TAXON 66 (3) • June 2017: 539–553 Zhou & al. • Phylogeny of paleotropical woody ()

SYSTEMATICS AND PHYLOGENY

Towards a complete generic-level plastid phylogeny of the paleotropical woody bamboos (Poaceae: Bambusoideae)

Meng-Yuan Zhou,1,4 Yu-Xiao Zhang,1,2 Thomas Haevermans3 & De-Zhu Li1,2,4 1 Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China 3 Muséum National d’Histoire Naturelle, Département Systématique et Evolution, Unité Mixte de Recherche 7205 CNRS/MNHN Origine Structure et Evolution de la Biodiversité, Case postale 39, 57 rue Cuvier, 75231 Paris Cedex 05, France 4 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China Author for correspondence: De-Zhu Li, [email protected] ORCID DZL, http://orcid.org/0000-0002-4990-724X

DOI https://doi.org/10.12705/663.2

Abstract Paleotropical woody bamboos (PWB) are phylogenetically and taxonomically intractable. Because previous stud- ies included deficient samples or lacked informative characters for tree construction, phylogenetic relationships within the PWB remain incompletely resolved. This study presents the most extensively sampled phylogeny of the PWB with 18 plastid regions and a sample of 144 (35%) ingroup species representing 40 (85%) genera and 8 outgroup species. Results confirmed as the earliest diverging lineage from the rest of the group, and Hickeliinae (including Nastus s.str.) and Racemobambosinae are separately placed within the PWB. Bambusinae is phylogenetically heterogeneous and consists of the Dinochloa-Greslania-Mullerochloa-Neololeba-Sphaeroambos (DGMNS) assemblage, Temburongia simplex, and the core Bambusinae. The core Bambusinae may be redefined to include a basal grade, which contains Kinabaluchloa, Holttumochloa, Bonia, Neomicrocalamus, Temochloa, Soejatmia and an unidentified taxon, and the Bambusa-Dendrocalamus-Gigantochloa (BDG) complex. The BDG complex is extremely diverse in morphology and is subdivided into six subclades. Within the Melocanninae, , and are closely related to . Phylogenetic relationships are mostly supported by morphological and geographical evidence. In addition, novel interpretations are provided in the re- delimitation of some taxa.

Keywords molecular phylogeny; Paleotropics; phylogenetic relationship; plastid regions; woody bamboos

Supplementary Material The Electronic Supplement (Tables S1 & S2; Figs. S1–S5) is available in the Supplementary Data section of the online version of this article at http://ingentaconnect.com/content/iapt/tax; data matrices are available from TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S19282)

INTRODUCTION been identified. Furthermore, the PWB are a group of bamboos that remain taxonomically difficult because of their morpho- Woody bamboos are of high economic, cultural and eco- logical variation (Li & al., 2006). Consequently, their taxonomy logical value, and include the most genera and species in the has always been controversial (Electr. Suppl.: Table S1A, B). Bambusoideae (Poaceae). They are widely distributed on all The most updated tribal and subtribal classification of major landmasses except Antarctica and Europe (Li, 1998; bamboos recognizes four subtribes in the PWB: Bambusinae Judziewicz & al., 1999; Ohrnberger, 1999; BPG [ J.Presl, Melocanninae Benth., Racemobambosinae Stapleton Phylogeny Group], 2012). Much remains to be explored regard- and Hickeliinae A.Camus (BPG, 2012; Soreng & al., 2015). ing their taxonomy and phylogeny. The paleotropical woody Phylogenetic analyses based on both plastid and nuclear DNA bamboos (PWB) consist of 47 genera and ca. 407 species with a sequence data indicate that Melocanninae is monophyletic, and distribution in tropical and subtropical areas of Asia, Africa and plastid data suggest its early divergence from the remaining Oceania (Soderstrom & Ellis, 1987; Dransfield & Widjaja, 1995; PWB (Yang & al., 2007, 2008; Sungkaew & al., 2009; Goh & Ohrnberger, 1999; BPG, 2012; Soreng & al., 2015). Although al., 2013). The long, hollow, stiff and steeple-like appendage the monophyly of PWB received strong statistical support in on the apex of the ovary is a good criterion for Melocanninae analyses of plastid data, a morphological synapomorphy has not species to be distinguished from other subtribes, whereas the

Received: 27 Jun 2016 | returned for (first) revision: 8 Nov 2016 | (last) revision received: 23 Feb 2017 | accepted: 23 Feb 2017 || publication date(s): online fast track, n/a; in print and online issues, 23 Jun 2017 || © International Association for Plant Taxonomy (IAPT) 2017

Version of Record 539 Zhou & al. • Phylogeny of paleotropical woody bamboos (Poaceae) TAXON 66 (3) • June 2017: 539–553

top of the ovary in other species is usually broadly conical, solid regions used can influence the topology and support value of and hairy (Holttum, 1956; Yang & al., 2008). In contrast, rela- trees. Therefore, a thorough study with extensive sampling tionships among the other three subtribes remain unresolved covering all four subtribes of the PWB is needed. Plastid se- (Kelchner & BPG, 2013). quences have long been used in phylogenetic reconstruction of Several studies have been conducted on the phylogeny of , including bamboos. As the plastomes are uniparentally certain subtribes of PWB. In subtribe Melocanninae, four gen- inherited, much effort has been made to explore the usage of era, Trin., Munro, Schizostachyum nuclear sequences, including genomic data. Still, in the woody Nees and Munro, correspond to clades (Yang bamboos, usage of nuclear or ribosomal nuclear sequences have & al., 2007, 2008). Morphological characters also support the been limited to GBSSI, LEAFY and ITS, and topologies are delimitation of the four subclades. In contrast, Hickeliinae and generally incongruent between plastid and nuclear phylogenies Racemobambosinae are poorly studied possibly because of the (Guo & al., 2002; Guo & Li, 2004; Yang & al., 2008; Yang & narrow geographical distribution of Hickeliinae and because al., 2010; Goh & al., 2013; Yang & al., 2013). Because of the Racemobambosinae contains only one genus. Recently, sub- allohexaploidy of the PWB which causes further difficulties tribal status of Racemobambosinae has been supported by a in identifying single-copy orthologous genes (Triplett & al., phylogenetic study in which two species of Racemobambos 2014), reconstruction of plastid phylogenetic framework is an Holttum were sampled (Goh & al., 2013). In contrast, the initial and indispensable step to our understanding of the com- monophyly of subtribe Hickeliinae has not been supported plex evolutionary history of the woody bamboos, including by six plastid regions (Chokthaweepanich, 2014). Apart from hybridization and allopolyploidization. Here, we (1) provide Melocanninae, Bambusinae is the most studied subtribe of the an overall understanding of phylogenetic relationships among PWB. Goh & al. (2013) recovered four distinct lineages: (1) the the PWB by including a large sample of taxa of the PWB to Bambusa-Dendrocalamus-Gigantochloa (BDG) complex, (2) generate a plastid phylogeny; (2) investigate phylogenetic rela- the Holttumochloa-Kinabaluchloa clade, (3) the Dinochloa- tionships among and within major clades with an emphasis on Mullerochloa-Neololeba-Sphaerobambos (DMNS) clade and the Melocanninae and the Bambusinae clades; and (3) investi- (4) Temburongia simplex S.Dransf. & K.M.Wong. The BDG gate the phylogenetic positions of insufficiently studied genera complex appears to be the most phylogenetically complex such as Davidsea Soderstr. & R.P.Ellis, Greslania Balansa, group of the PWB, probably because of incomplete lineage Nastus Juss., Neohouzeaua A.Camus, Ochlandra Thwaites, sorting and introgressive hybridization (Goh & al., 2013). The Oreobambos K.Schum. and Temochloa S.Dransf. three genera Bambusa Schreb., Dendrocalamus Nees and Gigantochloa Kurz ex Munro were not recovered as mono- phyletic. Furthermore, none of the six subgenera of Bambusa MATERIALS AND METHODS and Dendrocalamus have been supported as monophyletic by molecular phylogenetic studies (Yang & al., 2008; Goh & Taxon sampling. — Subtribe and genus nomenclature fol- al., 2010; Yang & al., 2010). Neomicrocalamus Keng f., Bonia lows BPG (2012), whereas species nomenclature for the Chinese Balansa, Melocalamus Benth. and Thyrsostachys Gamble were taxa follows that in Flora of China (FoC; Li & al., 2006). We each recovered as monophyletic (Yang & al., 2008; Yang & al., include three additional Chinese species not recorded in FoC 2010). Results from Yang & al. (2008) recovered a sister-clade (e.g., McClure, 1940; Wen, 1991). relationship between Neomicrocalamus and Bonia. Taxon sampling encompasses 144 (35%) species of 40 Because the PWB are widely distributed geographically, (85%) genera of the PWB covering their geographic distri- and because most genera have a relatively concentrated dis- butions and morphological diversity (Table 1). The missing tribution in certain areas, phylogenetic studies have been genera are Dendrochloa C.E.Parkinson, Fimbribambusa­ restricted to local geographic areas, e.g., bamboos of the Widjaja, Hitchcockella A.Camus, Parabambusa Widjaja, Pinga Southeast Asian mainland and those of the Southeast Asian Widjaja, Pseudobambusa T.Q.Nguyen, Stapletonia P.Singh & islands (Yang & al., 2007; Goh & al., 2010; Yang & al., 2010). al. and Teinostachyum Munro for which no material was ac- As also revealed by previous studies, sampling size and gene cessible. Four genera, i.e., Chusquea Kunth, Guadua Kunth, Otatea (McClure & E.W.Sm.) C.E.Calderón & Soderstr. and Rhipidocladum McClure, representing three subtribes of the Table 1. Genus and species numbers of the PWB sampled in this study. Neotropical Woody Bamboos (NWB), are used as the outgroup since the NWB have been revealed to be sister to the PWB Genera Species Taxa (sampled /total) (sampled /total) (Sunkaew & al., 2009; BPG, 2012; Kelchner & BPG, 2013). DNA extraction, PCR and sequencing. — Total genomic Paleotropical Woody Bamboos 40 /47 144 /407 DNA was extracted from silica gel-dried leaves or herbarium Subtribe Bambusinae 25 / 28 106 / 264 specimens with a modified CTAB procedure (Doyle & Doyle, Subtribe Hickeliinae 7/ 8 13 / 33 1987) or a DNAsecure Plant Kit (Tiangen Biotech, Beijing, China). Eighteen plastid loci (rpl32-trnL, trnT-trnL, trnL-trnF, Subtribe Melocanninae 7/10 21/ 88 psbA-trnH, rpl16 intron, rps16-trnQ, trnC-rpoB, trnD-trnT, Subtribe Racemobambosinae 1/1 4 /22 rpl16 intron, ndhF [3′ end], matK, atpB-rbcL, psbM-petN, Subtribe nomenclature follows that of BPG (2012). trnS-trnfM, ycf4-cemA, trnG-trnT, rps15-ndhF, rbcL-psaI )

