A Gene Genealogical Approach to Recognize Phylogenetic Species Boundaries in the Lichenized Fungus Letharia Author(S): Scott Kroken and John W

Total Page:16

File Type:pdf, Size:1020Kb

A Gene Genealogical Approach to Recognize Phylogenetic Species Boundaries in the Lichenized Fungus Letharia Author(S): Scott Kroken and John W Mycological Society of America A Gene Genealogical Approach to Recognize Phylogenetic Species Boundaries in the Lichenized Fungus Letharia Author(s): Scott Kroken and John W. Taylor Source: Mycologia, Vol. 93, No. 1 (Jan. - Feb., 2001), pp. 38-53 Published by: Mycological Society of America Stable URL: http://www.jstor.org/stable/3761604 . Accessed: 19/07/2011 18:37 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at . http://www.jstor.org/action/showPublisher?publisherCode=mysa. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Mycological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Mycologia. http://www.jstor.org Mycologia, 93(1), 2001, pp. 38-53. ? 2001 by The Mycological Society of America, Lawrence, KS 66044-8897 A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia Scott Kroken' (Nutt.) Thomson always produce sexual structures John W. Taylor (apothecia). Some individuals also produce clonal Departmentof Plant and MicrobialBiology, 321 symbiotic propagules in the form of isidia, short lat- KoshlandHall, Universityof California,Berkeley, eral branches that break off easily for wind dispersal. USA 94720-3102 California, Mature individuals of Letharia vulpina (L.) Hue rare- ly produce apothecia, whereas all individuals produce clonal propagules in the form of soredia consisting Abstract: Letharia, a of lichenized de- genus fungi of ecorticate wefts of fungal hyphae, each surround- scribed as a of one pair sympatric species, making ing a nest of algal cells. abundant sexual structures and the other making The existence of lichen has been in species pairs few, was investigated as a model system which to called into and it has been that boundaries. Gene of 6 question, proposed recognize species genealogies the clonal lichens are asexual individuals and 12 loci were used to estimate the repeatedly evolutionary from within a sexual (Tehler 1982). of based on the of arising species history Letharia, principles lineage This alternative is of alleles in after hypothesis represented diagram- sorting divergent lineages genetic clonal individuals intermixed isolation. Instead of a of a matically by showing species pair consisting pu- with sexual individuals the tative clonal derived from a sexual throughout phylogeny, species progenitor rather than all the clonal individuals as a Letharia at least six showing species, comprises phylogenetic The between the of single lineage (FIG. 1). disagreement species. Judging by presence perennial apo- Poelt and Tehler turns on whether the sorediate in- thecia and clonal reproductive structures, one spe- dividuals of a species pair represent a separate species cies is exclusively sexual, three species are sexual and or are conspecific with apotheciate forms (Mattsson isidiate, and two species are sorediate and rarely sex- and Lumbsch 1989). We wanted to know whether ual. Not all of these species would have been detect- Letharia vulpina is a phylogenetic or ed with a single gene genealogy, demonstrating the species merely a collection of individuals of Leth- need for multiple independent loci in phylogenetic rarely apotheciate aria columbiana. analysis to recognize recent speciation events. The Until in most results are concordant with aspects of both biological very recently, species recognition lichenized was based on chem- and phylogenetic species recognition. However, only fungi morphological, ical and characters (Purvis 1997). Re- phylogenetic species recognition can be applied to biogeographic cent molecular studies have been based on fungi like Letharia species that are difficult to culti- published vate and mate in the lab. a single locus, usually ITS (e.g., Groner and LaGreca Lohtander et al Thell and Miao Key Words: clonal lichens, coalescence, congru- 1997, 1998a, b, a locus will not re- ence, cryptic species, Lecanorales, metaphyletic spe- 1998). However, single separate if the tree does cies, multiple loci, Parmeliaceae, sibling species, spe- cently diverged species single gene not reflect the and Wollen- cies pair, sympatry species phylogeny (Avise berg 1997, Maddison 1997). FIGURE 2 shows an an- cestral species with two alleles (black and gray) for one locus. Genetic isolation results in two descendant INTRODUCTION species, both of which have inherited the two alleles. The lichenized fungus Letharia was chosen as a mod- The process of lineage sorting eventually results in el genus to