Identification and Functional Analyses of Novel Antioxidant Peptides and Antimicrobial Peptides from Skin Secretions of Four East Asian Frog Species

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Functional Analyses of Novel Antioxidant Peptides and Antimicrobial Peptides from Skin Secretions of Four East Asian Frog Species Acta Biochim Biophys Sin, 2017, 49(6), 550–559 doi: 10.1093/abbs/gmx032 Advance Access Publication Date: 10 April 2017 Short Communication Short Communication Identification and functional analyses of novel antioxidant peptides and antimicrobial peptides from skin secretions of four East Asian frog Downloaded from https://academic.oup.com/abbs/article/49/6/550/3573451 by guest on 23 September 2021 species Xiao Wang1,†, Shuguang Ren1,2,†, Chao Guo1, Weiqi Zhang1, Xiaoli Zhang1, Baowen Zhang1, Sihan Li1, Jian Ren3, Yuhong Hu4,*, and Hui Wang1,* 1Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China, 2The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China, 3College of Basic, Tianjin Agricultural University, Tianjin 300384, China, and 4Instrumental Analysis Center, Hebei Normal University, Shijiazhuang 050024, China †These authors contributed equally to this work. *Correspondence address. Tel/Fax: +86-311-8078-7551; E-mail: [email protected] (H.W.) / Tel/Fax: +86-311-8078-6450; E-mail: [email protected] (Y.H.) Received 24 January 2017; Editorial Decision 21 February 2017 Abstract In the present study, we identified 50 peptides that are classified into 21 peptide families with anti- oxidant and/or antimicrobial activity from Amolops daiyunensis, Pelophylax hubeiensis, Hylarana maosuoensis and Nanorana pleskei, which belong to four different genera in the Ranidae and Dicroglossidae families. These four frog species were found for the first time to express antioxidant peptides (AOPs) and antimicrobial peptides (AMPs). These peptides include seven newly discovered families daiyunin-1, daiyunin-2, daiyunin-3, maosonensis-1MS1, pleskein-1, pleskein-2, and pleskein- 3. Antioxidant and antimicrobial activity assays showed that some of these peptides have good bio- logical activities. For example, at a concentration of 50 μM, nigroain-B-MS1, and nigroain-C-MS1 both exhibited relatively strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylben- zothiazoline-6-sulfonicacid) (ABTS) free radical scavenging ability, with eradication rates of 99.7% and 68.3% (nigroain-B-MS1), and 99.8% and 58.3% (nigroain-C-MS1), respectively. These peptides are potential candidates for the development of novel antioxidant or AMP preparations. Key words: amphibia, skin, antioxidant peptide, antimicrobial peptide, free radical Introduction the world [1]. The skin secretions of amphibians contain multiple pep- Amphibia is a kind of vertebrates that inhabit in water during juvenile tides that comprise their defence system in the skin, among which anti- stage and in both water and land during adult stage. The outer layer microbial peptides (AMPs) have been widely studied [2]. Due to the cells of the bare skin of amphibians only have slight cornification and improvement of research methods, more and more peptides with dif- are easy to be invaded by harmful factors in their living environment. ferent structures and novel functions are being discovered [3–7]. In the In order to adapt to the living environment, amphibians successfully mean time, antioxidant peptides (AOPs) begin to attract more and develop their own skin defence system that helps them thrive all over more attention as they are being discovered from amphibians [3–7]. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: [email protected] 550 Identification novel AOPs and AMPs from four species of frogs 551 Various novel AOPs are found in the secretions of amphibian skin. Dalian, China) as previously described [3]. Six specific sense primers These AOPs can be considered as the third antioxidant system except and CDS III/3′ polymerase chain reaction (PCR) antisense primer for several antioxidant enzymes and low-molecular-weight antioxi- described before [3], were used in PCR reaction to clone the cDNAs of dants [4]. Some members among these AOPs have extremely strong AOPs and AMPs. PCR procedure was set as previously described [3]. antioxidant activities and high free radical scavenging rate [3–5]. In addition, these peptides also have low cytotoxicity, and are promising Protein digestion to become novel antioxidants [3,6,7]. Lyophilized secretions were prepared in four different ways as The genus Nanorana belongs to Dicroglossidae, and currently described previously, and ready for peptidomic analysis [14]. includes 28 species [8]. To date, little is known about the AMPs and Secretions were resolubilized in Guanidine–HCl (pH = 8.0) and AOPs in Dicroglossidae family [6,7,9–12]. Plateau frog Nanorana pleskei equally divided. Then, samples were incubated with 20 mM dithio- is one of the species in the genus Nanorana, which distributes in swamps threitol at 37°C for 30 min to break the disulfide bonds to reduce cyst- on plateau with 3300–4500 m elevation [13]. In such bad living environ- eine side-chain sulfhydryl groups. Then the samples were incubated ment, N. pleskei still survive, which attracts a lot of concerns from with 50 mM iodoacetamide at 25°C in dark with constant shaking for researchers. In addition, Amolops daiyunensis (Daiyun Torrent Frog), Downloaded from https://academic.oup.com/abbs/article/49/6/550/3573451 by guest on 23 September 2021 45 min in order to stabilize sulfhydryl groups by alkylation. Samples Pelophylax hubeiensis (Hubei Gold-striped Pond Frog), and Hylarana without the necessity for tryptic digestion were desalinated with SPE maosuoensis (Maoson Frog) all belong to the family Ranidae [13]. (C18; DiKMA, Beijing, China) before liquid chromatography–mass To our knowledge, there has been no report on the functional pep- spectrometry (LC–MS) analysis. Equal amounts of materials with and tides secreted from the skin of the four East Asian species. Here, we without reductive alkylation were subject to tryptic digestion. Sample report the identification and functional analyses of AMPs and AOPs precipitation was processed in the acetic acid:acetone:ethanol mixture from these four frog species, including seven new peptide families. The (0.1:50:50; v/v) at −20°C for 6 h, followed by rinsing with 70% etha- peptides, nigroain-B-MS1 and nigroain-C-MS1, are found to have nol (1 ml) and centrifugation (12,000 g,4°C). The precipitate was potentials to be developed into new antioxidant drugs due to their evenly suspended in 0.1 M NH HCO buffer (pH = 8.0) and then split antioxidant activity with no hemolytic activity against erythrocytes. 4 3 into three equal portions and mixed with trypsin (substrate to enzyme, 100:1; w/w). All portions were digested at 37°C while three reactions Materials and Methods Table 1. MICs (μM) against microorganisms of peptides from the Sample collection skin of A. daiyunensis, P. hubeiensis, H. maosuoensis, and N. Amolops daiyunensis (20 males and 9 females) were collected from pleskei Dehua, Fujian Province, China. P. hubeiensis (21 males and 18 females) were obtained from Wuhan, Hubei Province, China. H. mao- Microorganism Gram-positive Gram-negative Fungi suoensis (three males and two females) were captured from Shangsi, bacteria bacteria Guangxi Zhuang Autonomous Region, China. N. pleskei (11 males ABCDEFGH and 23 females) were caught in Zoigê plateau in Sichuan Province, China, which is in the east part of Qinghai-Tibet Plateau of China. Temporin-DY1 150 NA 150 NA NA NA NA NA The frogs were fed for several days in the lab before being set free alive Brevinin-1DY1 37.5 37.5 37.5 NA NA 37.5 NA NA Palustrin-2DY1 NA NA 2.3 NA NA 150 NA NA at the location of collection. Skin secretions were acquired by electric