540 Version of Record TAXON 66 (3) • June 2017: 539–553 Zhou & al. • Phylogeny of paleotropical woody bamboos (Poaceae)

were sequenced to investigate maternal relationships among between both simultaneous runs reached a value below 0.01. A the PWB (Electr. Suppl.: Table S2). Products of sequencing majority-rule consensus tree was constructed after removing reactions were analyzed on an ABI 3730xl automated DNA se- the burn-in samples (the first 25% of sampled trees). Posterior quencer. Sequences were edited with Sequencher v.4.14 (Gene probability (PP) values were used to estimate branch support. Codes Corp., Ann Arbor, Michigan, U.S.A.) and Geneious Removal tests and alternative hypotheses tests. — To sur- v.4.8.2 (Biomatters, Auckland, New Zealand). All sequences vey potential long-branch attraction (LBA) and the influence of generated in this study have been deposited in GenBank missing data on topology, taxon removal tests were conducted (Appendix 1). by ML analyses. The following removals were tested individu- Phylogenetic analyses. — Sequences of each DNA re- ally: (1) the removal of Racemobambos; (2) the removal of the gion were aligned individually by MAFFT v.7.184 (Katoh & outgroup; (3) the removal of Bambusinae; (4) the removal of Standley, 2013), and adjusted manually with Geneious where Cathariostachys S.Dransf. and Greslania; (5) the removal of necessary. We first used the maximum parsimony (MP) method taxa with more than 50% missing data; and (6) the removal of to perform non-parametric bootstrap analyses for individual taxa with more than nine regions missing except for Soejatmia plastid regions to investigate phylogenetic compatibility of re- ridleyi (Gamble) K.M.Wong. gions. The MP analyses were conducted using PAUP v.4.0b10 Eleven ML constraint analyses were performed (Table 2). (Sinauer, Sunderland, Massachusetts, U.S.A.). Heuristic Assessments of competing hypotheses of phylogeny were con- searches for MP trees were carried out with 1000 replicates ducted with the approximately unbiased (AU) test as imple- of random sequence addition and 100 trees held at each step mented in CONSEL v.0.1i (Shimodaira & Hasegawa, 2001). during stepwise addition, and tree-bisection-reconnection The site-wise log likelihoods for trees were calculated in (TBR) branch swapping. Branch support was assessed by 500 PAUP. Resampling in AU tests was estimated by log-likelihood bootstrap replicates, using 100 random sequence addition repli- (RELL) optimization with 10,000 bootstrap replicates. cates with 10 trees held at each step, and TBR swapping. There Network analysis. — We used a network analysis to inves- were no significant conflicts (branch bootstrap support ≥ 70%) tigate whether a conflicting phylogenetic signal might explain among gene trees (Electr. Suppl.: Fig. S1). In addition, gene why the topology of the core Bambusinae lacked resolution trees were resolved not to contradict monophyly of operational and to assess whether it explains the delimitation and subdivi- taxonomic units (OTUs). Because single regions are far from sion of the BDG complex. SplitsTree v.4 was used with the adequate to resolve the lower-level relationships of the PWB, Neighbor-Net algorithm and uncorrected P-distances (Huson all regions were combined in subsequent analyses. & Bryant, 2006). ML analysis was conducted for each region Informative indels introduced by alignment were coded as to investigate potential conflicting signals. Network analysis binary characters by using the simple indel coding method of was re-conducted on the reduced matrix in which sequences Simmons & Ochoterena (2000) with SeqState v.1.4.1 (Müller, suspected to have conflicting signals based on the topologies 2005). Both nucleotide data and binary data were included of ML trees were removed. in parsimony and model-based phylogenetic analyses (Lewis, 2001). All data matrices were deposited in TreeBASE (http:// www.treebase.org/; study accession number, 19282). RESULTS Maximum likelihood (ML) analysis was performed with RAxML-HPC2 v.8.2.4 (Stamatakis, 2014) on CIPRES Science Characteristics of datasets. — In our analyses we used Gateway Web server (http://www.phylo.org) (Miller & al., 2125 newly generated sequences and 213 existing sequences 2010). The data matrix was partitioned into 18 DNA parti- from GenBank generated from the following studies: Clark tions and one binary partition. The ML tree was inferred from & al. (2007); Yang & al. (2008); Sungkaew & al. (2009); Goh the combined rapid bootstrap (1000 replicates) and the analysis & al. (2010, 2013); GPWG II (2012); Kelchner & BPG (2013); searched for the best-scoring ML tree. The GTRGAMMA and Wysocki & al. (2015). The aligned and combined matrix com- uncorrected models were used for all DNA partitions and the prises 20,244 nucleotides and 372 indels that were coded as binary partition, respectively, in the analyses as suggested (see absent/present (0/1) characters, of which 1663 (8.07%) were RAxML manual). parsimony informative, and 17,629 characters invariant. The MP analysis was conducted for the combined data Sequence characteristics and best-fit models for gene regions using the same parameters as for the single-region analyses. are summarized in Table 3. The entire matrix of the combined Bayesian inference (BI) analysis was carried out in data contained less than 19.25% missing data. MrBayes v.3.2.6 (Ronquist & al., 2012) on CIPRES. The com- Plastid phylogenetic inference. — There were no conflicts bined matrix was partitioned into the same 19 partitions as among statistically supported (maximum likelihood bootstrap above. Best-fit models selected by jModelTest v.2.1.6 (Darriba [MLBS] ≥ 70, maximum parsimony [MPBS] ≥ 70, PP ≥ 0.95) & al., 2012) under the Akaike information criterion (AIC) branches across the ML, MP and BI analyses. Six major clades (Posada & Buckley, 2004) were assigned to corresponding were recovered within the PWB, i.e., (1) the Melocanninae DNA regions. Rates were set to equal for the binary partition. clade, (2) the Hickeliinae clade (excluding Nastus spp. from The Markov chain Monte Carlo (MCMC) chains were run for Indonesia and Papua New Guinea), (3) the Racemobambosinae 5.52 million generations while trees were sampled every 500 clade, (4) the Dinochloa-Greslania-Mullerochloa-Neololeba- generations. The average standard deviation of split frequencies Sphaerobambos (DGMNS) assemblage, (5) the monospecific

Version of Record 541 Zhou & al. • Phylogeny of paleotropical woody bamboos (Poaceae) TAXON 66 (3) • June 2017: 539–553

Temburongia S.Dransf. & K.M.Wong, and (6) the core Mullerochloa K.M.Wong was sister to the remaining DGMNS Bambusinae clade (Fig. 1). The Melocanninae clade was sister with high probability in the BI analysis. Greslania was mono- to the remaining lineages. Nastus s.l. was polyphyletic. Nastus phyletic. Relationships among lower-level groups were poorly borbonicus J.F.Gmel. and N. elongatus A.Camus were embed- resolved. ded in the Hickeliinae clade whereas the other three species of The core Bambusinae clade included most species of Nastus were distant from it. the PWB (Fig. 1). Kinabaluchloa K.M.Wong, Holttumochloa The Melocanninae clade was recovered as monophy- K.M.Wong, Bonia, Neomicrocalamus, Temochloa and letic except for one species, Neohouzeaua coradata T.H.Wen Soejatmia K.M.Wong composed a grade basal to the core & Dai, which was nested in the BDG complex (Fig. 2). Bambusinae. Kinabaluchloa was polyphyletic whereas Cephalostachyum scandens Bor was sister to the remain- Bonia was monophyletic. Neomicrocalamus, Temochloa and ing taxa of Melocanninae. Cephalostachyum pingbianense the unidentified taxon indicated as “Genus indet.” formed a (Hsueh & Y.M.Yang ex T.P.Yi) D.Z.Li & H.Q.Yang, C. lati- well-supported clade, and the former two genera grouped to- folium Munro, C. chinense (Rendle) D.Z.Li & H.Q.Yang and gether. Soejatmia ridleyi was sister to the BDG complex. Six the type of Cephalostachyum, C. capitatum Munro, formed a subclades, B1–B6, were recovered within the BDG complex well-supported clade (MLBS ≥ 90, MPBS ≥ 90, PP = 1.00). The (Fig. 2). Subclade B1 was sister to a clade comprising the re- Schizostachyum species formed a polytomy with Neohouzeaua maining subclades, and subclade B4 was sister to B5. Other and two species of Cephalostachyum. Davidsea and Ochlandra relationships among subclades were only well-supported in were sister genera, and they formed a clade sister to the the BI analysis. Melocalamus and Vietnamosasa T.Q.Nguyen Schizostachyum clade. were found in the BDG complex. Furthermore, Melocalamus All species of the Hickeliinae subtribe formed a well- aligned near Dendrocalamus and Gigantochloa, although these supported clade, except for three species of Nastus s.l. from latter two genera appear polyphyletic. Pseudoxytenanthera Indonesia and Papua New Guinea. Hickelia A.Camus was monadelpha (Thwaites) Soderstr. & R.P.Ellis was sister to monophyletic and sister to the remaining genera of Hickeliinae. Dendrocalamus strictus (Roxb.) Nees. Two monospecific The other seven genera of Malagasy Hickeliinae are part of genera, Oxytenanthera Munro and Oreobambos, formed a this clade. subclade in the BDG complex. The Racemobambosinae clade, which contained only one Removal tests and alternative hypotheses tests. — The genus, was strongly supported with good internal resolution. six taxon removal tests showed that there are no significant The DGMNS assemblage was weakly supported only differences between original and taxa-removed ML trees in in the ML analysis (MLBS = 75, MPBS = 55, PP = 0.52). statistically supported topologies (MLBS ≥ 70, MPBS ≥ 70, PP

Table 2. Results of the approximately unbiased (AU) tests for assessing alternative hypotheses. Alternative hypothesis Constraint P value The three Malesian Nastus Juss. species and the Dinochloa- Members of DGMNS clade, Nastus elatus Holttum, N. elegan- 0.322 Greslania-Mullerochloa-Neololeba-Sphaerobambos (DGMNS) tissimus (Hassk.) Holttum and N. productus (Pilg.) Holttum clade form a monophyletic group The three Malesian Nastus species and subtribe Members of Racemobambos Holttum, Nastus elatus, N. elegan- 0.181 Racemobambosinae form a monophyletic group tissimus and N. productus Nastus is a monophyletic group All species of Nastus 0.01* Chinese species of Neohouzeaua A.Camus belong to subtribe The Melocanninae clade and Neohouzeaua coradata T.H.Wen 0.002** Melocanninae & Dai Chinese species of Dinochloa Buse and the DGMNS clade form The DGMNS clade and Dinochloa puberula McClure and 5E−7** a monophyletic group D. utilis McClure Bonia Balansa and Neomicrocalamus Keng f. form a monophy- All species of Bonia and Neomicrocalamus 1E−9** letic group Bonia, Neomicrocalamus and Temochloa S.Dransf. form a All species of Bonia, Neomicrocalamus and Temochloa 0.233 monophyletic group Kinabaluchloa K.M.Wong and Holttumochloa K.M.Wong form All species of Kinabaluchloa and Holttumochloa 0.296 a monophyletic group Kinabaluchloa is monophyletic All species of Kinabaluchloa 0.179 Subtribe Bambusinae recognized in BPG (2012) is a monophy- Members of the Bambusinae clade, the DGMNS clade and 0.288 letic group Temburongia simplex S.Dransf. & K.M.Wong Subtribe Hickeliinae recognized in BPG (2012) is a monophy- Members of the Hickeliinae clade and all species of Nastus 0.246 letic group * indicates rejection at the 95% confidence level; ** indicate rejection at the 99% confidence level.