investigate species boundaries. Letharia coalescence for one allele in first in species Y, and has been thought to represent a classic example of a then the other in species X. Only when coalescence lichen species pair, defined as one progenitor sexual has occurred for different alleles between the two species and one descendant clonal species (Poelt species can a single locus be used to separate species, 1970, 1972). Mature individuals of L. columbiana and it cannot be known a priori if this has indeed occurred. If phylogenetic species recognition (PSR) Accepted for publication August 18, 2000. were applied before coalescence occurred in both Email: [email protected] species, it would erroneously group the individuals 38 .. n - - -~~~~ KROKEN AND TAYLOR: SPECIES BOUNDARIES IN LETHARIA 39 " ancestral species 1 1 Y Ii. I 4I YI I I V * I I _ | mutation creates two alleles polyphyleticorigins of clonal individuals(Tehler 1982) genetic isolation Ii no coalescence 5 0. L .. coalescence in ] I one species monophyleticorigin of clonal individuals(Poelt 1972) coalescence in / both FIG. 1. Alternate hypotheses of the origin of clonal li- species chens from a sexual species. species X species Y FIG. 2. Lineage sorting for a single locus (after Maddi- containing the black allele or the grey allele as two son and Avise). separate clades and rank them as species. The two described species of Letharia are sympat- sensus approach requires reciprocal fixation (exclu- ric, so there is the possibility of interbreeding. Re- sive sets of alleles) for all loci between the two species productive isolation cannot be determined in lich- (Baum and Shaw 1995). Exclusivity is too strict a cri- enized fungi by the inability to interbreed, because, terion given the long time interval between the be- like many nonlichenized fungi, they have not yet ginning of genetic isolation and reciprocal fixation been crossed in laboratory conditions. However, find- at all loci within those species. A combined analysis ing breeding compatibility would only demonstrate is more sensitive to uncovering recent phylogenetic what can happen in vitro, and not what occurs in divergences, and has uncovered morphologically natural populations. Genetic isolation typically pre- cryptic species in Coccidioidesimmitis (Koufopanou et cedes the development of reproductive barriers, re- al 1997, 1998), Aspergillusflavus (Geiser et al 1998a, sulting in the delimitation of paraphyletic lineages b), and Histoplasma capsulatum (Kasuga et al 1999). larger than actual interbreeding species (Rosen In this study, 12 loci were characterized, and the con- 1979). Therefore, in order to determine breeding gruence of their genealogies was used to recognize barriers in natural populations, we used a PSR based phylogenetic species in Letharia. on the congruence of multiple gene genealogies to group genetically isolated clades that are ranked as phylogenetic species (Taylor et al 1999, 2000). FIG- MATERIALS AND METHODS URE 3 summarizes this with a ex- approach simplified Lichen collection and thalli were col- of recent isolation and line- preparation.-Letharia ample genetic ongoing lected in North America, from California to British Colum- for three loci between two age sorting species. bia, and in Sweden and Italy. Collection information for No single gene genealogy reflects the species phy- Letharia is listed in TABLE I. Lichen thalli were removed logeny, because no locus has completed the process from their substrate (usually conifer bark) and the limits of of lineage sorting for both species. Locus 1 has coa- individuals were identified by locating their holdfasts. From lesced in species X, locus 2 has coalesced in species each thallus, a -10-mg branch was selected for DNA ex- Y, and locus 3 has coalesced in neither species. How- two ever, a combined 3-locus analysis will delimit spe- single gene genealogies combined 3-locus cies, as each branch is supported by two characters. locus 1 locus 2 locus 3 phylogeny For example, species X is supported by allele a-b-c a a- i from locus 1, and allele f-b-c from locus 3 (the rib b b species X c --abs branch to individual 'a' in the combined phylogeny f ed1d d is scored as a homoplastic reversal.) In contrast, a e e e 'Le speciesY f f a f strict consensus of the three single locus genealogies would not detect two species, as the result would be FIG. 3. Three single-gene genealogies, and the congru- an unresolved tree (Barrett et al 1991). A strict con- ence of their gene genealogies. 40 MYCOLOGIA TABLEI. Letharia specimens ID Locationa and date Collector Letharia 'lupina' AP1 USA. WA: Armstrong Peak, Pasayten Wilderness, 7-1997 S. Kroken BC1 CANADA. British Columbia (mycobiont culture) Y Yamamoto CL1 USA.
