the electronic, structural and vibra- tional properties of the energetic molecule: Octanitrocubane Chem. Phys. Lett. 322, 224-230 (2000) 99 G Kortus J., Richardson S. L. and Pederson M. R. First-Principles DFT study of the structural, electronic and vibrational prop- erties of azidopentazole Chem. Phys. Lett. 340, 565-570 (2001) 107 H Kortus J. and Pederson M. R. 4 CONTENTS ¤ Magnetic and vibrational properties of the uniaxial Fe ¡£¢ O cluster Phys. Rev. B 62, 5755-5759 (2000) 115 I Kortus J., Baruah T., Pederson M. R., Khanna S. N. and C. Ashman ¦ Magnetic moment and anisotropy in Fe ¥ Co Clusters Appl. Phys. Lett. 80, 4193-4195 (2002) 123 J Kortus J., Hellberg C. S., Pederson M. R. and Khanna S. N. ¡£§ DFT studies of the molecular nanomagnet Fe ¤ and the V spin system Eur. Phys. J. D 16, 177-180 (2001) 129 K Kortus J., Baruah T., Bernstein N., and Pederson M.R. Magnetic ordering, electronic structure and magnetic anisotropy energy in the high-spin Mn ¡£¨ single molecule magnet Phys. Rev. B 66, 092403-1/4 (2002) 135 L Kortus J., Hellberg C. S. and Pederson M. R. Hamiltonian of the V ¡£§ Spin System from First-Principles Density-Functional Calculations Phys. Rev. Lett. 86, 3400-3403 (2001) 141 5 Preface The present work gives an overview of the authors work in the field of elec- tronic structure calculations. The density functional theory (DFT) is the the- oretical background used for various applications from physics and chemistry. Therefore DFT is also the combining principle which joins the selected publi- cations of the author. The main objective is to show how electronic structure methods can be used for the description and interpretation of experimental re- sults in order to enhance our understanding of physical and chemical properties of materials. DFT is a very powerful method in that respect, as recognized by the Nobel prize in chemistry 1998. This method has been successfully applied to many different classes of ma- terials and properties. In order to place the present work in a proper context a brief introduction in the basics of DFT will be given. The main part of the work discusses the electronic structure of a few interesting examples. Today the electronic structure itself is an experimental property measured by angle resolved photo emission spectroscopy (ARPES), resonant inelastic X-ray scatter- ing or probed directly by the de Haas-van Alphen (dHvA) effect. The recently found superconductor MgB is an example where the electronic structure was the key to our understanding of the surprising properties of this material. The experimental confirmation of the predicted electronic structure from first prin- ciples calculations was very important for the acceptance of earlier theoretical suggestions. The only input parameter to DFT is the atomic composition of the material, no further experimental information is required. Because it is possible to de- termine the forces acting on the atoms within the DFT, one can optimize the atomic postions, predict stable structures and calculate vibrational spectra. IR and Raman spectroscopy are widely used tools for materials characterization and first principles electronic structure calculations deliver very important in- formation for interpreting these spectra. Not only vibrational frequencies but also IR and Raman intensities can be calculated from DFT, as will be discussed in a few examples. Molecular crystals build from magnetic clusters containing a few transition metal ions and organic ligands show fascinating magnetic properties at the nanoscale. DFT allows for the investigation of magnetic ordering and magnetic anisotropy energies. The magnetic anisotropy which results mainly from the spin-orbit coupling determines many of the poperties which make the single molecule magnets interesting. Some recent results of the author in this field will be given. 