542 Version of Record TAXON 66 (3) • June 2017: 539–553 Zhou & al. • Phylogeny of paleotropical woody bamboos (Poaceae)

≥ 0.95), but MLBS values of the DGMNS assemblage and the subclades, one caused by Phuphanochloa speciosa Sungkaew BDG complex were improved to 89 and 74, respectively, when & Teerawat and another by Neohouzeaua coradata. The ML taxa with many missing data were removed (Electr. Suppl.: Fig. tree of each region showed that N. coradata has conflicting S2). AU tests of seven alternative hypotheses, i.e., the three topologies with poor bootstrap support (< 70) in rps16-trnQ, Malesian Nastus species and the DGMNS clade form a mono- whereas P. speciosa has conflicting topologies in atpB-rbcL phyletic group; the three Malesian Nastus species and sub- and trnL-trnF with poor bootstrap support as well (Electr. tribe Racemobambosinae form a monophyletic group; Bonia, Suppl.: Fig. S3). The two large boxes were much reduced after Neomicrocalamus and Temochloa form a monophyletic group; removing those sequences (Electr. Suppl.: Fig. S4). Kinabaluchloa and Holttumochloa form a monophyletic group; Kinabaluchloa is monophyletic; subtribe Bambusinae recog- nized in BPG (2012) is monophyletic and subtribe Hickeliinae DISCUSSION recognized in BPG (2012) is monophyletic, did not reject any alternative topologies (attaining significance P = 0.05). In Phylogeny of the core Bambusinae. — The previously contrast, the other four hypotheses, i.e., Chinese species of defined Holttumochloa-Kinabaluchloa clade (Goh & al., Neohouzeaua belong to subtribe Melocanninae; Chinese spe- 2013), the BDG complex and some other species of subtribe cies of Dinochloa Buse and the DGMNS clade form a mono- Bambusinae compose the largest clade of the PWB. Although phyletic group; Bonia and Neomicrocalamus form a mono- this clade includes most genera of subtribe Bambusinae, it phyletic group and Nastus is monophyletic, were significantly might be improper to designate it with a subtribal name when rejected (Table 2). considering that some Bambusinae species are placed outside of Network analysis. — A network analysis was conducted on it. Goh & al. (2013) used the term “core Bambusinae” to desig- a dataset including all taxa of the core Bambusinae. However, nate the BDG complex which was sister to the Holttumochloa- the result was unclear due to extremely long branches of Kinabaluchloa clade in previous studies. However, the Oreobambos. Therefore, the network analysis was reanalyzed Holttumochloa-Kinabaluchloa clade has proven to be rather without Oreobambos (Fig. 3). We found two large boxes within complex when more taxa are included. Holttumochloa and

Table 3. Summary of alignment, sequence characteristics and best-fit models for individual and combined datasets. Parsimony- Parsimony- Length of Missing data Constant uninformative informative Best-fit Region alignment [bp] (taxa / % of length) characters characters characters (%) model atpB-rbcL 924 26/18.76 868 27 29 (3.14) TPMluf + I matK 929 22/14.32 852 33 44 (4.74) TPMluf + I + G ndhF 1,158 29/20.86 1003 78 77 (6.65) TVM + I + G psbA-trnH 702 26/18.73 661 21 20 (2.85) TIM3 + I psbM-petN 994 28/19.25 905 37 52 (5.23) TVM + G rbcL-psaI 1,031 30/20.65 891 69 71 (6.89) TPMluf + G rpl16 1,181 26/18.37 968 127 86 (7.28) TPMluf + I + G rpl32-trnL 1,031 30/19.27 881 64 86 (8.34) TVM + G rps15-ndhF 825 33/21.48 719 72 34 (4.12) TPMluf + G rps16 930 22/15.95 861 27 42 (4.52) GTR + G rps16-trnQ 1,331 22/15.07 1178 75 78 (5.86) GTR + I + G trnC-rpoB 1,366 21/14.81 1208 78 80 (5.86) GTR + G trnD-trnT 1,301 25/17.27 1153 76 72 (5.53) TVM + I + G trnG-trnT 2,122 40/26.69 1514 300 308 (14.51) TVM + I + G trnL-trnF 1,067 27/18.01 959 63 45 (4.22) TPMluf + I + G trnS-trnfM 1,364 37/25.63 1244 66 54 (3.96) TPM2uf + G trnT-trnL 917 29/19.33 780 63 74 (8.07) TVM + I + G ycf4-cemA 1,071 34/22.01 983 44 44 (4.11) TPMluf + G Combined data 20,244 – /19.25 TVM + I + G Coded indels 372 Equal

Version of Record 543 Zhou & al. • Phylogeny of paleotropical woody bamboos (Poaceae) TAXON 66 (3) • June 2017: 539–553

* Chusquea bilimekii * Chusquea subtessellata * Chusquea talamancensis NWB Rhipidocladum racemiflorum * * Otatea fimbriata * Otatea glauca * Guadua aculeata 97/96/1.00 Guadua angustifolia Guadua angustifolia subsp. chacoensis Cephalostachyum scandens Melocanna humilis 96/95/1.00 97/95/1.00 Cephalostachyum pingbianense 94/-/- Cephalostachyum capitatum 99/98/1.00 -/72/- Cephalostachyum chinense

Cephalostachyum latifolium Melocanninae Pseudostachyum polymorphum 94/-/1.00 Davidsea attenuata Ochlandra stridula 92/76/1.00 Neohouzeaua fimbriata Neohouzeaua kerriana Schizostachyum blumei 88/-/1.00 Schizostachyum hainanense Schizostachyum sp. -/95/1.00 Cephalostachyum pergracile Cephalostachyum virgatum 85/81/1.00 Schizostachyum pseudolima 100/99/1.00 -/-/0.95 Schizostachyum diffusum Schizostachyum dumetorum Schizostachyum funghomii Temburongia simplex 100/98/1.00 Hickelia madagascariensis

97/96/1.00 Hickelia perrieri Hickeliinae Nastus borbonicus 74/-/- Cathariostachys madagascariensis Nastus elongatus 88/75/1.00 Sirochloa parvifolia Cathariostachys capitata Decaryochloa diadelpha Perrierbambus madagascariensis Valiha diffusa 81/-/1.00 Nastus elatus -/-/0.96 Nastus elegantissimus 96/94/1.00 99/78/1.00 Racemobambos novohibernica 88/80/1.00 Racemobambos hepburnii 83/71/1.00 Racemobambos gibbsiae Racemobambosinae Racemobambos raynalii Nastus productus

Mullerochloa moreheadiana DGMNS assemblage Greslania rivularis 86/86/1.00 75/-/- Greslania montana 100/97/1.00 98/-/0.98 Greslania circinnata 98/-/- Greslania multiflora -/-/1.00 Greslania sp. Dinochloa trichogona Neololeba atra 72/-/- Dinochloa scabrida Sphaerobambos hirsuta Cyrtochloa luzonica 82/-/- Dinochloa malayana Dinochloa scandens Kinabaluchloa wrayi 98/97/1.00 Holttumochloa hainanensis 93/91/1.00 Holttumochloa magica 81/73/0.97 Kinabaluchloa nebulosa Core Bambusinae Bonia levigata Basal grade * 91/94/1.00 Bonia saxatilis Bonia parvifloscula Bonia amplexicaulis -/-/1.00 Bonia saxatilis var. solida Genus indet. * Neomicrocalamus prainii 1 91/87/1.00 * Neomicrocalamus prainii 2 74/70/1.00 94/93/1.00 Temochloa liliana Temochloa sp. -/-/0.99 Soejatmia ridleyi -/75/- BDG complex (Fig. 2)

0.006

Fig. 1. BI tree based on the combined plastid dataset of 18 loci (rpl32-trnL, trnT-trnL, trnL-trnF, psbA-trnH, rpl16 intron, rps16-trnQ, trnC-rpoB, trnD-trnT, rpl16 intron, ndhF [3′ end], matK, atpB-rbcL, psbM-petN, trnS-trnfM, ycf4-cemA, trnG-trnT, rps15-ndhF, rbcL-psaI ). Numbers above branches indicate maximum likelihood bootstrap (MLBS) / maximum parsimony bootstrap (MPBS) / Bayesian inference posterior probability (PP) ≥ 70 / 70 / 0.95. Asterisks indicate 100, 100, 1.00 for MLBS, MPBS and PP, respectively. Annotations are omitted when all support values are below the above thresholds. “1” and “2” following scientific name indicate different individuals of the same taxon. Species names in bold are types of genera.

544 Version of Record TAXON 66 (3) • June 2017: 539–553 Zhou & al. • Phylogeny of paleotropical woody bamboos (Poaceae)

* Dendrocalamus strictus Pseudoxytenanthera monadelpha B1 Maclurochloa montana (A) (B) * Melocalamus arrectus 71/76 Melocalamus yunnanensis 1.00 90/81 Melocalamus compactiflorus var. fimbriatus 90/93 1.00 Neohouzeaua coradata 1.00 Bambusa hainanensis Dendrocalamus minor Melocalamus compactiflorus 97/96 Dendrocalamus sinicus -/- 1.00 Dendrocalamus tibeticus 1.00 Dendrocalamus jianshuiensis -/75 * 88/87 Dendrocalamus bambusoides - 1.00 Dendrocalamus pachystachyus Dendrocalamus pachycladus 87/84 Dendrocalamus membranaceus Gigantochloa levis 1.00 * 87/- Gigantochloa atter 0.98 Gigantochloa verticillata -/- -/- Gigantochloa albociliata B2 BDG 1.00 -/- 1.00 Gigantochloa parviflora 1.00 Gigantochloa apus --/-- 94/89 Complex 0.99 Dendrocalamus calostachyus 1.00 Dendrocalamus giganteus 87/87 Dendrocalamus semiscandens Dendrocalamus sp. 1.00 Gigantochloa scortechinii -/- Dendrocalamus tomentosus 0.95 Dendrocalamus nigrociliata 75/- Dendrocalamus barbatus 98/95 - Dendrocalamus barbatus var. internodiiradicatus 1.00 Dendrocalamus brandisii Dendrocalamus hamiltonii 88/- Dendrocalamus asper * 0.98 Dendrocalamus peculiaris 88/88 Dendrocalamus latiflorus 1.00 99/- Dendrocalamus farinosus - Dendrocalamus ovatus 97/97 Bambusa bambos B3 1.00 Bambusa polymorpha * Oreobambos buchwaldii B4 Oxytenanthera abyssinica 97/94 Dendrocalamus pendulus -/- 1.00 Dendrocalamus hirtellus 75/81 0.99 Gigantochloa wrayi 1.00 Bambusa arnhemica -/- Vietnamosasa ciliata 1.00 98/- Dendrocalamus birmanicus 0.97 -/96 Gigantochloa latifolia 87/87 1.00 Gigantochloa ligulata 1.00 Gigantochloa balui B5 Thyrsostachys siamensis Bambusa sinospinosa Vietnamosasa pusilla -/- Bambusa teres 0.99 -/- Bambusa blumeana Bambusa lapidea 0.96 Bambusa vulgaris ‘Wamin’ Gigantochloa atroviolacea Phuphanochloa speciosa Bambusa bicicatricata 89/83 Bambusa distegia 85/86 1.00 Bambusa papillata 96/97 1.00 Dinochloa utilis 1.00 Bambusa cornigera -/- 95/92 Bambusa basihirsuta 0.98 1.00 Bambusa ventricosa Africa 83/85 Bambusa emeiensis 100/99 Bambusa chungii Pantropical Asia 1.00 1.00 Bambusa intermedia B6 91/82 Bambusa beecheyana 1.00 99/97 Bambusa boniopsis 1.00 Bambusa flexuosa 0.004 99/100 Bambusa odashimae 1.00 Bambusa oldhamii -/- Dinochloa puberula 1.00 -/- Bambusa textilis var. gracilis 0.96 Bambusa xiashanensis 76/- Bambusa longispiculata 82/82 - Bambusa rutila 1.00 82/- Bambusa multiplex 1 0.95 Bambusa multiplex 2

Fig. 2. BI tree of the BDG complex. A, BI topology with branch lengths; B, Simplified BI topology with weakly supported nodes collapsed and indication of subclades and branch support. Numbers above branches indicate maximum likelihood bootstrap / maximum parsimony bootstrap ≥ 70 / 70. Numbers below branches represent Bayesian inference posterior probability ≥ 0.95. Species names in bold are types of genera. Bold branches indicate African endemic species.