Daiyunin-1 NA NA NA NA NA NA NA NA stimulations as previously described [3]. All protocols were permitted Daiyunin-2 NA NA NA NA NA NA NA NA by the Animal Ethics Committee of Hebei Normal University. Daiyunin-3 NA NA NA NA NA NA NA NA Temporin-HB1 18.8 18.8 2.3 NA NA 150 NA NA Peptides purification and sequencing Temporin-HB2 150 18.8 75 NA NA NA NA NA Brevinin-1HB1 4.7 9.4 1.2 75 75 37.5 NA 37.5 Phosphate buffer (0.1 M) with a final concentration of 5 mM EDTA Pelophylaxin-HB1 NA NA 9.4 NA NA 75 NA 150 was adjusted to pH 6.0. Lyophilized skin secretions of A. daiyunen- Ranacyclin-HB1 18.8 NA 150 NA NA NA NA NA sis, P. hubeiensis, H. maosuoensis,orN. pleskei were resolubilized Palustrin-2HB1 37.5 NA 9.4 NA 150 75 NA NA fi in the buffer. The puri cation of AOPs and AMPs was done as pre- Temporin-MS1 150 18.8 37.5 150 150 37.5 NA 150 viously described [3]. After being purified by gel filtration (Sephadex Temporin-MS4 9.4 18.8 4.7 NA NA 150 NA NA G-50) and reversed phase-high performance liquid chromatography Maosonensis-1MS1 NA NA NA NA NA NA NA NA (RP-HPLC), the elution fractions were collected and subject to anti- Odorranaopin-MS1 NA NA NA NA NA NA NA NA oxidative or antimicrobial activity assays. Fractions representing Odorranaopin-MS2 NA NA NA NA NA NA NA NA either activity were collected for sequencing with Model 491 sequen- Brevinin-2MS1 150 NA 9.4 150 75 18.8 150 75 cer (Thermo Fisher Scientific, Waltham, USA) using Edman degrad- Nigroain-B-MS1 4.7 NA 18.8 NA NA NA NA NA Nigroain-C-MS1 NA NA 150 NA NA NA NA NA ation method. Mass measurements were carried out on an LTQ-XL Nigroain-D-SN1 NA NA NA NA NA NA NA NA mass spectrometer (Thermo Fisher Scientific). Nigroain-K-SN1 75 NA 4.7 NA NA 75 NA 150 Pleskein-1 NA NA 37.5 NA NA NA NA NA Polymerase chain reaction Pleskein-2 NA NA 150 NA NA NA NA NA mRNA was isolated from a single frog skin using mRNA separation kit Pleskein-3 NA NA NA NA NA NA NA NA (Thermo Fisher Scientific) according to the manufacturer’s manual.
Recommended publications
  • A New Species of Amolops from Thailand (Amphibia, Anura, Ranidae)
    ZOOLOGICAL SCIENCE 23: 727–732 (2006) 2006 Zoological Society of Japan A New Species of Amolops from Thailand (Amphibia, Anura, Ranidae) Masafumi Matsui1* and Jarujin Nabhitabhata2 1Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan 2National Science Museum, Technopolis, Klong 5, Klongluang District, Pathun thani 12120, Thailand We describe a new species of torrent-dwelling ranid frog of the genus Amolops from western to peninsular Thailand. Amolops panhai, new species, differs from its congeners by the combination of: small body, males 31–34 mm, females 48–58 mm in snout-vent length; head narrower than long; tympanum distinct; vomerine teeth in short, oblique patches; first finger subequal to second; disc of first finger smaller than that of second, with circummarginal groove; no wide fringe of skin on third finger; toes fully webbed; outer metatarsal tubercle present; supratympanic fold present; dor- solateral fold indistinct; axillary gland present; horny spines on back, side of head and body, and chest absent; large tubercles on side of anus absent; glandular fold on ventral surface of tarsus absent; nuptial pad and paired gular pouches present in male; white band along the upper jaw extending to shoulder absent; larval dental formula 7(4-7)/3(1). This new species is the second anu- ran discovered which has a disjunct distribution around the Isthmus of Kra. Key words: Amolops, new species, Southeast Asia, tadpole, taxonomy, zoogeography Ranong), which we describe below as a new species. INTRODUCTION Oriental ranid frogs related to Amolops Cope, 1865 MATERIALS AND METHODS (sensu lato) are characterized by their peculiar larvae, which A field survey was conducted in western and peninsular Thai- inhabit mountain torrents using an abdominal, suctorial disk land between December 1995 and January 1997.