6 Chapter 1 Introduction to DFT Molecules and solids are complicated many-particle systems which are in prin- ciple described by the corresponding Schrodinger¨ equation. Unfortunately, an- alytic solutions are available only for a few very simple systems [1], and even numerically exact solutions are limited to a small number of atoms or electrons. Therefore one is forced to find accurate approximations in order to describe real materials. The density-functional theory is one of the most successful methods in that respect. Within the scope of this work we will give only a brief introduction to the basic foundations of density functional theory [2, 3]. There are excellent re- views available on that topic [4–8] which will give much more insight in the theoretical basics, accuracy and limitations than this short overview. In principle electrons and atomic nuclei can be treated at the same theoret- ical basis, although the problem can be simplified by decoupling the electronic and nuclear degrees of freedom. In many cases it is very appropriate to assume that electronic and nuclear dynamics take place at different time scales and can therefore be separated. This approach called Born-Oppenheimer approxima- tion considers all nuclei as fixed in space during the electronic relaxation. The stationary Schrodinger¨ equation of a system consisting of © electrons is given by: %$ $<;>= 103254 ! #" '& ( £" " " " ¡769898:8:6 )+*-, (1.1) ¨/. %$<; where ! #" ( ? " )+*-, (1.2) ¨/. @ . ? @ and are the coordinates and atomic numbers of the nuclei. The spin vari- " ables have been omitted for clarity (or the could be interpreted as generalized coordinates which include the spin degrees of freedom too). From here on we will use atomic units (1 Hartree = 27.2116 eV, 1 ACB =0.529177 A).˚ 7 CHAPTER 1. INTRODUCTION TO DFT The most important observation for a non-degenerate ground state of this many-electron system is, that the total$ energy can be expressed as a unique £" functional of the electron density D [2], which is determined solely by the locations @ of the nuclei. ;KJ $PO $ $ $PO $YO 0FEHGIE 0TS 0FVXW #" " £" #" £" #" ¨MLND D LUD LND RQ d (1.3) $ $ $PO;\[ $ $;][ S S £" #" ^ Z where Z #" " £" " "_^ #" D D " " ^ LND D Q Q<Q $YO $ J d d d (1.4) . #" £" 0TS D ¨MLND is the kinetic energy of a non-interacting electron gas with density , $YO is the Hartree0FVXW energy due to the average electrostatic interaction of the £" $ electrons. LUD is the exchange-correlation energy, which is in general an £" unknown functional of the electron density. The potential for an interact- $ ing © -electron system is defined as a general external potential. The knowledge £" of the ground state density D determines the external potential within an ir- relevant constant. The initial proof of the above statement given by Hohenberg and Kohn in 1964 [2] has been extended also to the lowest state of each sym- metry [9], degenerate ground states [7] or spin density functional theory [8]. 1.1 Kohn-Sham equation The ground state density must give the lowest energy by definition. This al- lows to use the variational principle in order to obtain the ground state energy.
Recommended publications
  • High Energy Materials Related Titles
    Jai Prakash Agrawal High Energy Materials Related Titles M. Lackner, F. Winter, A.K. Agrawal M. Hattwig, H. Steen (Eds.) (Eds.) Handbook of Explosion Prevention Handbook of Combustion and Protection 5 Volumes 2004 2010 ISBN: 978-3-527-30718-0 ISBN: 978-3-527-32449-1 R. Meyer, J. Köhler, A. Homburg R. Meyer, J. Köhler, A. Homburg Explosivstoffe Explosives 2008 2007 ISBN: 978-3-527-32009-7 ISBN: 978-3-527-31656-4 J.P. Agrawal, R.D. Hodgson N. Kubota Organic Chemistry of Explosives Propellants and Explosives Thermochemical Aspects of 2007 ISBN: 978-0-470-02967-1 Combustion 2007 ISBN: 978-3-527-31424-9 U. Teipel (Ed.) Energetic Materials Particle Processing and Characterization 2005 ISBN: 978-3-527-30240-6 Jai Prakash Agrawal High Energy Materials Propellants, Explosives and Pyrotechnics The Author All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and Dr. Jai Prakash Agrawal publisher do not warrant the information C Chem FRSC (UK) contained in these books, including this book, to Former Director of Materials be free of errors. Readers are advised to keep in Defence R&D Organization mind that statements, data, illustrations, DRDO Bhawan, New Delhi, India procedural details or other items may [email protected] inadvertently be inaccurate. Library of Congress Card No.: applied for Sponsored by the Department of Science and Technology under its Utilization of Scientifi c British Library Cataloguing-in-Publication Data Expertise of Retired Scientists Scheme A catalogue record for this book is available from the British Library. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografi e; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.