Version of Record 545 Zhou & al. • Phylogeny of paleotropical woody bamboos (Poaceae) TAXON 66 (3) • June 2017: 539–553

Kinabaluchloa do not form a clade as they did in Goh & al. Inflorescences of the BDG complex are iterauctant whereas spe- (2013). Bonia and Neomicrocalamus are not sister groups cies of the basal grade have both iterauctant and semelauctant as they were in Yang & al. (2008). Considering our plastid inflorescences. Soejatmia was nested within the BDG complex, phylogeny and to distinguish the entire clade from subtribe but it was unresolved in previous studies (Goh & al., 2013). Bambusinae, we propose to use “core Bambusinae” here to The plastid phylogeny in this study uncovered that Soejatmia designate the whole clade including Bonia, Holttumochloa, is sister to the BDG complex and can be excluded from the Kinabaluchloa, Neomicrocalamus, Soejatmia, Temochloa and BDG complex. This grouping strategy is also supported by the the BDG complex rather than the BDG complex itself. network analysis in which Soejatmia is joining other taxa of The core Bambusinae clade contains the majority of taxa in the basal grade (Fig. 3). In addition, Soejatmia is more similar subtribe Bambusinae as defined by BPG (2012). The BDG com- to other genera of the basal grade in its climbing growth habit plex appears to be a phylogenetically rather intractable group and narrow distribution in Malesia. with rapid diversification, which is distinct from the basal grade Phylogenetic relationships within the BDG complex. — of the core Bambusinae. Taxa of the basal grade exhibit different Because more gene regions and taxa are included in this study, evolutionary histories from the BDG complex. Genera of the clades within the BDG complex have higher bootstrap support. basal grade are supported by plastid or nuclear data to be mono- Our plastid phylogeny suggests the existence of six subclades phyletic (Goh & al., 2013), whereas none of the genera within on the basis of tree topology and bootstrap support, taxon com- the BDG complex are confirmed to be monophyletic except for position, geographical distribution and network analysis. several monospecific genera, i.e., Oxytenanthera, Oreobambos, Subclades B1, B3 and B4 are three minor subclades con- Maclurochloa K.M.Wong and Phuphanochloa Sungkaew & sisting of two taxa each. Subclade B1 is sister to the remaining Teerawat (Yang & al., 2008; Goh & al., 2010, 2013; Yang & subclades. Both species of B1 are distributed in India and Sri al., 2010). Moreover, species of Bambusa, Dendrocalamus Lanka. Subclade B3 is a case for a sister relationship of spe- and Gigantochloa are phylogenetically intermixed in the BDG cies of Bambusa subg. Leleba (Rumph. ex Nakai) Keng f. ex complex, especially in subclade B5, indicating possible intro- L.C.Chia & X.L.Feng to B. subg. Bambusa. This pattern is gression or hybridization. This phenomenon is also common consistent with morphological evidence. Except for specialized in temperate bamboos (Triplett & al., 2010; Zhang & al., 2012). branchlet thorns, B. subg. Bambusa and B. subg. Leleba are A climbing or scrambling habit is a common character in the morphologically similar. Subclade B4 consists of two mono- basal grade, while the BDG complex has a higher diversity in specific genera, Oxytenanthera and Oreobambos, which are the growth habit from erect to apically pendulous or scrambling. only two genera of Bambusinae endemic to Africa.

0.001 Subclade B2 M. yun M. arr M. com fim N. cor

K. wra H. hai H. mag

M. mon K. neb

Subclade B6 P. spe B. par B. sax sol B. sax B. amp S. rid B. lev

T. lil Genus indet. B. pol D. str N. pra 1 B. bam P. mon N. pra 2 Subclade B5 Subclade B1 O. aby Subclade B3 Subclade B4 T. sp.

Fig. 3. Network of the core Bambusinae. Taxon names are omitted or abbreviated to first letter of the genus name and first three letters of the specific epithet. Subclades labeled identify the positions in the network of the corresponding clades of Fig. 2.

546 Version of Record TAXON 66 (3) • June 2017: 539–553 Zhou & al. • Phylogeny of paleotropical woody bamboos (Poaceae)

Subclades B2, B5 and B6 are three major subclades con- Chokthaweepanich (2014) also noticed the separation of Nastus taining most taxa of the BDG complex. Subclade B2 consists based on a consensus tree of six combined cpDNA regions. of the majority of species of Dendrocalamus and Gigantochloa, These relationships are consistent with previous approaches of and all species of Melocalamus, whereas B6 consists of many splitting current Nastus into different genera (Electr. Suppl.: Fig. species of Bambusa, plus two species of Dinochloa and S5). The current delimitation of Nastus combines three genera Phuphanochloa speciosa. In contrast, B5 is a very heteroge- described earlier, i.e., Chloothamnus, Nastus and Oreiostachys neous subclade containing species of five different genera. Gamble. However, this treatment is controversial. Nastus was Bambusa, Dendrocalamus, Gigantochloa and Melocalamus are originally published in 1789 by Jussieu, and further expanded not monophyletic. The interspersed positions of Dendrocalamus by incorporating Southeast Asian and Oceanian species of and Gigantochloa accord with their morphological similarity Chloothamnus and Oreiostachys (Holttum, 1955). Holttum in most vegetative characters and inflorescence structure. As (1955) insisted that similarities in ovary structure outweigh inferred from the network analysis, substantially incompat- minor difference in spikelet structure, and that Chloothamnus ible and ambiguous phylogenetic signals are common in our should be merged into Nastus. However, in Henrard’s opinion sequence data. These may explain low bootstrap support values (1936), although Chloothamnus and Nastus seem to be similar for relationships among subclades B2–B6 and poor resolution at first sight, they should not be united because of differences in within subclades, possibly resulting from incomplete lineage inflorescence structure. Southeast Asian Oreiostachys species sorting and hybridization (Zhang & al., 2012; Goh & al., 2013). were subsumed under Chloothamnus except for Oreiostachys Our tree contains many polytomies and thus these histories producta Pilg., because it resembles Nastus s.str. species in cannot be resolved from our plastid data. floret structure, which is also consistent with the ambiguous Plastid phylogenetic relationships and geographical dis- position of N. productus (Henrard, 1936). Our plastid phylog- tribution of the PWB. — Genera endemic in geographically eny rejects the current delimitation of Nastus and indicates that closer areas are generally closer in maternal relationships. inflorescence structure is important in the classification of this The DGMNS assemblage is one of the major groups recov- genus. The two allopatric groups of Nastus should be treated ered in the broadly defined subtribe Bambusinae. It is largely in different genera. Further phylogenetic study with broader composed of taxa of the DMNS clade recognized by Goh & sampling of Nastus s.l. across its distribution range is needed al. (2013), and expanded by the incorporation of four species for clarifying relationships between Nastus and Chloothamnus. of Greslania and Cyrtochloa luzonica (Gamble) S.Dransf. Most genera of the Melocanninae and core Bambusinae Bootstrap support for the DGMNS assemblage is weak, but clades are widespread. Two Sri Lankan endemics, Ochlandra the support value is much improved to 89% when taxa with stridula Thwaites and Davidsea attenuata (Thwaites) Soderstr. extensive missing data are removed (Electr. Suppl.: Fig. S2). In & R.P.Ellis, form a clade and differ from Schizostachyum and addition, this assemblage consists of genera endemic to Malesia Neohouzeaua in having non-capitate inflorescences (Soderstrom and Oceania, whereas those of the core Bambusinae are mainly & Ellis, 1988). In addition, two African monospecific genera, distributed in the mainland of Asia, Africa and islands west i.e., Oreobambos and Oxytenanthera, are closely related. of Wallace’s line (Fig. 1). Although Greslania is morphologi- Taxonomic implications. — Neohouzeaua coradata cally exceptional in comparison with other taxa of the DGMNS is the only species of Melocanninae resolved outside the assemblage in having a different growth habit (short and erect Melocanninae clade. It was published on the basis of vegeta- clumping [< 3 m tall] in Greslania, versus climbing and taller tive specimens (Wen, 1991), and appears to be a misidentified [4–30 m] in the rest), branching pattern (unbranched or soli- species of Melocalamus for the following reasons: (1) phyloge- tary branch in Greslania versus multiple branches in the rest) netically, it is resolved in subclade B2 of the core Bambusinae and inflorescence type (semelauctant in Greslania versus with high support and placed as sister to Melocalamus compac- iterauctant in the rest), it is phylogenetically related to them. tiflorus var. fimbriatus (Hsueh & C.M.Hui) D.Z.Li & Z.H.Guo. Geographically, Greslania is endemic to the southern part of The AU test rejects the inclusion of Neohouzeaua coradata in New Caledonia and is closer to the distribution center of the Melocanninae (P value << 0.01); (2) morphologically, it is a DGMNS assemblage. clump-forming climbing bamboo and has many lateral branches The Hickeliinae clade consists of species endemic to with one dominant branch that is as thick as the main culm and Madagascar and surrounding islands. Nastus s.l. is polyphy- can replace it. This is a common character in Melocalamus (Li & letic and is found in three different clades (Fig. 1). Species of al., 2006); (3) geographically, it is a local species of Guangxi, on Malagasy (including Reunion Island) Nastus, i.e., Nastus s.str., the south fringe of the Chinese mainland, where other species of are nested in the Hickeliinae clade with strong bootstrap sup- Melocalamus occur. In contrast, other species of Neohouzeaua port, whereas Nastus elegantissimus (Hassk.) Holttum (type are endemic to South and Southeast Asia. We thus transfer this of Chloothamnus Büse, from Sumatra and Java) and N. ela- species to Melocalamus below. tus Holttum (from Papua New Guinea) form a clade that is sister to Racemobambosinae with slight statistical support. Melocalamus cordatus (T.H.Wen & Dai) D.Z.Li & M.Y.Zhou, Another Malesian species, N. productus (Pilg.) Holttum (from comb. nov. ≡ Neohouzeaua cordata T.H.Wen & Dai in Indonesia and Papua New Guinea) is sister to the DGMNS J. Bamboo Res. 10(1): 12. 1991 (misspelled as “coradata”) assemblage. Two geographically isolated groups of Nastus, – Holotype: CHINA. Guangxi, Pingxiang, 7 Nov 1973, namely Nastus s.str. and Malesian “Nastus ”, are heterogeneous. T.H. Wen 73115 (ZJFI!).