    [Show full text]
  • Bioacoustics of Hylarana Celebensis
    Bioacoustics of Hylarana celebensis (Peters, 1872) (Anura: Ranidae) From Sulawesi [Bioakustik Kodok Hylarana celebensis (Peters, 1872) (Anura: Ranidae) Asal Sulawesi] Hellen Kurniati Zoology Division of Research Center for Biology, Indonesian Institute of Sciences (LIPI), Widyasatwaloka Building-LIPI, Jalan Raya Cibinong Km 46, Cibinong 16911, West Jawa. E-mail: [email protected] Memasukkan: Januari 2015, Diterima: Juni 2015 ABSTRACT Hylarana celebensis (Peters, 1872) is an endemic frog to Sulawesi, the species being a member of family Ranidae. The presence of the frog in its habitat is easily detected from its advertisement call; males usually call in a chorus, they call to each other in a large group. Bioacoustic of calls of a typical individual male of H. celebensis have not been described in detail, although it is very easy to find this species in freshwater swamps, permanent ponds, or slow-flowing waters in the lowland areas. The purpose of the bioacoustic analysis on H. celebensis’s calls that were recorded at Bahodopi area is to build a reference collection to be compared with H. celebensis’s bioacoustics from other regions in Sulawesi. Because of the wide distribution of this frog in Sulawesi; genetic structure of H. celebensis population may also follow the genetic structure of Ingerophrynus celebensispopulation. Calls of H. celebensis have two types of calls, i.e. pure tone and pulse; however, pure tones have three variation, namely pure tone type 1, pure tone type 2 and pure tone type 3; however pulsed call has only one type. Keywords: Anura, Hylarana celebensis, bioacoustics, Sulawesi. ABSTRAK Hylarana celebensis ( Peters, 1872) adalah kodok endemik Sulawesi, yang mana jenis ini adalah anggota dari suku Ranidae.
    [Show full text]
  • Zootaxa,Paraphyly of Chinese Amolops (Anura, Ranidae) and Phylogenetic Position of The
    Zootaxa 1531: 49–55 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Paraphyly of Chinese Amolops (Anura, Ranidae) and phylogenetic position of the rare Chinese frog, Amolops tormotus HONG-XIA CAI1, 2, JING CHE2, JUN-FENG PANG2, ER-MI ZHAO1,4& YA-PING ZHANG2, 3,4 1Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China, 610064 2Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China, 650223 3Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China, 650091 4Corresponding authors. E-mail: [email protected]; [email protected] Abstract In order to evaluate the five species groups of Chinese Amolops based on morphological characteristics, and to clarify the phylogenetic position of the concave-eared torrent frog Amolops tormotus, we investigated the phylogeny of Amolops by maximum parsimony, Bayesian Inference, and maximum likelihood methods using two mitochondrial DNA fragments (12S rRNA, 16S rRNA). Our results supported a sister group relationship of Amolops ricketti and Amolops hainanensis. However, the grouping of Amolops mantzorum and Amolops monticola needs to be resolved with more data. Amolops tormotus was nested in genus Odorrana. Thus, recognition of the A. tormotus group is unwarranted and A. tormotus should be referred to genus Odorrana as O. tormota. This species is the sister group of O. nasica plus O. versabilis. The new classification implies that the genus Wurana is to be considered as junior subjective synonym of Odorrana.