    [Show full text]
  • Chocs FOCUS N°6 [PDF
    CHOCS N°6 FOCUSACTUALITÉS SCIENTIFIQUES À LA DIRECTION DES APPLICATIONS MILITAIRES NOVEMBRE 2019 LA CHIMIE AU CŒUR DES ENJEUX DU FUTUR 3ES JOURNÉES DE LA CHIMIE AU CEA – DAM SOMMAIRE AVANT-PROPOS ANALYSES ET 01 M. LEROY 26 INSTRUMENTATION 26. Caractérisation de formulations INTRODUCTION énergétiques pré- et post-détonation 02 G. BOURGÈS M. C. BRIDOUX, G. GAIFFE, R. B. COLE, X. ARCHER 28. Spectrométrie d’émission appliquée CHIMIE à la mesure de la composition chimique 04 ET PROCÉDÉS des produits de détonation S. PŒUF, G. BAUDIN, M. GENETIER, A. OSMONT, A. LEFRANÇOIS, A. CHINNAYYA 04. Propriétés thermodynamiques du plutonium dans les milieux fluorés fondus 30. Vers une spectrométrie de masse de terrain J. CLAQUESIN, O. LEMOINE, G. BOURGÈS, L. MASSOT, M. GIBILARO, P. CHAMELOT F. PROGENT, A. SONNETTE, S. VIGNE, P.-E. BUTHIER, J. TUPINIER, T. ALAVA 06. Préparation de composites à matrice 32. Mesures de données nucléaires à l’aide céramique par la voie gaz d’une cible active scintillante – Exemple G. L. VIGNOLES, A. ALLEMAND, G. CHOLLON, A. DELEHOUZE, S. JACQUES, de mesure sur la fission spontanée Y. LEPETITCORPS, L. MAILLE, P. DAVID G. BÉLIER, J. AUPIAIS, G. SIBBENS, A. MOENS, D. VANLEEUW 08. Voie de synthèse pour de nouveaux 34. Étude des gaz émis par une batterie Li-ion pentazoles soumise à une surcharge C.-N. NARBONI, G. JACOB, L. EL KAIM Y. FERNANDES, A. BRY, S. DE PERSIS 10. Séparation des isotopes de l’hydrogène sur zéolithes faujasites SIMULATION M. GIRAUDET, M. MACAUD, E. PICHOT, I. BEZVERKHYY, C. DIRAND, J.-P. BELLAT 36 NUMÉRIQUE 12. Étude des mécanismes de croissance 36.
    [Show full text]
  • Charge Distribution and Ionization Potential of N8 Isomers
    International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583 Charge Distribution and Ionization Potential of N8 Isomers Eena Bahan1*, R. S. Prasad2 1Department of Physics S. C. E. Sasaram, India *Email:14200shprateek[at]gmail.com 2Former Head Department of Physics, Magadh University, Bodh Gaya, India Abstract: By use of an approximate self-Consistent Field (SCF) method MRINDO/S, the potential nitrogen molecules, octaazacubaneN8isomers were studied. The N8 isomers considered in the present study belong to the molecular point groups Oh, D2h and C2v respectively. We report their charge distribution and ionization potential of the N8 isomers. The charge distribution was accounted for by making use of Mulliken population analysis. Keywords: - N8 isomers, Charge distribution and ionization potential 1.Introduction energy of N2 (N ≡ N triple - bond energy) is 225 kcal/ mol, while the standard N = N double - bond energy is 100 Although cubane and cyclooctatetrane are known kcal/mol and that of N - N single bond is 40 kcal/mol [4]. experimentally, unsubstituted pentalene has never been Since the N ≡ N triple - bond energy (225kcal/mol) is synthesized; nevertheless, the Vibrational analysis of much more than three times the single - bond energy (3 x Leininger et al. [1] indicates that the three nitrogen 40 = 120 Keal/mol), this suggests that the Nn, clusters with analogues namely octaazacubane of Oh symmetry, an all - N - N single bonds may release sufficient amounts of nitrogen
    [Show full text]
  • Stabilization of Hexazine Rings in Potassium Polynitride at High Pressure
    Stabilization of hexazine rings in potassium polynitride at high pressure Yu Wang1, Maxim Bykov2,3, Elena Bykova2, Xiao Zhang1, Shu-qing Jiang1, Eran Greenberg4, Stella Chariton4, Vitali B. Prakapenka4, Alexander F. Goncharov1,2, 1 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, Anhui, People’s Republic of China 2 Earth and Planets Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015, USA 3 Department of Mathematics, Howard University, Washington, DC 20059, USA 4 Center for Advanced Radiations Sources, University of Chicago, Chicago, Illinois 60637, USA Correspondence should be addressed to: [email protected] 1 Polynitrogen molecules represent the ultimate high energy-density materials as they have a huge potential chemical energy originating from their high enthalpy. However, synthesis and storage of such compounds remain a big challenge because of difficulties to find energy efficient synthetic routes and stabilization mechanisms. Compounds of metals with nitrogen represent promising candidates for realization of energetic polynitrogen compounds, which are also environmentally benign. Here we report the synthesis of polynitrogen planar N6 hexazine rings, stabilized in K2N6 compound, which was formed from K azide upon laser heating in a diamond anvil cell at high pressures in excess of 45 GPa and remains metastable down to 20 GPa. Synchrotron X-ray diffraction and Raman spectroscopy are used to identify this material, also exhibiting metallic luster, being all consistent with theoretically predicted structural, vibrational and electronic properties. The documented here N6 hexazine rings represent new highly energetic polynitrogens, which have a potential for future recovery and utilization.