Version of Record 547 Zhou & al. • Phylogeny of paleotropical woody bamboos (Poaceae) TAXON 66 (3) • June 2017: 539–553

Dinochloa is widely distributed in Southeast Asia and National d’Histoire Naturelle, Paris. We thank Z.H. Guo, C.X. Zeng, characterized by its spiral growth habit with zigzag culms, P.F. Ma, X.Z. Zhang and L.N. Zhang from KIB for assistance in roughened sheath bases and small one-flowered spikelets computational analyses. The DNA analysis was facilitated by the (Dransfield, 1981). From our plastid phylogeny and AU test Molecular Biology Experiment Center of KIB’s Germplasm Bank of (P value << 0.01), the two Chinese species of Dinochloa, Wild Species. Special thanks go to Dr. Peter Fritsch of the Botanical D. puberula and D. utilis, appear misplaced in Dinochloa and Research Institute of Texas, U.S.A., Dr. Peter Bernhardt of St. Louis are embedded within the Bambusa clade (B6). Both species are University, Missouri, U.S.A. and anonymous reviewers for smoothing atypical for Bambusa in having a climbing habit, zigzag culm, the English and giving valuable suggestions. This study was supported roughened sheath bases and a dominant lateral branch that is by the National Natural Science Foundation of China (Grants 31430011 as thick as the main culm. However, they are climbing and do and U1136603 to DZL). The collection of THLAO005 was funded by not grow spirally. Conversely, they are morphologically similar a French Muséum National d’Histoire Naturelle grant (ATM “Formes to Melocalamus except that they have relatively thinner-walled possibles, forms realizes”). culms and a prominent expansible zone at the base of the culm sheath. We suggest that they may be hybrids among Dinochloa, Melocalamus and Bambusa, which would explain the follow- LITERATURE CITED ing observations: (1) the degree of twisting and thickness of culms is decreased; (2) they are morphologically similar but BPG (Bamboo Phylogeny Group) 2012. An updated tribal and sub- phylogenetically distant from Melocalamus; and (3) they are tribal classification of the bamboos. J. Amer. Bamboo Soc. 24: 1–10. morphologically distinct but embedded in the Bambusa clade. Chokthaweepanich, H. 2014. Phylogenetics and evolution of the Paleotropical Woody Bamboos (Poaceae: Bambusoideae: Further study with nuclear phylogenetic data is needed to help ). Dissertation, Iowa State University, Ames, Iowa, explain the phylogenetic positions of D. puberula and D. utilis. U.S.A. Gamble (1923) stated that Neohouzeaua differs from Clark, L.G., Dransfield, S., Triplett, J. & Sánchez-Ken, J.G. 2007. Schizostachyum only by its monodelphous stamens (filaments Phylogenetic relationships among the one-flowered, determinate free in Schizostachyum). A close phylogenetic relationship genera of Bambuseae (Poaceae: Bambusoideae). Aliso 23: 315–332. between Neohouzeaua and Schizostachyum is seen in their https://doi.org/10.5642/aliso.20072301.26 Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. 2012. jModel­ morphological similarities. Filament connation does not appear Test 2: More models, new heuristics and parallel computing. to be of phylogenetic significance nor a good criterion for estab- Nature, Meth. 9: 772–772. https://doi.org/ 10.1038/nmeth.2109 lishing a new genus because Dendrocalamus and Gigantochloa Dodsworth, S. 2015. Genome skimming for next-generation biodiver- species are part of a poorly resolved polytomy. sity analysis. Trends Pl. Sci. 20: 525–527. Predictions and directions for future study. — Goh & https://doi.org/10.1016/j.tplants.2015.06.012. al. (2013) presumed that a combination of incomplete lineage Doyle, J.J. & Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. Bot. Soc. sorting, introgressive hybridization and reticulate evolution Amer. 19: 11–15. has led to the current patterns of phylogenetic complexity. It Dransfield, S. 1981. The genus Dinochloa (Graminaea-Bambusoideae) may also be inferred from the network (Fig. 3) that substantial in Sabah. Kew Bull. 36: 613–633. https://doi.org/10.2307/4117593 ambiguous signals are present even in data from the same or- Dransfield, S. & Widjaja, E.A. 1995. Plant resources of south-east Asia. ganelle. Furthermore, short internal branches associated with No. 7: Bamboos. Leiden: Backhuys. https://doi.org/10.2307/4119344 Gamble, J.S. 1923. Neohouzeaua Bull. Misc. long external branches (Figs. 1, 2A) indicate rapidly radiat- , a new genus of bamboos. Inform. Kew 1923: 89–93. https://doi.org/10.2307/4118623 ing lineages that make it particularly difficult to obtain good Goh, W.L., Chandran, S., Lin, R.S., Xia, N.H. & Wong, K.M. phylogenetic resolution (Rokas & Carroll, 2006; Whitfield & 2010. Phylogenetic relationships among Southeast Asian climb- Lockhart, 2007; Wiens & al., 2008; Philippe & al., 2011; Ma & ing bamboos (Poaceae Bambusoideae) and the Bambusa complex. al., 2014). The deficiency of phylogenetically informative DNA Biochem. Syst. Ecol. 38: 764–773. characters could be one more reason. Therefore, deep-level https://doi.org/10.1016/j.bse.2010.07.006 Goh, W.L., Chandran, S., Franklin, D.C., Isagi, Y., Koshy, K.C., relationships within subtribes may demand whole plastome Sungkaew, S., Yang, H.Q., Xia, N.H. & Wong, K.M. 2013. Multi- sequences to obtain higher phylogenetic resolution (Zhang & gene region phylogenetic analyses suggest reticulate evolution and al., 2011; Ma & al., 2014). In addition to plastid data presented a clade of Australian origin among paleotropical woody bamboos here, a thorough study of morphology and nuclear information, (Poaceae: Bambusoideae: Bambuseae). Pl. Syst. Evol. 299: 239– such as RAD-seq or genome skimming data, will be indispens- 257. http://dx.doi.org/10.1007/s00606-012-0718-1 able for phylogenetic reconstruction of the PWB (Wang & al., Guo, Z.H. & Li, D.Z. 2004. Phylogenetics of the Thamnocalamus group and its allies (Gramineae: Bambusoideae): Inference from 2013; Dodsworth, 2015). the sequences of GBSSI gene and ITS spacer. Molec. Phylogen. Evol. 30: 1–12. https://doi.org/10.1016/s1055-7903(03)00161-1 Guo, Z.H., Chen, Y.Y. & Li, D.Z. 2002. Phylogenetic studies on the ACKNOWLEDGEMENTS Thamnocalamus group and its allies (Gramineae: Bambusoideae) based on ITS sequence data. Molec. Phylogen. Evol. 22: 20–30. https://doi.org/10.1006/mpev.2001.1039 The authors thank the following for providing plant or DNA GPWG II (Grass Phylogeny Working Group II) 2012. New grass samples: K.M. Wong (SBG); N.H. Xia and C.H. Zheng (SCBG); phylogeny resolves deep evolutionary relationships and discovers H.Q. Yang (RIRI); T.S. Yi, T. Zhang, J. Cai and X.Y. Ye (KIB); the C4 origins. New Phytol. 193: 304–312. DNA Bank of the Royal Botanic Gardens, Kew; and the Muséum https://doi.org/10.1111/j.1469-8137.2011.03972.x

548 Version of Record TAXON 66 (3) • June 2017: 539–553 Zhou & al. • Phylogeny of paleotropical woody bamboos (Poaceae)

Henrard, J.T. 1936. Chloothamnus, a neglected genus of Bambusaceae. Simmons, M.P. & Ochoterena, H. 2000. Gaps as characters in Blumea 2: 60–73. sequence-based phylogenetic analyses. Syst. Biol. 49: 369–381. Holttum, R.E. 1955. The bamboo-genera Nastus and Chloothamnus. https://doi.org/10.1093/sysbio/49.2.369 Kew Bull. 10: 591–594. http://dx.doi.org/10.2307/4113771 Soderstrom, T.R. & Ellis, R.P. 1987. The position of bamboo gen- Holttum, R.E. 1956. The classification of bamboos. Phytomorphology era and allies in a system of grass classification. Pp. 27–31 in: 6: 73–90. Soderstrom, T.R., Hilu, K.W., Campbell, C.S. & Barkworth, M.E. Huson, D.H. & Bryant, D. 2006. Application of phylogenetic networks (eds.), Grass systematics and evolution. Washington D.C.: in evolutionary studies. Molec. Biol. Evol. 23: 254–267. Smithsonian Institution Press. https://doi.org/10.1093/molbev/msj030 Soderstrom, T.R. & Ellis, R.P. 1988. The woody bamboos (Poaceae: Judziewicz, E.J., Clark, L.G., Londono, X. & Stern, M.J. 1999. Bambuseae) of Sri Lanka: A morphological-anatomical study. American bamboos. Washington & London: Smithsonian Smithsonian Contributions to Botany 72. Washington D.C.: Institution Press. Smithsonian Institution Press. Katoh, K. & Standley, D.M. 2013. MAFFT multiple sequence align- https://doi.org/10.5962/bhl.title.123329 ment software version 7: Improvements in performance and us- Soreng, R.J., Peterson, P.M., Romaschenko, K., Davidse, G., ability. Molec. Biol. Evol. 30: 772–780. Zuloaga, F.O., Judziewicz, E.J., Filgueiras, T.S., Davis, J.I. & https://doi.org/10.1093/molbev/mst010 Morrone, O. 2015. A worldwide phylogenetic classification of the Kelchner, S.A. & Bamboo Phylogeny Group 2013. Higher level phylo- Poaceae (Gramineae). J. Syst. Evol. 53: 117–137. genetic relationships within the bamboos (Poaceae: Bambusoideae) https://doi.org/10.1111/jse.12150 based on five plastid markers. Molec. Phylogen. Evol. 67: 404–413. Stamatakis, A. 2014. RAxML version 8: A tool for phylogenetic anal- https://doi.org/10.1016/j.ympev.2013.02.005 ysis and post-analysis of large phylogenies. Bioinformatics 30: Lewis, P.O. 2001. A likelihood approach to estimating phylogeny from 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 discrete morphological character data. Syst. Biol. 50: 913–925. Sungkaew, S., Stapleton, C., Salamin, N. & Hodkinson, T. 2009. https://doi.org/10.1080/106351501753462876 Non-monophyly of the woody bamboos (Bambuseae; Poaceae): Li, D.Z. 1998. Taxonomy and biogeography of the Bambuseae (Gra­ A multi-gene region phylogenetic analysis of Bambusoideae s.s. mineae: Bambusoideae). Pp. 235–247 in: Rao, A.N. & Ramanatha J. Pl. Res. 122: 95–108. https://doi.org/10.1007/s10265-008-0192-6 Rao, V. (eds.), Bamboo – Conservation, diversity, ecogeography, Triplett, J.K., Oltrogge, K.A. & Clark, L.G. 2010. Phylogenetic re- germplasm resource utilization and taxonomy: Proceedings of lationships and natural hybridization among the North American training course cum workshop, 10–17 May 1998, Kunming and woody bamboos (Poaceae: Bambusoideae: Arundinaria). Amer. J. Xishuanbanna, Yunnan, China. Serdang, Malaysia: IPGRI-APO. Bot. 97: 471–492. https://doi.org/10.3732/ajb.0900244 Li, D.Z., Wang, Z.P., Zhu, Z.D., Xia, N.H., Jia, L.Z., Guo, Z.H., Triplett, J.K., Clark, L.G., Fisher, A.E. & Wen, J. 2014. Independent Yamg, G.Y. & Stapleton, C.M.A. 2006. Flora of China, vol. 22, allopolyploidization events preceded speciation in the temperate Poaceae. Beijing: Science Press; St. Louis: Missouri Botanical and tropical woody bamboos. New Phytol. 204: 66–73. Garden Press. https://doi.org/10.1111/nph.12988 Ma, P.F., Zhang, Y.X., Zeng, C.X., Guo, Z.H. & Li, D.Z. 2014. Wang, X.Q., Zhao, L., Eaton, E.A.R., Li, D.Z. & Guo, Z.H. 2013. Chloroplast phylogenomic analyses resolve deep-level relation- Identification of SNP markers for inferring phylogeny in temperate ships of an intractable bamboo tribe Arundinarieae (Poaceae). Syst. bamboos (Poaceae: Bambusoideae) using RAD sequencing. Molec. Biol. 63: 933–950. https://doi.org/10.1093/sysbio/syu054 Ecol. Resources 13: 938–945. McClure, F.A. 1940. New genera and species of Bambusaceae from https://doi.org/10.1111/1755-0998.12136 eastern Asia. Sci. Bull. Lingnan Univ. 9: 19–20. Wen, T. 1991. Some ideas on the taxonomy of several Bambusoideae Miller, M.A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES taxon. J. Bamboo Res. 10(1): 11–25. Science Gateway for inference of large phylogenetic trees. Pp. Whitfield, J.B. & Lockhart, P.J. 2007. Deciphering ancient rapid 45–52 in: Proceedings of the Gateway Computing Environments radiations. Trends Ecol. Evol. 22: 258–265. Workshop (GCE), New Orleans, Louisiana, 14 Nov 2010. https://doi.org/10.1016/j.tree.2007.01.012 Piscataway: IEEE. https://doi.org/10.1109/GCE.2010.5676129 Wiens, J.J., Kuczynski, C.A., Smith, S.A., Mulcahy, D.G., Sites, Müller, K. 2005. SeqState. Appl. Bioinf. 4: 65–69. J.W., Townsend, T.M. & Reeder, T.W. 2008. Branch lengths, https://doi.org/10.2165/00822942-200504010-00008 support, and congruence: Testing the phylogenomic approach with Ohrnberger, D. 1999. The bamboos of the world: Annotated nomencla- 20 nuclear loci in snakes. Syst. Biol. 57: 420–431. ture and literature of the species and the higher and lower taxa. https://doi.org/10.1080/10635150802166053 The Netherlands: Elsevier. Wysocki, W.P., Clark, L.G., Attigala, L., Ruiz-Sanchez, E. & Philippe, H., Brinkmann, H., Lavrov, D.V., Littlewood, D.Y.J., Duvall, M.R. 2015. Evolution of the bamboos (Bambusoideae: Manuel, M., Wörheide, G. & Baurain, D. 2011. Resolving difficult Poaceae): A full plastome phylogenomic analysis. B. M. C. Evol. phylogenetic questions: Why more sequences are not enough. PLoS Biol. 15: 50. https://doi.org/10.1186/s12862-015-0321-5 Biol. 9: e1000602. https://doi.org/10.1371/journal.pbio.1000602 Yang, H.M., Zhang, Y.X., Yang, J.B. & Li, D.Z. 2013. The monophyly Posada, D. & Buckley, T.R. 2004. Model selection and model averag- of Chimonocalamus and conflicting gene trees in Arundinarieae ing in phylogenetics: Advantages of Akaike information criterion (Poaceae: Bambusoideae) inferred from four plastid and two nu- and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53: clear markers. Molec. Phylogen. Evol. 68: 340–356. 793–808. https://doi.org/10.1080/10635150490522304 https://doi.org/10.1016/j.ympev.2013.04.002 Rokas, A. & Carroll, S.B. 2006. Bushes in the tree of life. PLoS Biol. Yang, H.Q., Peng, S. & Li, D.Z. 2007. Generic delimitations of 4: e352. https://doi.org/10.1371/journal.pbio.0040352 Schizostachyum and its allies (Gramineae: Bambusoideae) inferred Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D.L., from GBSSI and trnL-F sequence phylogenies. Taxon 56: 45–54. Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & https://doi.org/10.2307/25065734 Huelsenbeck, J.P. 2012. MrBayes 3.2: Efficient Bayesian phyloge- Yang, H.Q., Yang, J.B., Peng, Z.H., Gao, J., Yang, Y.M., Peng, S. & netic inference and model choice across a large model space. Syst. Li, D.Z. 2008. A molecular phylogenetic and fruit evolutionary Biol. 61: 539–542. https://doi.org/10.1093/sysbio/sys029 analysis of the major groups of the paleotropical woody bamboos Shimodaira, H. & Hasegawa, M. 2001. CONSEL: For assessing the (Gramineae: Bambusoideae) based on nuclear ITS, GBSSI gene confidence of phylogenetic tree selection. Bioinformatics 17: 1246– and plastid trnL-F DNA sequences. Molc. Phylogen. Evol. 48: 1247. https://doi.org/10.1093/bioinformatics/17.12.1246 809–824. https://doi.org/10.1016/j.ympev.2008.06.001