    [Show full text]
  • Development of Edna Assays for Three Frogs
    Development of eDNA assays for monitoring three endangered frog species (Litoria dayi, L. lorica and L. nannotis) in Australia’s wet tropics Report by Richard C. Edmunds, Cecilia Villacorta-Rath, Roger Huerlimann and Damien Burrows © James Cook University, 2019 Development of eDNA assays for monitoring three endangered frog species (Litoria dayi, L. lorica and L. nannotis) in Australia's wet tropics is licensed by James Cook University for use under a Creative Commons Attribution 4.0 Australia licence. For licence conditions see creativecommons.org/licenses/by/4.0 This report should be cited as: Edmunds, R.C., Villacorta-Rath, C., Huerlimann, R., and Burrows, D. 2019. Development of eDNA assays for monitoring three endangered frog species (Litoria dayi, L. lorica and L. nannotis) in Australia's wet tropics. Report 19/24, Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University Press, Townsville. Cover photographs Front cover: Litoria dayi (photo Trent Townsend/Shutterstock.com). Back cover: Litoria lorica (left) and L. nannotis (right) in situ (photo: Conrad Hoskin). This report is available for download from the Northern Australia Environmental Resources (NAER) Hub website at nespnorthern.edu.au The Hub is supported through funding from the Australian Government’s National Environmental Science Program (NESP). The NESP NAER Hub is hosted by Charles Darwin University. ISBN 978-1-925800-33-3 June, 2019 Printed by Uniprint Contents Acronyms....................................................................................................................................iv
    [Show full text]
  • The Internet-Based Southeast Asia Amphibian Pet Trade
    Rebecca E. Choquette et al. THE INTERNET-BASED SOUTHEAST ASIA AMPHIBIAN PET TRADE by Rebecca E. Choquette Ariadne Angulo Phillip J. Bishop Chi T. B. Phan Jodi J. L. Rowley © BROOBAS/CC BY-SA 4.0 © BROOBAS/CC BY-SA Polypedates otilophus Amphibians, as a class, are the most threatened vertebrates on the planet, with 41% of species threatened with extinction. Southeast Asian amphibian species in particular have been impacted by a high rate of habitat loss, and overharvesting for consumption, traditional medicine, and the pet trade has placed further pressure on populations. Collection for the pet trade is a online availability and demand for the pet trade of Southeast Asian amphibian species. We found postings for 59 Southeast Asian posts associated with the United Kingdom, the Czech Republic, the United States, Russia, and Germany. We highlight several species 68 TRAFFIC Bulletin Rebecca E. Choquette et al. The internet-based Southeast Asian amphibian pet trade Aet METHODS alet al et alet al et al study. et al et al et al researchers. Amphibian Species of the World et alet al et al et al et al et alet alet al. et al Yuan et al et al et alet al TRAFFIC Bulletin
    [Show full text]
  • Frog Species Previously Assigned to the Genus Hylarana (Amphibia: Anura)
    Turkish Journal of Zoology Turk J Zool (2017) 41: 876-891 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1701-36 Microhabitat partitioning of closely related Sarawak (Malaysian Borneo) frog species previously assigned to the genus Hylarana (Amphibia: Anura) 1, 2 2 2 Ramlah ZAINUDIN *, Badrul Munir MD ZAIN , Norhayati AHMAD , Shukor M. NOR 1 Molecular Ecology Laboratory, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia 2 School of Environment and Natural Resources Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia Received: 27.01.2017 Accepted/Published Online: 17.04.2017 Final Version: 28.09.2017 Abstract: Microhabitats play an important role as resources that are partitioned between phylogenetically related or ecologically similar species (i.e., a guild). This hypothesis was tested by first elucidating phylogenetically closed Sarawak frog species via DNA sequencing of the 16S rRNA mitochondrial DNA gene, and later determining their microhabitat guild and partitioning via nonmetric dimensional scale. Mitochondrial 16S gene revealed 5 monophyletic groups consisting of Hylarana erythraea + Amnirana nicobariensis, Chalcorana raniceps, Abavorana luctuosa, Pulchrana signata + P. picturata, and P. baramica + P. glandulosa + P. laterimaculata. On the other hand, microhabitat utilization grouped the frogs into 5 ecological guilds consisting of semiarboreal species at the forest edge (C. raniceps), ground dwellers in an unforested region (H. erythraea), ground dwellers (rock) at the forest edge (P. picturata), ground dwellers on the forest floor and forest edge species (P. signata, P. glandulosa, A. luctuosa, O. hosii), and semiarboreal forest (riverine) species (P. baramica). Thus, the microhabitats used were not influenced by the proposed phylogenetic relationships.