Recommended publications
  • Phylogeny of the Cetrarioid Core (Parmeliaceae) Based on Five
    The Lichenologist 41(5): 489–511 (2009) © 2009 British Lichen Society doi:10.1017/S0024282909990090 Printed in the United Kingdom Phylogeny of the cetrarioid core (Parmeliaceae) based on five genetic markers Arne THELL, Filip HÖGNABBA, John A. ELIX, Tassilo FEUERER, Ingvar KÄRNEFELT, Leena MYLLYS, Tiina RANDLANE, Andres SAAG, Soili STENROOS, Teuvo AHTI and Mark R. D. SEAWARD Abstract: Fourteen genera belong to a monophyletic core of cetrarioid lichens, Ahtiana, Allocetraria, Arctocetraria, Cetraria, Cetrariella, Cetreliopsis, Flavocetraria, Kaernefeltia, Masonhalea, Nephromopsis, Tuckermanella, Tuckermannopsis, Usnocetraria and Vulpicida. A total of 71 samples representing 65 species (of 90 worldwide) and all type species of the genera are included in phylogentic analyses based on a complete ITS matrix and incomplete sets of group I intron, -tubulin, GAPDH and mtSSU sequences. Eleven of the species included in the study are analysed phylogenetically for the first time, and of the 178 sequences, 67 are newly constructed. Two phylogenetic trees, one based solely on the complete ITS-matrix and a second based on total information, are similar, but not entirely identical. About half of the species are gathered in a strongly supported clade composed of the genera Allocetraria, Cetraria s. str., Cetrariella and Vulpicida. Arctocetraria, Cetreliopsis, Kaernefeltia and Tuckermanella are monophyletic genera, whereas Cetraria, Flavocetraria and Tuckermannopsis are polyphyletic. The taxonomy in current use is compared with the phylogenetic results, and future, probable or potential adjustments to the phylogeny are discussed. The single non-DNA character with a strong correlation to phylogeny based on DNA-sequences is conidial shape. The secondary chemistry of the poorly known species Cetraria annae is analyzed for the first time; the cortex contains usnic acid and atranorin, whereas isonephrosterinic, nephrosterinic, lichesterinic, protolichesterinic and squamatic acids occur in the medulla.
    [Show full text]
  • The Lichens' Microbiota, Still a Mystery?
    fmicb-12-623839 March 24, 2021 Time: 15:25 # 1 REVIEW published: 30 March 2021 doi: 10.3389/fmicb.2021.623839 The Lichens’ Microbiota, Still a Mystery? Maria Grimm1*, Martin Grube2, Ulf Schiefelbein3, Daniela Zühlke1, Jörg Bernhardt1 and Katharina Riedel1 1 Institute of Microbiology, University Greifswald, Greifswald, Germany, 2 Institute of Plant Sciences, Karl-Franzens-University Graz, Graz, Austria, 3 Botanical Garden, University of Rostock, Rostock, Germany Lichens represent self-supporting symbioses, which occur in a wide range of terrestrial habitats and which contribute significantly to mineral cycling and energy flow at a global scale. Lichens usually grow much slower than higher plants. Nevertheless, lichens can contribute substantially to biomass production. This review focuses on the lichen symbiosis in general and especially on the model species Lobaria pulmonaria L. Hoffm., which is a large foliose lichen that occurs worldwide on tree trunks in undisturbed forests with long ecological continuity. In comparison to many other lichens, L. pulmonaria is less tolerant to desiccation and highly sensitive to air pollution. The name- giving mycobiont (belonging to the Ascomycota), provides a protective layer covering a layer of the green-algal photobiont (Dictyochloropsis reticulata) and interspersed cyanobacterial cell clusters (Nostoc spec.). Recently performed metaproteome analyses Edited by: confirm the partition of functions in lichen partnerships. The ample functional diversity Nathalie Connil, Université de Rouen, France of the mycobiont contrasts the predominant function of the photobiont in production Reviewed by: (and secretion) of energy-rich carbohydrates, and the cyanobiont’s contribution by Dirk Benndorf, nitrogen fixation. In addition, high throughput and state-of-the-art metagenomics and Otto von Guericke University community fingerprinting, metatranscriptomics, and MS-based metaproteomics identify Magdeburg, Germany Guilherme Lanzi Sassaki, the bacterial community present on L.