Version of Record 549 Zhou & al. • Phylogeny of paleotropical woody bamboos (Poaceae) TAXON 66 (3) • June 2017: 539–553

Yang, J.B., Yang, H.Q., Li, D.Z., Wong, K.M. & Yang, Y.M. 2010. temperate woody bamboos (Poaceae: Bambusoideae). PloS ONE 6: Phylogeny of Bambusa and its allies (Poaceae: Bambusoideae) in- e20596. https://doi.org/10.1371/journal.pone.0020596 ferred from nuclear GBSSI gene and plastid psbA-trnH, rpl32-trnL Zhang, Y.X., Zeng, C.X. & Li, D.Z. 2012. Complex evolution in and rps16 intron DNA sequences. Taxon 59: 1102–1110. Arundinarieae (Poaceae: Bambusoideae): Incongruence between Zhang, Y.J., Ma, P.F. & Li, D.Z. 2011. High-throughput sequencing plastid and nuclear GBSSI gene phylogenies. Molec. Phylogen. of six bamboo chloroplast genomes: Phylogenetic implications for Evol. 63: 777–797. https://doi.org/10.1016/j.ympev.2012.02.023

Appendix 1. Taxa included in this study, with classification, source, voucher and GenBank accession numbers. SUBTRIBE—taxon, locality, voucher specimen and GenBank accession for rpl32-trnL, trnT-trnL, ycf4-cemA, trnG-trnT, rps15-ndhF, rbcL-psaI, trnL-trnF, psbA-trnH, rps16 intron, rps16-trnQ, trnC-rpoB, trnD-trnT, rpl16 intron, ndhF (3′ end), matK, atpB-rbcL, psbM-petN and trnS-trnfM. Asterisk (*) indicates accession numbers obtained from GenBank. Only one accession number is provided when all regions are retrieved from a plastome sequence. INGROUP: BAMBUSINAE—Bambusa arnhemica F.Muell., KJ870989.1*; Bambusa bambos (L.) Voss, Ghana, DZL 200202 (KUN), KT227896, KT226359, KT226729, KT227193, KT226481, KT226603, KT226850, KT227656, KT227075, KT227778, KT228133, KT227542, KT228020, KT227307, KT226117, KT227421, KT226239, –; Bambusa basihirsuta McClure, Guangdong, China, Zhou M.Y. 012 (KUN), KT227897, KT226360, KT226730, KT227194, KT226482, KT226604, KT226851, KT227657, KT227076, KT227779, KT228134, KT227543, KT228021, KT227308, KT226118, KT227422, KT226240, KT226965; Bambusa beecheyana Munro, Guangdong, China, Zhou M.Y. 010 (KUN), KT227898, KT226361, KT226731, KT227195, KT226483, KT226605, KT226852, KT227658, KT227077, KT227780, KT228135, KT227544, KT228022, KT227309, KT226119, KT227423, KT226241, KT226966; Bambusa bicicatricata (W.T.Lin) L.C.Chia & H.L.Fung, Guangdong, China, Zhou M.Y. 011(KUN), KT227899, KT226362, KT226732, KT227196, KT226484, KT226606, KT226853, KT227659, KT227078, KT227781, KT228136, KT227545, KT228023, KT227310, KT226120, KT227424, KT226242, KT226967; Bambusa blumeana Schult. & Schult.f., Malaysia, KMW 200504 (KLU), KT227900, KT226363, KT226733, KT227197, KT226485, KT226607, KT226854, KT227660, KT227079, KT227782, KT228137, KT227546, KT228024, KT227311, KT226121, KT227425, KT226243, KT226968; Bambusa boniopsis McClure, Yunnan, China, Zhang Y.X. 12283 (KUN), KT227901, KT226364, KT226734, KT227198, KT226486, KT226608, KT226855, KT227661, KT227080, KT227783, KT228138, KT227547, KT228025, KT227312, KT226122, KT227426, KT226244, KT226969; Bambusa chungii McClure, Guangdong, China, Zhou M.Y. 008 (KUN), KT227902, KT226365, KT226735, KT227199, KT226487, KT226609, KT226856, KT227662, KT227081, KT227784, KT228139, KT227548, KT228026, KT227313, KT226123, KT227427, KT226245, KT226970; Bambusa cornigera McClure, Guangdong, China, Zhou M.Y. 005 (KUN), KT227903, KT226366, KT226736, KT227200, KT226488, KT226610, KT226857, KT227663, KT227082, KT227785, KT228140, KT227549, KT228027, KT227314, KT226124, KT227428, KT226246, KT226971; Bambusa distegia (Keng & P.C.Keng) L.C.Chia & H.L.Fung, Guangdong, China, Zhou M.Y. 014 (KUN), KT227904, KT226367, KT226737, KT227201, KT226489, KT226611, KT226858, KT227664, KT227083, KT227786, KT228141, KT227550, KT228028, KT227315, KT226125, KT227429, KT226247, KT226972; Bambusa emeiensis L.C.Chia & H.L.Fung, Yunnan, China, Zhang Y.X. 12274 (KUN), KT227905, KT226368, KT226738, KT227202, KT226490, KT226612, KT226859, KT227665, KT227084, KT227787, KT228142, KT227551, KT228029, KT227316, KT226126, KT227430, KT226248, KT226973; Bambusa flexuosa Munro, Guangdong, China, Zhou M.Y. 015 (KUN), KT227906, KT226369, KT226739, KT227203, KT226491, KT226613, KT226860, KT227666, KT227085, KT227788, KT228143, KT227552, KT228030, KT227317, KT226127, KT227431, KT226249, KT226974; Bambusa haina- nensis L.C.Chia & H.L.Fung, Guangdong, China, Zhou M.Y. 007 (KUN), KT227907, KT226370, KT226740, KT227204, KT226492, KT226614, KT226861, KT227667, KT227086, KT227789, KT228144, KT227553, KT228031, KT227318, KT226128, KT227432, KT226250, KT226975; Bambusa intermedia Hsueh & T.P.Yi, Guangdong, China, Zhou M.Y. 019 (KUN), KT227908, KT226371, KT226741, KT227205, KT226493, KT226615, KT226862, KT227668, KT227087, KT227790, KT228145, KT227554, KT228032, KT227319, KT226129, KT227433, KT226251, KT226976; Bambusa lapidea McClure, Yunnan, China, Zhang Y.X. 12152 (KUN), KT227909, KT226372, KT226742, KT227206, KT226494, KT226616, KT226863, KT227669, KT227088, KT227791, KT228146, KT227555, KT228033, KT227320, KT226130, KT227434, KT226252, KT226977; Bambusa longispiculata Gamble ex Brandis, Guangdong, China, Zhou M.Y. 006 (KUN), KT227910, KT226373, KT226743, KT227207, KT226495, KT226617, KT226864, KT227670, KT227089, KT227792, KT228147, KT227556, KT228034, KT227321, KT226131, KT227435, KT226253, KT226978; Bambusa multiplex (Lour.) Raeusch. ex Schult. & Schult.f. 1, Yunnan, China, YHQ 013 (KUN), KT227911, KT226374, KT226744, KT227208, KT226496, KT226618, KT226865, KT227671, KT227090, KT227793, KT228148, KT227557, KT228035, KT227322, KT226132, KT227436, KT226254, KT226979; Bambusa multiplex (Lour.) Raeusch. ex Schult. & Schult.f. 2, Yunnan, China, Zhou M.Y. 028 (KUN), KT227912, KT226375, KT226745, KT227209, KT226497, KT226619, KT226866, KT227672, KT227091, KT227794, KT228149, KT227558, KT228036, KT227323, KT226133, KT227437, KT226255, KT226980; Bambusa odashimae Hatus. ex Ohrnberger, Guangdong, China, Zhou M.Y. 009 (KUN), KT227913, KT226376, KT226746, KT227210, KT226498, KT226620, KT226867, KT227673, KT227092, KT227795, KT228150, KT227559, KT228037, KT227324, KT226134, KT227438, KT226256, KT226981; Bambusa oldhamii Munro, Yunnan, China, Zhang Y.X. 12285 (KUN), KT227914, KT226377, KT226747, KT227211, KT226499, KT226621, KT226868, KT227674, KT227093, KT227796, KT228151, KT227560, KT228038, KT227325, KT226135, KT227439, KT226257, KT226982; Bambusa papillata (Q.H.Dai) K.M.Lan, Yunnan, China, Zhang Y.X. 12230 (KUN), KT227915, KT226378, KT226748, KT227212, KT226500, KT226622, KT226869, KT227675, KT227094, KT227797, KT228152, KT227561, KT228039, KT227326, KT226136, KT227440, KT226258, KT226983; Bambusa polymorpha Munro, Guangdong, China, Zhou M.Y. 001 (KUN), KT227916, KT226379, KT226749, KT227213, KT226501, KT226623, KT226870, KT227676, KT227095, KT227798, –, KT227562, KT228040, KT227327, KT226137, KT227441, KT226259, KT226984; Bambusa rutila McClure, Guangdong, China, Zhou M.Y. 016 (KUN), KT227917, KT226380, KT226750, KT227214, KT226502, KT226624, KT226871, KT227677, KT227096, KT227799, KT228153, KT227563, KT228041, KT227328, KT226138, KT227442, KT226260, KT226985; Bambusa sinospinosa McClure, Yunnan, China, YHQ 1 (KUN), KT227918, KT226381, KT226751, KT227215, KT226503, KT226625, KT226872, KT227678, KT227097, KT227800, KT228154, KT227564, KT228042, KT227329, KT226139, KT227443, KT226261, –; Bambusa teres Buch.-Ham. ex Munro, Yunnan, China, Zhang Y.X. 12199 (KUN), KT227919, KT226382, KT226752, KT227216, KT226504, KT226626, KT226873, KT227679, KT227098, KT227801, KT228155, KT227565, KT228043, KT227330, KT226140, KT227444, KT226262, KT226986; Bambusa textilis var. gracilis McClure, Guangdong, China, Zhou M.Y. 002 (KUN), KT227920, KT226383, KT226753, KT227217, KT226505, KT226627, KT226874, KT227680, KT227099, KT227802, KT228156, KT227566, KT228044, KT227331, KT226141, KT227445, KT226263, KT226987; Bambusa ventricosa McClure, Yunnan, China, KMBG 09 (KUN), KT227921, KT226384, KT226754, KT227218, KT226506, KT226628, KT226875, KT227681, KT227100, KT227803, KT228157, KT227567, KT228045, KT227332, KT226142, KT227446, KT226264, KT226988; Bambusa vulgaris ‘Wamin’ McClure, Yunnan, China, Zhou M.Y. 029 (KUN), KT227922, KT226385, KT226755, KT227219, KT226507, KT226629, KT226876, KT227682, KT227101, KT227804, KT228158, KT227568, KT228046, KT227333, KT226143, KT227447, KT226265, KT226989; Bambusa xiashanensis L.C.Chia & H.L.Fung, Guangdong, China, Zhou M.Y. 013 (KUN), KT227923, KT226386, KT226756, KT227220, KT226508, KT226630, KT226877, KT227683, KT227102, KT227805, KT228159, KT227569, KT228047, KT227334, KT226144, KT227448, KT226266, KT226990; Bonia amplexicaulis (L.C.Chia, H.L.Fung & Y.L.Yang) N.H.Xia, Guangxi, China, Zhang Y.X. 12329 (KUN), KT227924, KT226387, KT226757, KT227221, KT226509, KT226631, KT226878, KT227684, KT227103, KT227806, KT228160, KT227570, KT228048, KT227335, KT226145, KT227449, KT226267, KT226991; Bonia levigata (L.C.Chia, H.L.Fung & Y.L.Yang) N.H.Xia, Hainan, China, Zhang Y.X. 06076 (KUN), KT227925, KT226388, KT226758, KT227222, –, KT226632, KT226879, KT227685, KT227104, KT227807, KT228161, KT227571, KT228049, KT227336, KT226146, KT227450, KT226268, KT226992; Bonia parvifloscula (W.T.Lin) N.H.Xia, Yunnan, China, Zhang Z01 (unknown), KT227926, KT226389, KT226759, KT227223, –, KT226633, KT226880, KT227686, KT227105, KT227808, KT228162, KT227572, KT228050,