    [Show full text]
  • Polymeric Nitrogen by Plasma Enhanced Chemical Vapor Deposition El Mostafa Benchafia New Jersey Institute of Technology
    New Jersey Institute of Technology Digital Commons @ NJIT Dissertations Theses and Dissertations Fall 2014 Polymeric nitrogen by plasma enhanced chemical vapor deposition El Mostafa Benchafia New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/dissertations Part of the Materials Science and Engineering Commons Recommended Citation Benchafia, El Mostafa, "Polymeric nitrogen by plasma enhanced chemical vapor deposition" (2014). Dissertations. 98. https://digitalcommons.njit.edu/dissertations/98 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in
    [Show full text]
  • MRINDO/S-CI Calculation on the Electronic Spectra of N8 Isomers
    IOSR Journal Of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861.Volume 12, Issue 5 Ser. III (Sep. – Oct 2020), PP 48-52 www.Iosrjournals.Org MRINDO/S-CI Calculation on the Electronic Spectra of N8 Isomers EENA BAHAN1*, RAJ SHEKHAR PRASAD2 AND R. S. PRASAD3 1. Department of Physics S. C. E. Sasaram, India 2. Department of Mathematics, Government Engineering College, Buxar, India 3. Former Head Department of Physics, Magadh University, Bodh Gaya. Abstract: MRINDO/S-CI Calculation Completed by singly excited configuration intraction was performed on the octaazacubane, octaazapentalene and octaazacuneane. The importance of outer (Rydberg) atomic orbitals is stressed and it is found that a few singlet-singlet transitions of the higher azines lead to an excited state with considerable Rydberg character. Keywords: - MRINDO/S,octaazacubane, octaazapentalene and octaazacuneane. ----------------------------------------------------------------------------------------------------------------------------- ---------- Date of Submission: 15-10-2020 Date of Acceptance: 31-10-2020 ------------------------------------------------------------------------------------------------------------------------ --------------- I. Introduction Although cubane and cyclooctatetrane are known experimentally, unsubstituted pentalene has never been synthesized; nevertheless, the Vibrational analysis of Leininger et al. [1] indicates that the three nitrogen analogues namely octaazacubane of Oh symmetry, an all —nitrogen analogue of cyclooctatetrane of D2d Symmetry and a planar bicyclic structure analogous to pentalene (octaazapentalene) of D2h symmetry represent potential energy minima, The N8 isomers are metastable and the metastability of octaazapentalene is attributed to two π electrons present in it but not in pentalene, according to the rule of topological charge stabilization, Further, they concluded that since all three minima are very high - lying with respect to 4N2, their potential application is as high energy density materials (HEDMs).