    [Show full text]
  • Cryptic Species and Species Pairs in Lichens: a Discussion on the Relationship Between Molecular Phylogenies and Morphological Characters
    cryptic species:07-Cryptic_species 10/12/2009 13:19 Página 71 Anales del Jardín Botánico de Madrid Vol. 66S1: 71-81, 2009 ISSN: 0211-1322 doi: 10.3989/ajbm.2225 Cryptic species and species pairs in lichens: A discussion on the relationship between molecular phylogenies and morphological characters by Ana Crespo & Sergio Pérez-Ortega Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, E-28040 Madrid, Spain [email protected], [email protected] Abstract Resumen Crespo, A. & Pérez-Ortega, S. 2009. Cryptic species and species Crespo, A. & Pérez-Ortega, S. 2009. Especies crípticas y pares de pairs in lichens: A discussion on the relationship between mole- especies en líquenes: una discusión sobre la relación entre la fi- cular phylogenies and morphological characters. Anales Jard. logenia molecular y los caracteres morfológicos. Anales Jard. Bot. Madrid 66S1: 71-81. Bot. Madrid 66S1: 71-81 (en inglés). As with most disciplines in biology, molecular genetics has re- Como en otras disciplinas, el impacto producido por la filogenia volutionized our understanding of lichenized fungi. Nowhere molecular en el conocimiento de los hongos liquenizados ha has this been more true than in systematics, especially in the de- producido avances y cambios conceptuales importantes. Esto limitation of species. In many cases, molecular research has ve- ha sido especialmente cierto en la sistemática y ha afectado de rified long-standing hypotheses, but in others, results appear to una manera muy notable en aspectos
    [Show full text]
  • Monitoring Air Quality in Class I Wilderness Areas of the Northeastern United States Using Lichens and Bryophytes Alison C
    United States Department of Agriculture Monitoring Air Quality in Class I Wilderness Areas of the Northeastern United States Using Lichens and Bryophytes Alison C. Dibble, James W. Hinds, Ralph Perron, Natalie Cleavitt, Richard L. Poirot, and Linda H. Pardo Forest Service Northern Research Station General Technical Report NRS-165 December 2016 1 Abstract To address a need for air quality and lichen monitoring information for the Northeast, we compared bulk chemistry data from 2011-2013 to baseline surveys from 1988 and 1993 in three Class I Wilderness areas of New Hampshire and Vermont. Plots were within the White Mountain National Forest (Presidential Range—Dry River Wilderness and Great Gulf Wilderness, New Hampshire) and the Green Mountain National Forest (Lye Brook Wilderness, Vermont). We sampled epiphyte communities and found 58 macrolichen species and 55 bryophyte species. We also analyzed bulk samples for total N, total S, and 27 additional elements. We detected a decrease in Pb at the level of the National Forest and in a subset of plots. Low lichen richness and poor thallus condition at Lye Brook corresponded to higher N and S levels at these sites. Lichen thallus condition was best where lichen species richness was also high. Highest Hg content, from a limited subset, was on the east slope of Mt. Washington near the head of Great Gulf. Most dominant lichens in good condition were associated with conifer boles or acidic substrates. The status regarding N and S tolerance for many lichens in the northeastern United States is not clear, so the influence of N pollution on community data cannot be fully assessed.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • On the Identity and Position of Pentagenella Fragillima, Roccellodea Nigerrima, and Some Related Species (Roccellaceae, Opegraphales)1
    J. Hattori Bot. Lab. No. 85 : 245- 265 (Nov. 1998) ON THE IDENTITY AND POSITION OF PENTAGENELLA FRAGILLIMA, ROCCELLODEA NIGERRIMA, AND SOME RELATED SPECIES (ROCCELLACEAE, OPEGRAPHALES)1 2 3 2 GERHARD FOLLMANN , MARGOT SCHULZ , AND BIRGIT WERNER INTRODUCTION Pentagenella fragillima was described from Chile by Darbishire (1897) and Roccellodea nigerrima from the Galapagos Islands by the same author ( 1932). Because of apparently missing type material, both Roccellaceae were excluded from a cladistical treatment of the family as critical taxa of uncertain position by Tehler (1990), and Weber (1986) listed the second one under "Rejected reports, synonyms, and misapplied names" in his catalogue of Galapagos lichens. On the other side, lichen samples corresponding largely to Darbishire's descriptions of P. fragillima and R. nigerrima growing close to their supposed type localities were repeatedly used for chemo­ taxonomical studies by Huneck & Follmann (1967), Follmann & Huneck (1969), Follmann et al. (1993), etc. and cited in floral inventories and sociological registers (i.a., Follmann 1962, 1964, 1967, 1995, 1997). Meanwhile, the type specimens were located in the herbaria of the National Museum of Natural History at Paris (PC) and of the Department of Botany of the University of Bristol (BRIST), respectively. The following revision, which includes some related taxa, was carried out to bring this unsatisfactory and impeding situation to an end. MATERIAL AND METHODS For the present check-up, specimens of Roccellaceae preserved in the public herbaria at Boulder (COLO), Bristol (BRIST), Geneva (G), Helsinki (H), London (BM), Lund (LD), Paris (PC), Santa Cruz de Tenerife (TFMC), Stockholm (S), Uppsala (UPS), Vienna (W), and Washington (US) were used.