550 Version of Record TAXON 66 (3) • June 2017: 539–553 Zhou & al. • Phylogeny of paleotropical woody bamboos (Poaceae)

Appendix 1. Continued. KT227337, KT226147, KT227451, KT226269, KT226993; Bonia saxatilis (L.C.Chia, H.L.Fung & Y.L.Yang) N.H.Xia, Guangxi, China, Zhang Y.X. 12327 (KUN), KT227927, KT226390, KT226760, KT227224, –, KT226634, KT226881, KT227687, KT227106, KT227809, KT228163, KT227573, KT228051, KT227338, KT226148, KT227452, KT226270, KT226994; Bonia saxatilis var. solida (C.D.Chu & C.S.Chao) D.Z.Li, Yunnan, China, Zhang Y.X. 12331 (KUN), KT227928, KT226391, KT226761, KT227225, –, KT226635, KT226882, KT227688, KT227107, KT227810, KT228164, KT227574, KT228052, KT227339, KT226149, KT227453, KT226271, KT226995; Cyrtochloa luzonica (Gamble) S.Dransf., P02350944 (MNHN), –, KC020551.1*, –, –, KT226518, –, –, –, KC020579.1*, –, –, KC020533.1*, KC020515.1*, KC020497.1*, –, –, –, –; Dendrocalamus asper (Schult. & Schult.f.)Backer ex K.Heyne, Yunnan, China, 12234 (KUN), KT227939, KT226402, KT226772, KT227234, KT226521, KT226646, KT226892, KT227699, KT227118, KT227820, KT228175, KT227584, KT228062, KT227349, KT226160, KT227464, KT226282, KT227004; Dendrocalamus bambusoides Hsueh & D.Z.Li, Guangdong, China, Zhou M.Y. 017 (KUN), KT227940, KT226403, KT226773, KT227235, KT226522, KT226647, KT226893, KT227700, KT227119, KT227821, KT228176, KT227585, KT228063, KT227350, KT226161, KT227465, KT226283, KT227005; Dendrocalamus barbatus Hsueh & D.Z.Li, Yunnan, China, Zhang Y.X. 12170 (KUN), KT227941, KT226404, KT226774, KT227236, KT226523, KT226648, KT226894, KT227701, KT227120, KT227822, KT228177, KT227586, KT228064, KT227351, KT226162, KT227466, KT226284, KT227006; Dendrocalamus barbatus var. internodiiradicatus Hsueh & D.Z.Li, Yunnan, China, Zhang Y.X. 12297 (KUN), KT227942, KT226405, KT226775, KT227237, KT226524, KT226649, KT226895, KT227702, KT227121, KT227823, KT228178, KT227587, KT228065, KT227352, KT226163, KT227467, KT226285, KT227007; Dendrocalamus birmanicus A.Camus, Yunnan, China, Zhang Y.X. 12194 (KUN), KT227943, KT226406, KT226776, KT227238, KT226525, KT226650, KT226896, KT227703, KT227122, KT227824, KT228179, KT227588, KT228066, KT227353, KT226164, KT227468, KT226286, KT227008; Dendrocalamus brandisii (Munro) Kurz, Yunnan, China, Zhang Y.X. 12145 (KUN), KT227944, KT226407, KT226777, KT227239, KT226526, KT226651, KT226897, KT227704, KT227123, KT227825, KT228180, KT227589, KT228067, KT227354, KT226165, KT227469, KT226287, KT227009; Dendrocalamus calostachyus (Kurz) Kurz, Yunnan, China, Zhang Y.X. 12177 (KUN), KT227945, KT226408, KT226778, KT227240, KT226527, KT226652, KT226898, KT227705, KT227124, KT227826, KT228181, KT227590, KT228068, KT227355, KT226166, KT227470, KT226288, KT227010; Dendrocalamus farinosus (Keng & P.C.Keng) L.C.Chia & H.L.Fung, Yunnan, China, Zhang Y.X. 12291 (KUN), KT227946, KT226409, KT226779, KT227241, KT226528, KT226653, KT226899, KT227706, KT227125, KT227827, KT228182, KT227591, KT228069, KT227356, KT226167, KT227471, KT226289, KT227011; Dendrocalamus giganteus Munro, Yunnan, China, Zhang Y.X. 12201 (KUN), KT227947, KT226410, KT226780, KT227242, KT226529, KT226654, KT226900, KT227707, KT227126, KT227828, KT228183, KT227592, KT228070, KT227357, KT226168, KT227472, KT226290, KT227012; Dendrocalamus hamiltonii Nees & Arn. ex Munro, Yunnan, China, Zhang Y.X. 12164 (KUN), KT227948, KT226411, KT226781, KT227243, KT226530, KT226655, KT226901, KT227708, KT227127, KT227829, KT228184, KT227593, KT228071, KT227358, KT226169, KT227473, KT226291, KT227013; Dendrocalamus hirtellus Ridl., Malaysia, GWL 3 (KLU), KT227949, KT226412, KT226782, KT227244, KT226531, KT226656, KT226902, KT227709, KT227128, KT227830, KT228185, KT227594, KT228072, KT227359, KT226170, KT227474, KT226292, KT227014; Dendrocalamus jianshuiensis Hsueh & D.Z.Li, Yunnan, China, Zhang Y.X. 12224 (KUN), KT227950, KT226413, KT226783, KT227245, KT226532, KT226657, KT226903, KT227710, KT227129, KT227831, KT228186, KT227595, KT228073, KT227360, KT226171, KT227475, KT226293, KT227015; Dendrocalamus latiflorus Munro, Yunnan, China, Zhang Y.X. 12262 (KUN), KT227951, KT226414, KT226784, KT227246, KT226533, KT226658, KT226904, KT227711, KT227130, KT227832, KT228187, KT227596, KT228074, KT227361, KT226172, KT227476, KT226294, KT227016; Dendrocalamus membranaceus Munro, Yunnan, China, Zhang Y.X. 12140 (KUN), KT227953, KT226416, KT226786, KT227248, KT226535, KT226660, KT226906, KT227713, KT227132, KT227834, KT228189, KT227598, KT228076, KT227363, KT226174, KT227478, KT226296, KT227017; Dendrocalamus minor (McClure) L.C.Chia & H.L.Fung, Yunnan, China, Zhang Y.X. 12284 (KUN), KT227954, KT226417, KT226787, KT227249, KT226536, KT226661, KT226907, KT227714, KT227133, KT227835, KT228190, KT227599, KT228077, KT227364, KT226175, KT227479, KT226297, KT227018; Dendrocalamus ovatus N.H.Xia & L.C.Chia, Guangdong, China, Zhou M.Y. 003 (KUN), KT227955, KT226418, KT226788, KT227250, KT226537, KT226662, KT226908, KT227715, KT227134, KT227836, KT228191, KT227600, KT228078, KT227365, KT226176, KT227480, KT226298, KT227019; Dendrocalamus pachycladus D.Z.Li & Hui, Yunnan, China, Zhang Y.X. 12163 (KUN), KT227956, KT226419, KT226789, KT227251, KT226538, KT226663, KT226909, KT227716, KT227135, KT227837, KT228192, KT227601, KT228079, KT227366, KT226177, KT227481, KT226299, KT227020; Dendrocalamus pachystachyus Hsueh & D.Z.Li, Yunnan, China, Zhang Y.X. 12221 (KUN), KT227957, KT226420, KT226790, KT227252, KT226539, KT226664, KT226910, KT227717, KT227136, KT227838, KT228193, KT227602, KT228080, KT227367, KT226178, KT227482, KT226300, KT227021; Dendrocalamus peculiaris Hsueh & D.Z.Li, Yunnan, China, Zhang Y.X. 12225 (KUN), KT227958, KT226421, KT226791, KT227253, KT226540, KT226665, KT226911, KT227718, KT227137, KT227839, KT228194, KT227603, KT228081, KT227368, KT226179, KT227483, KT226301, KT227022; Dendrocalamus pendulus Ridl., Malaysia, GWL 6 (KLU), KT227959, KT226422, KT226792, KT227254, KT226541, KT226666, KT226912, KT227719, KT227138, KT227840, KT228195, KT227604, KT228082, KT227369, KT226180, KT227484, KT226302, KT227023; Dendrocalamus semiscandens Hsueh & D.Z.Li, Yunnan, China, Zhang Y.X. 12174 (KUN), KT227960, KT226423, KT226793, KT227255, KT226542, KT226667, KT226913, KT227720, KT227139, KT227841, KT228196, KT227605, KT228083, KT227370, KT226181, KT227485, KT226303, KT227024; Dendrocalamus sinicus L.C.Chia & J.L.Sun, Yunnan, China, Zhang Y.X. 12169 (KUN), KT227961, KT226424, KT226794, KT227256, KT226543, KT226668, KT226914, KT227721, KT227140, KT227842, KT228197, KT227606, KT228084, KT227371, KT226182, KT227486, KT226304, KT227025; Dendrocalamus sp., YHQ 11 (KUN), KT227952, KT226415, KT226785, KT227247, KT226534, KT226659, KT226905, KT227712, KT227131, KT227833, KT228188, KT227597, KT228075, KT227362, KT226173, KT227477, KT226295, –; Dendrocalamus strictus (Roxb.) Nees, Guangdong, China, Zhou M.Y. 018 (KUN), KT227962, KT226425, KT226795, KT227257, KT226544, KT226669, KT226915, KT227722, KT227141, KT227843, KT228198, KT227607, KT228085, KT227372, KT226183, KT227487, KT226305, KT227026; Dendrocalamus tibeticus Hsueh & T.P.Yi, Xizang, China, Sun 200801 (KUN), KT227963, KT226426, KT226796, KT227258, KT226545, KT226670, KT226916, KT227723, KT227142, KT227844, KT228199, KT227608, KT228086, KT227373, KT226184, KT227488, KT226306, KT227027; Dendrocalamus tomentosus Hsueh & D.Z.Li, Yunnan, China, YHQ 200843 (KUN), KT227964, KT226427, KT226797, KT227259, KT226546, KT226671, KT226917, KT227724, KT227143, KT227845, KT228200, KT227609, KT228087, KT227374, KT226185, KT227489, KT226307, KT227028; Dinochloa malayana S.Dransf., Malaysia, KMW 200503 (KLU), KT227965, KT226428, KT226798, KT227260, KT226547, KT226672, KT226918, KT227725, KT227144, KT227846, KT228201, KT227610, KT228088, KT227375, KT226186, KT227490, KT226308, KT227029; Dinochloa puberula McClure, Hainan, China, Zhou M.Y. 041 (KUN), KT227996, KT226459, KT226827, KT227286, KT226578, KT226703, KT226945, KT227755, KT227172, KT227874, KT228229, KT227636, KT228114, KT227401, KT226216, KT227520, KT226337, KT227055; Dinochloa scabrida S.Dransf., –, –, –, –, –, –, –, GU391007.1*, –, –, GU390926.1*, GU390953.1*, –, –, –, –, –, –; Dinochloa scandens (Blume) Kuntze, –, –, –, –, –, –, DQ137356.1*, –, –, –, –, –, –, –, –, –, –, –; Dinochloa trichogona S.Dransf., –, –, –, –, –, –, –, –, –, –, JN033927.1*, JN033955.1*, –, –, –, –, –, –; Dinochloa utilis McClure, Hainan, China, Zhou M.Y. 034 (KUN), KT227966, KT226429, KT226799, KT227261, KT226548, KT226673, KT226919, KT227726, KT227145, KT227847, KT228202, KT227611, KT228089, KT227376, KT226187, KT227491, KT226309, KT227030; Genus indet., Khamouane, Laos, Li & Zhang 13cs6294-14 (KUN), KT227895, KT226358, KT226728, KT227192, KT226480, KT226602, KT226849, KT227655, KT227074, KT227777, KT228132, KT227541, KT228019, KT227306, KT226116, KT227420, KT226238, KT226964; Gigantochloa albociliata (Munro) Kurz, Vietnam, DZL 200407 (KUN), KT227967, KT226430, KT226800, KT227262, KT226549, KT226674, KT226920, KT227727, KT227146, KT227848, KT228203, KT227612, KT228090, KT227377, KT226188, KT227492, KT226310, –; Gigantochloa apus (Schult. & Schult.f.) Kurz, Guangdong, China, Zhou M.Y. 020 (KUN), KT227968, KT226431, KT226801, KT227263, KT226550, KT226675, KT226921, KT227728, KT227147, KT227849, KT228204, KT227613, KT228091, KT227378, KT226189, KT227493, KT226311, KT227031; Gigantochloa atroviolacea Widjaja, Guangdong, China, Zhou M.Y. 021 (KUN), KT227969, KT226432, KT226802, KT227264, KT226551, KT226676, KT226922, KT227729, KT227148, KT227850, KT228205, KT227614, KT228092, KT227379, KT226190, KT227494, KT226312, KT227032; Gigantochloa atter (Hassk.) Kurz, Australia, AUS 200901 (KUN), KT227970, KT226433, KT226803, KT227265, KT226552, KT226677, KT226923, KT227730, KT227149, KT227851, KT228206, KT227615, KT228093, KT227380, KT226191, KT227495, KT226313, KT227033; Gigantochloa balui K.M.Wong, Malaysia, KMW 200803 (KLU), KT227971, KT226434, KT226804, KT227266, KT226553, KT226678,