    [Show full text]
  • Impact of Habitat Alteration on Amphibian Diversity and Species
    www.nature.com/scientificreports OPEN Impact of habitat alteration on amphibian diversity and species composition in a lowland tropical rainforest in Northeastern Leyte, Philippines Syrus Cesar Pacle Decena*, Carlo Aguirre Avorque, Ian Christopher Pacle Decena, Pol Delbert Asis & Bryan Pacle The impact of anthropogenic habitat alteration on amphibians was investigated, employing an investigative focus on leaf-litter and semi-aquatic species across diferent habitat alteration types. The habitat alteration types which include primary forest, selectively logged primary forest, secondary forest, abandoned farm areas and pasture (this represents a gradient of habitat alteration ranging from least altered to most altered, respectively) also encompass two habitat types: stream and terrestrial. Species assemblage was compared between habitat alteration types and habitat types, where a total 360 leaf-litter and semi-aquatic amphibians were observed (15 species, 6 families). It was found that amphibian abundance was signifcantly higher in both forest and stream habitat, and species richness did not difer with respect to habitat alteration type. It was determined, however, that species richness was highly dependent on habitat type (signifcantly higher in stream habitat). Meanwhile, diversity (Shannon–Wiener) was signifcantly higher in both forest and stream habitat, and species composition difered markedly between habitat alteration types for stream strip plots. Forest habitat exhibited domination by forest specialist species, while altered habitat
    [Show full text]
  • Download Download
    BIODIVERSITAS ISSN: 1412-033X Volume 20, Number 9, September 2019 E-ISSN: 2085-4722 Pages: 2718-2732 DOI: 10.13057/biodiv/d200937 Species diversity and prey items of amphibians in Yoddom Wildlife Sanctuary, northeastern Thailand PRAPAIPORN THONGPROH1,♥, PRATEEP DUENGKAE2,♥♥, PRAMOTE RATREE3,♥♥♥, EKACHAI PHETCHARAT4,♥♥♥♥, WASSANA KINGWONGSA5,♥♥♥♥♥, WEEYAWAT JAITRONG6,♥♥♥♥♥♥, YODCHAIY CHUAYNKERN1,♥♥♥♥♥♥♥, CHANTIP CHUAYNKERN1,♥♥♥♥♥♥♥♥ 1Department of Biology, Faculty of Science, Khon Kaen University, Mueang Khon Kaen, Khon Kaen, 40002, Thailand. Tel.: +6643-202531, email: [email protected]; email: [email protected]; email: [email protected] 2Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand. email: [email protected] 3Protected Areas Regional Office 9 Ubon Ratchathani, Mueang Ubon Ratchathani, Ubon Ratchathani, 34000, Thailand. email: [email protected] 4Royal Initiative Project for Developing Security in the Area of Dong Na Tam Forest, Sri Mueang Mai, Ubon Ratchathani, 34250, Thailand. email: [email protected] 5Center of Study Natural and Wildlife, Nam Yuen, Ubon Ratchathani, 34260, Thailand. email: [email protected] 6Thailand Natural History Museum, National Science Museum, Technopolis, Khlong 5, Khlong Luang, Pathum Thani, 12120, Thailand, email: [email protected] Manuscript received: 25 July 2019. Revision accepted: 28 August 2019. Abstract. Thongproh P, Duengkae P, Ratree P, Phetcharat E, Kingwongsa W, Jaitrong W, Chuaynkern Y, Chuaynkern C. 2019. Species diversity and prey items of amphibians in Yoddom Wildlife Sanctuary, northeastern Thailand. Biodiversitas 20: 2718-2732. Amphibian occurrence within Yoddom Wildlife Sanctuary, which is located along the border region among Thailand, Cambodia, and Laos, is poorly understood. To determine amphibian diversity within the sanctuary, we conducted daytime and nocturnal surveys from 2014 to 2017 within six management units.