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]
  • A Multigene Phylogenetic Synthesis for the Class Lecanoromycetes (Ascomycota): 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families
    A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., ... & Stenroos, S. (2014). A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution, 79, 132-168. doi:10.1016/j.ympev.2014.04.003 10.1016/j.ympev.2014.04.003 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10,
    [Show full text]
  • Lichenicolous Biota (Nos 251–270) 31-46 - 31
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Fritschiana Jahr/Year: 2017 Band/Volume: 86 Autor(en)/Author(s): Hafellner Josef Artikel/Article: Lichenicolous Biota (Nos 251–270) 31-46 - 31 - Lichenicolous Biota (Nos 251–270) Josef HAFELLNER* HAFELLNER Josef 2017: Lichenicolous Biota (Nos 251–270). - Fritschiana (Graz) 86: 31–46. - ISSN 1024-0306. Abstract: The 11th fascicle (20 numbers) of the exsiccata 'Licheni- colous Biota' is published. The issue contains material of 20 non- lichenized fungal taxa (16 teleomorphs of ascomycetes, 2 anamorphic states of ascomycetes, 2 basidiomycetes), including paratype material of Tremella graphidis Diederich et al. (no 269). Furthermore, collections of the type species of the following genera are distributed: Abrothallus (A. bertianus), Lichenostigma (L. maureri), Phacopsis (P. vulpina), Skyt- tea (S. nitschkei), and Telogalla (T. olivieri). *Institut für Pflanzenwissenschaften, NAWI Graz, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, AUSTRIA. e-mail: [email protected] Introduction The exsiccata 'Lichenicolous Biota' is continued with fascicle 11 containing 20 numbers. The exsiccata covers all lichenicolous biota, i.e., it is open not only to non- lichenized and lichenized fungi, but also to myxomycetes, bacteria, and even ani- mals, whenever they cause a characteristic symptom on their host (e.g., discoloration or galls). Consequently, the exsiccata contains both highly host-specific and pluri- vorous species, as long as the individuals clearly grow upon a lichen and the col- lection is homogeneous, so that identical duplicates can be prepared. The five complete sets are sent to herbaria of the following regions: Central Europe (Graz [GZU]), Northern Europe (Uppsala [UPS]), Western Europe (Bruxelles [BR]), North America (New York [NY]), Australasia (Canberra [CANB]).
    [Show full text]
  • Parmelia Barrenoae , a New Lichen Species Related to Parmelia Sulcata
    The Lichenologist 37(1): 37–46 (2005) 2005 The British Lichen Society DOI: 10.1017/S0024282904014641 Printed in the United Kingdom Parmelia barrenoae, a new lichen species related to Parmelia sulcata (Parmeliaceae) based on molecular and morphological data Pradeep K. DIVAKAR, M. Carmen MOLINA, H. Thorsten LUMBSCH and Ana CRESPO Abstract: Parmelia barrenoae is described as new to science in the P. sulcata complex on the basis of morphological and molecular data. The new species is superficially similar to P. sulcata but differs in having simple rhizines whereas the other species of the complex have squarrose rhizines. Nuclear ITS rDNA and partial -tubulin gene sequences have been used as molecular markers. In the phylogenetic analysis, P. sulcata falls into four well supported clades, one of them corresponds to the morphotype that is described here as a new taxon. Six samples of the new taxon from different locations on the Iberian Peninsula form a strongly supported monophyletic group. Key words: Ascomycota, Bayesian inference, lichens, Parmelia, Parmelia barrenoae, Parmeliaceae, rhizines Introduction Parmelia sulcata is a very well known lichen species (with squarrose rhizines and Phylogenetic studies of some widely distrib- sorediate upper surface), reported from all uted lichen species in the Parmeliaceae have continents, including Antarctica. It occurs in shown that in many cases the morphological numerous ecotypes and is one of the most species concept does not coincide with common species in temperate Europe. In a monophyletic unit. Some traditionally Europe it is one of the principal lichens circumscribed species have been shown to recolonizing cities where atmospheric pollu- include several genetically isolated clades, tion has recently decreased (Hawksworth i.e.