    [Show full text]
  • Design and Synthesis of Explosives: Polynitrocubanes and High Nitrogen Content Heterocycles Reported by Andrew L
    Design and Synthesis of Explosives: Polynitrocubanes and High Nitrogen Content Heterocycles Reported by Andrew L. LaFrate March 17th, 2005 Introduction In the ninth century, Chinese alchemists discovered black powder, a mixture of sulfur, charcoal, 1 and saltpeter (KNO3), while trying to invent a formula for immortality. Since then humans have been fascinated by explosives and have strived to develop more powerful formulations. In 1846, the Italian chemist Ascanio Sobrero, prepared nitroglycerine (1) by adding glycerine to concentrated HNO3 and H2SO4. Nitroglycerine was not used as an explosive until 1863 when Alfred Nobel stabilized it by adding a nitrocellulose binder, a mixture he termed “dynamite” (from Greek: dynamis meaning power).2 Dynamite and 2,4,6-trinitrotoluene (2) were the explosives of choice until the advent of the nitramine explosives RDX (3) and HMX (4) prior to the second World War. More than 60 years later, HMX (and its formulations) is still O N CH3 2 ONO the workhorse for most 2 O N NO NO N NO 2 2 2 N 2 N military and heavy duty ONO2 N O2N N N N civilian applications. ONO2 NO2 O2N NO2 NO2 Nitroglycerine (1) TNT (2) RDX (3) HMX (4) Background The two most common methods used to quantitate the performance of explosives are the velocity of detonation (VOD) and the detonation pressure (PD). VOD is the rate at which the chemical reaction propagates through the solid explosive or the velocity of the shockwave produced by an explosion. PD is a measure of the increase in pressure followed by detonation of an explosive.3 Despite the development of high explosives such as HMX, active efforts have continued within the military and scientific communities to produce better explosives to complement emerging weapons and space technologies.
    [Show full text]
  • Polymeric Nitrogen by Plasma Enhanced Chemical Vapor Deposition
    New Jersey Institute of Technology Digital Commons @ NJIT Dissertations Electronic Theses and Dissertations Fall 1-31-2015 Polymeric nitrogen by plasma enhanced chemical vapor deposition El Mostafa Benchafia New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/dissertations Part of the Materials Science and Engineering Commons Recommended Citation Benchafia, El Mostafa, "Polymeric nitrogen by plasma enhanced chemical vapor deposition" (2015). Dissertations. 98. https://digitalcommons.njit.edu/dissertations/98 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept
    [Show full text]
  • New Trends in Research of Energetic Materials (NTREM '08)
    abstracts of the 11th seminar New Trends in Research of Energetic Materials Pardubice, April 09–11, 2008 University of Pardubice, Faculty of Chemical Technology Institute of Energetic Materials Sponsors POLI ČSKÉ STROJÍRNY A.S. Poli čské strojírny a.s. 572 12 Poli čka Tel.: +420 461 751 111, fax: +420 461 751 205 e-mail:[email protected], www.pos.cz SPECIAL PRODUCTION In 1920 the Defence Ministry of Czechoslovakia started the ammunition factory Vojenská muni ční továrna 1 near the town of Poli čka. The capabilities of Poli čské strojírny in the ammunition production have been very extensive. The company owes its large scope of capabilities to its previous specialization in the field. Poli čské strojírny originally started as an ammunition company to process large quantities of explosives. The biggest volume of the production consisted of sapper ammunition and special in-trenching tools, various types of antitank and antipersonnel mines; aircraft bomb charges and, last but not least, antitank ammunition. At present we posses technological equipment, production and storage facilities for environment-friendly delaboration and disposal of ammunition elements, including explosives from delaborated ammunition. Apart from delaboration, we also perform comprehensive inspections of ammunition. The production program includes products used by the Czech Republic’s Army, which may be divided into the following three basic categories: - Means for field mining, as well as for mine clearing - Sapper ammunition and special demolition sets - Artillery ammunition University of Pardubice, Faculty of Chemical Technology Institute of Energetic Materials abstracts of the 11th seminar New Trends in Research of Energetic Materials held at the University of Pardubice Pardubice, Czech Republic April 09–11, 2008 intended as a meeting of students, postgraduate students, university teachers, and young research and development workers, concerned from the whole world This publication has not been submitted to language corrections and contributions have not been reviewed.