    [Show full text]
  • The First Record of Amolops Himalayanus (Anura: Ranidae) from Bhutan
    RESEARCH ARTICLE The Herpetological Bulletin 136, 2016: 13-18 The first record ofAmolops himalayanus (Anura: Ranidae) from Bhutan. TSHERING NIDUP1, DAWA GYELTSHEN1, PENJOR1, SONAM DORJI1 & MALCOLM J. PEARCH2* 1School of Life Sciences, Sherubtse College, Royal University of Bhutan, Kanglung, Trashigang District, Bhutan. 2Harrison Institute, Centre for Systematics and Biodiversity Research, Bowerwood House, 15 St. Botolph’s Road, Sevenoaks, Kent, TN13 3AQ, U.K. *Corresponding author Email: [email protected] ABSTRACT - During a series of surveys carried out in areas of broadleaf forest in the eastern Himalayas in early spring, Amolops himalayanus was identified for the first time in Bhutan. Information is provided on the ecology, habitat, reproduction, and geographical distribution of the species together with notes on the water chemistry of the collection site. A brief synopsis is given of the morphological differences between A. himalayanus and A. formosus, with which latter species A. himalayanus is often confused. A. himalayanus has been reported from seven localities in northern India and Nepal but, of these, only the original description of the taxon from Darjeeling was based on incontrovertible data. INTRODUCTION The 49 species of Cascade frogs belonging to the genus Amolops occur from Nepal and northern India to western and southern China and south to Malaysia (Frost, 2015). In Bhutan, A. mantzorum has been recorded at Choetenkora in Trashiyangtse District (Wangyal, 2013), A. marmoratus at Sershong in Sarpang District (Das & Palden, 2000), and A. cf. monticola at Ririchu in Wangdue Phodrang District (Wangyal & Gurung, 2012). Wangyal (2014) predicted the occurrence of A. himalayanus (and A. formosus) in Bhutan on the basis that the country was suitable for these two species both geographically and climatically.
    [Show full text]
  • Larval Description and Developmental Staging of Amolops Tadpoles from Nepal, Including Ultrastructure of the Oral Disc and Sucker
    SALAMANDRA 56(4): 317–328 Larval description and developmental staging of Amolops tadpoles from NepalSALAMANDRA 30 October 2020 ISSN 0036–3375 German Journal of Herpetology Larval description and developmental staging of Amolops tadpoles from Nepal, including ultrastructure of the oral disc and sucker Mohsen Nokhbatolfoghahai1, Kevin W. Conway2, Liam Atherton1, Prem B. Budha3, Michael J. Jowers4 & J. Roger Downie1 1) School of Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow, UK 2) Department of Ecology and Conservation Biology, Biodiversity Research and Teaching Collections, Texas A & M University, College Station, Texas 77843, USA 3) Central Department of Zoology, Tribhuvan University, Kirtipur, Kathmandu, Nepal 4) CIBIO/InBIO, Research Centre in Biodiversity and Genetic Resources, Porto University, Campo de Vairão, Vairão, Portugal Corresponding author: Michael J. Jowers, e-mail: [email protected] Manuscript received: 23 December 2019 Accepted: 21 July 2020 by Jörn Köhler Abstract. Tadpoles of the Asiatic torrent frog genus Amolops possess large abdominal suckers and a complex oral appa- ratus which allow them to adhere tightly to and also to move over wet rock surfaces, a morphology termed gastromyzo- phorous. Accounts of larval development, and overall sucker morphology and microstructure are patchy in this genus. Here, from a large sample (n = 90) of Amolops tadpoles collected from two sites in Nepal, we give a detailed description of the tadpoles’ external morphology, including pigment pattern variation, and their development from soon after hatch- ing to the approach of metamorphosis, including new features of their oral apparatus (tooth rows and labia). Using SEM, we describe ultrastructural details of the sucker’s surface, especially microvillated cells of the friction areas.