    [Show full text]
  • Photobiont Relationships and Phylogenetic History of Dermatocarpon Luridum Var
    Plants 2012, 1, 39-60; doi:10.3390/plants1020039 OPEN ACCESS plants ISSN 2223-7747 www.mdpi.com/journal/plants Article Photobiont Relationships and Phylogenetic History of Dermatocarpon luridum var. luridum and Related Dermatocarpon Species Kyle M. Fontaine 1, Andreas Beck 2, Elfie Stocker-Wörgötter 3 and Michele D. Piercey-Normore 1,* 1 Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mail: [email protected] 2 Botanische Staatssammlung München, Menzinger Strasse 67, D-80638 München, Germany; E-Mail: [email protected] 3 Department of Organismic Biology, Ecology and Diversity of Plants, University of Salzburg, Hellbrunner Strasse 34, A-5020 Salzburg, Austria; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: Michele.Piercey-Normore@ad. umanitoba.ca; Tel.: +1-204-474-9610; Fax: +1-204-474-7588. Received: 31 July 2012; in revised form: 11 September 2012 / Accepted: 25 September 2012 / Published: 10 October 2012 Abstract: Members of the genus Dermatocarpon are widespread throughout the Northern Hemisphere along the edge of lakes, rivers and streams, and are subject to abiotic conditions reflecting both aquatic and terrestrial environments. Little is known about the evolutionary relationships within the genus and between continents. Investigation of the photobiont(s) associated with sub-aquatic and terrestrial Dermatocarpon species may reveal habitat requirements of the photobiont and the ability for fungal species to share the same photobiont species under different habitat conditions. The focus of our study was to determine the relationship between Canadian and Austrian Dermatocarpon luridum var. luridum along with three additional sub-aquatic Dermatocarpon species, and to determine the species of photobionts that associate with D.
    [Show full text]
  • Isalonactis, a New Genus of Roccellaceae (Arthoniales), from Southern Madagascar
    The Lichenologist 46(2): 159–167 (2014) 6 British Lichen Society, 2014 doi:10.1017/S002428291300090X Isalonactis, a new genus of Roccellaceae (Arthoniales), from southern Madagascar Damien ERTZ, Anders TEHLER, Eberhard FISCHER, Dorothee KILLMANN, Tahina RAZAFINDRAHAJA and Emmanue¨lSE´ RUSIAUX Abstract: The new genus and species Isalonactis madagascariensis is characterized by a crustose, non- corticate, often sorediate thallus containing psoromic acid, tiny white pruinose ascomata with a thalline margin, an inconspicuous excipulum, a pale brown hypothecium, 3-septate hyaline ascospores and curved filiform conidia. Phylogenetic analyses using nuLSU and RPB2 sequences place Isalonactis in the Roccellaceae, close to the genera Lecanactis and Chiodecton. The new species was collected on sheltered siliceous rocks in the dry landscape of the Isalo Massif (S Madagascar). Dermatiscum thunbergii is newly recorded from Madagascar. Key words: Africa, Arthoniomycetes, desert, Lecanactis, lichen, phylogeny, taxonomy Accepted for publication 27 November 2013 Introduction the neighbouring and much smaller island of Reunion (van den Boom et al. 2011). Dur- Madagascar is a large island situated in the ing a field trip in 2008, five of the authors Indian Ocean at a minimum distance of 400 (DE, EF, DK, TR and ES) were able to km from the African continent. It is well prospect several biomes, for example mon- known for its remarkable biodiversity in- tane rainforests, dry forests, semideserts with cluding many endemic taxa (Goodman & rock outcrops, and detected numerous new Benstead 2003). Despite the island being records for the island. Most of these were one of the most important biodiversity hot- widespread species not confined to Mada- spots (Myers et al.
    [Show full text]