    [Show full text]
  • High Explosive Mate...Pdf
    Basic Characteristics for Estimation Polynitrogen Compounds Efficiency 233 Central European Journal of Energetic Materials, 2011, 8(4), 233-247 ISSN 1733-7178 Basic Characteristics for Estimation Polynitrogen Compounds Efficiency Alexandr SMIRNOV1, David LEMPERT2, Tatyana PIVINA3* and Dmitriy KHAKIMOV3 1 State Scientific Research Institute of Mechanical Engineering after V.V. Bakhirev, 11a Sverdlov St., Dzerzhinsk, Nizhny Novgorod Region, 606002, Russia 2 Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Semenov Av., Chernogolovka, Moscow Region, 142432, Russia 3 Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia *E-mail: [email protected] Abstract: Basing on analysis of experimental data for physicochemical parameters of 300 energetic compounds from different chemical classes, a set of basic characteristics (enthalpies of formation, molecular crystals densities, detonation parameters, as well as sensitivity to different kinds of impact) has been considered and some calculations schemes have been elaborated to estimate these characteristics for polynitrogen compounds. The limits of physicochemical values for energetic materials (EMs) parameters have been estimated. A large set of compounds has been investigated and some of them seem to be rather effective as explosives or monopropellants. There are about ten powerful compounds (e.g. octanitrocubane, hexanitrohexaazaisowurtzitane, azanitrofurazan, etc.), explosives- oxidizers (such as ammonium dinitroamide and bis(difluroamine-dini troethil) nitroamine) and several hypothetic substances (not synthesized yet), such as octaazacubane, octaazatetraen, tetranitrotetraazacubane etc. Energetic properties were estimated as for individual compounds, as well as for energetic compositions containing these substances together with other ones in the aim to estimate the effectiveness of their use as components of solid composite propellants.
    [Show full text]
  • Chemical Explosives: Warhead Ally
    CHEMICAL EXPLOSIVES: WARHEAD ALLY Onyenekenwa Cyprian Eneh Institute for Development Studies, Enugu Campus, University of Nigeria, Nsukka; Tel.: +234-803-338-7472, E-mail: [email protected], [email protected] Abstract Interactions among humans and international communities result in occasional misunderstanding, which may mature into dispute, quarrel, conflict or war. To secure victory, the warhead may inflict damage on the target enemy, mostly by a transfer of mechanical energy, producing shock wave or lethal fragments. This review examines how the warhead may store this energy in form of chemical explosives, which take advantage of exothermic chemical reactions that release energy. It recommends the discouragement of the production and use of chemical explosives in favour of Green Chemistry. Keywords: explosive materials; exothermic reactions; detonation Introduction In a world, where no man or nation is an If the reaction proceeds slowly, the island, human and international relations are released energy will be dissipated and there indispensable. This is truer for nations in the will be few noticeable effects other than an globalising village, as the entire world has increase in temperature. But, if the reaction become today. Since people have differences proceeds very rapidly, the energy will not be in interests, mental levels and generations, dissipated. Thus, a great quantity of energy misunderstanding frequently occurs. A can be deposited into a relatively small mismanaged misunderstanding matures into a volume. This manifests in a rapid expansion dispute. If not carefully handled, a dispute of hot gases, leading to the explosion of the blossoms into a quarrel. Without a wise relatively small container.
    [Show full text]
  • Calculations Predict a Stable Molecular Crystal of N
    ARTICLES PUBLISHED ONLINE: 15 DECEMBER 2013 | DOI: 10.1038/NCHEM.1818 Calculations predict a stable molecular crystal of N8 Barak Hirshberg1,R.BennyGerber1,2* and Anna I. Krylov3 Nitrogen, one of the most abundant elements in nature, forms the highly stable N2 molecule in its elemental state. In contrast, polynitrogen compounds comprising only nitrogen atoms are rare, and no molecular crystal made of these compounds has been prepared. Here, we predict the existence of such a molecular solid, consisting of N8 molecules, that is metastable even at ambient pressure. In the solid state, the N8 monomers retain the same structure and bonding pattern as those they adopt in the gas phase. The interactions that bind N8 molecules together are weak van der Waals and electrostatic forces. The solid is, according to calculations, more stable than a previously reported polymeric nitrogen solid, including at low pressure (below 20 GPa). The structure and properties of the N8 molecular crystal are discussed and a possible preparation strategy is suggested. itrogen is one of the most abundant elements on Earth, Supplementary Fig. 1. A non-polymeric, molecular phase of nitrogen constituting 78% of the atmosphere in its elemental form consisting of a mixture of planar N6 and N2 has been considered 15 N(diatomic gas N2). Under cryogenic conditions it exists in theoretically . At pressures around 60 GPa, a barrierless trans- E the solid state as a crystalline solid in which N2 molecules, which formation of -N2 into a hybrid N6/N2 structure, in which the two feature a very strong intramolecular triple bond (225 kcal mol21), molecules appear in the unit cell, has been observed in calculations.
    [Show full text]