    [Show full text]
  • Data Types and the Phylogeny of Neoaves
    Article Data Types and the Phylogeny of Neoaves Edward L. Braun * and Rebecca T. Kimball * Department of Biology, University of Florida, Gainesville, FL 32611, USA * Correspondence: ebraun68@ufl.edu (E.L.B.); rkimball@ufl.edu (R.T.K.) Simple Summary: Some of the earliest studies using molecular data to resolve evolutionary history separated birds into three main groups: Paleognathae (ostriches and allies), Galloanseres (ducks and chickens), and Neoaves (the remaining ~95% of avian species). The early evolution of Neoaves, however, has remained challenging to understand, even as data from whole genomes have become available. We have recently proposed that some of the conflicts among recent studies may be due to the type of genomic data that is analyzed (regions that code for proteins versus regions that do not). However, a rigorous examination of this hypothesis using coding and non-coding data from the same genomic regions sequenced from a relatively large number of species has not yet been conducted. Here we perform such an analysis and show that data type does influence the methods used to infer evolutionary relationships from molecular sequences. We also show that conducting analyses using models of sequence evolution that were chosen to minimize reconstruction errors result in coding and non-coding trees that are much more similar, and we add to the evidence that non-coding data provide better information regarding neoavian relationships. While a few relationships remain problematic, we are approaching a good understanding of the evolutionary history for major avian groups. Abstract: The phylogeny of Neoaves, the largest clade of extant birds, has remained unclear despite intense study.
    [Show full text]
  • Final Frontier: Newly Discovered Species of New Guinea
    REPORT 2011 Conservation Climate Change Sustainability Final Frontier: Newly discovered species of New Guinea (1998 - 2008) WWF Western Melanesia Programme Office Author: Christian Thompson (the green room) www.greenroomenvironmental.com, with contributions from Neil Stronach, Eric Verheij, Ted Mamu (WWF Western Melanesia), Susanne Schmitt and Mark Wright (WWF-UK), Design: Torva Thompson (the green room) Front cover photo: Varanus macraei © Lutz Obelgonner. This page: The low water in a river exposes the dry basin, at the end of the dry season in East Sepik province, Papua New Guinea. © Text 2011 WWF WWF is one of the world’s largest and most experienced independent conservation organisations, with over 5 million supporters and a global Network active in more than 100 countries. WWF’s mission is to stop the degradation of the planet’s natural environment and to build a future in which humans live in harmony with nature, by conserving the world’s biological diversity, ensuring that the use of renewable natural resources is sustainable, and promoting the reduction of pollution and wasteful consumption. © Brent Stirton / Getty images / WWF-UK © Brent Stirton / Getty Images / WWF-UK Closed-canopy rainforest in New Guinea. New Guinea is home to one of the world’s last unspoilt rainforests. This report FOREWORD: shows, it’s a place where remarkable new species are still being discovered today. As well as wildlife, New Guinea’s forests support the livelihoods of several hundred A VITAL YEAR indigenous cultures, and are vital to the country’s development. But they’re under FOR FORESTS threat. This year has been designated the International Year of Forests, and WWF is redoubling its efforts to protect forests for generations to come – in New Guinea, and all over the world.
    [Show full text]