Version of Record 551 Zhou & al. • Phylogeny of paleotropical woody bamboos (Poaceae) TAXON 66 (3) • June 2017: 539–553

Appendix 1. Continued. KT226924, KT227731, KT227150, –, KT228207, KT227616, KT228094, KT227381, KT226192, KT227496, KT226314, KT227034; Gigantochloa latifolia Ridl., Malaysia, GWL 8 (KLU), KT227972, KT226435, KT226805, KT227267, KT226554, KT226679, KT226925, KT227732, KT227151, KT227852, KT228208, KT227617, KT228095, KT227382, KT226193, KT227497, KT226315, KT227035; Gigantochloa levis (Blanco) Merr., Yunnan, China, Zhang Y.X. 12278 (KUN), KT227973, KT226436, KT226806, KT227268, KT226555, KT226680, KT226926, KT227733, KT227152, KT227853, KT228209, KT227618, KT228096, KT227383, KT226194, KT227498, KT226316, KT227036; Gigantochloa ligulata Gamble, Malaysia, GWL 7 (KLU), KT227974, KT226437, KT226807, KT227269, KT226556, KT226681, KT226927, KT227734, KT227153, KT227854, KT228210, KT227619, KT228097, KT227384, KT226195, KT227499, KT226317, KT227037; Gigantochloa nigrociliata (Buse) Kurz, Guangdong, China, Zhou M.Y. 022 (KUN), KT227975, KT226438, KT226808, KT227270, KT226557, KT226682, KT226928, KT227735, KT227154, KT227855, KT228211, KT227620, KT228098, KT227385, KT226196, KT227500, KT226318, KT227038; Gigantochloa parviflora (P.C.Keng) P.C.Keng, Yunnan, China, Zhang Y.X. 12179 (KUN), KT227976, KT226439, KT226809, KT227271, KT226558, KT226683, KT226929, KT227736, KT227155, KT227856, KT228212, KT227621, KT228099, KT227386, KT226197, KT227501, KT226319, KT227039; Gigantochloa scortechinii Gamble, Malaysia, KMW 200807 (KLU), KT227977, KT226440, KT226810, KT227272, KT226559, KT226684, KT226930, KT227737, KT227156, KT227857, KT228213, KT227622, KT228100, KT227387, KT226198, KT227502, KT226320, KT227040; Gigantochloa verticillata (Willd.) Munro, Guangdong, China, Zhou M.Y. 024 (KUN), KT227978, KT226441, KT226811, KT227273, KT226560, KT226685, KT226931, KT227738, KT227157, KT227858, KT228214, KT227623, KT228101, KT227388, KT226199, KT227503, KT226321, KT227041; Gigantochloa wrayi Gamble, Malaysia, GWL 4 (KLU), KT227979, KT226442, KT226812, KT227274, KT226561, KT226686, KT226932, KT227739, KT227158, KT227859, KT228215, KT227624, KT228102, KT227389, KT226200, KT227504, KT226322, KT227042; Greslania circinnata Balansa, P02014237 (MNHN), KT227980, KT226443, KT226813, –, KT226562, KT226687, KT226933, KT227740, KT227159, KT227860, KT228216, –, AY912204.1*, –, KT226201, KT227505, KT226323, KT227043; Greslania montana Balansa, P02324160 (MNHN), KT227981, KT226444, –, –, KT226563, KT226688, –, –, –, –, –, –, –, –, –, –, –, –; Greslania multiflora Pilg., –, –, –, –, –, –, –, –, –, –, –, –, –, HE575761.1*, HE575861.1*, –, –, –; Greslania rivularis Balansa, P01787446 (MNHN), KT227982, KT226445, KT226814, KT227275, KT226564, KT226689, –, KT227741, –, KT227861, KT228217, –, AY912205.1*, –, KT226202, KT227506, –, –; Greslania sp., KJ870993*; Holttumochloa hainanensis M.Y.Zhou & D.Z.Li, Hainan, China, Zhou M.Y. 033 (KUN), KT227988, KT226451, KT226820, KT227279, KT226570, KT226695, KT226937, KT227747, KT227164, KT227866, KT228221, KT227628, KT228106, KT227393, KT226208, KT227512, KT226329, KT227047; Holttumochloa magica (Ridl.) K.M.Wong, –, –, –, –, –, –, –, GU391012.1*, –, FJ416348.1*, GU390931.1*, GU390958.1*, –, –, –, –, –, –; Kinabalychloa nebulosa K.M.Wong, –, –, –, –, –, –, –, GU391013.1*, –, FJ416356.1*, GU390932.1*, GU390959.1*, –, –, –, –, –, –; Kinabaluchloa wrayi (Stapf) K.M.Wong, –, –, –, –, –, –, –, –, –, JN033903.1*, JN033931.1*, JN033959.1*, –, –, –, –, –, –; Maclurochloa montana (Ridl.) K.M.Wong, –, –, –, –, –, –, –, GU391014.1*, KF365093.1*, FJ416349.1*, GU390933.1*, GU390960.1*, –, KF364999.1*, KF364973.1*, –, KF365049.1*, KF365213.1*; Melocalamus arrectus T.P.Yi, Yunnan, China, Zhang Y.X. 12187 (KUN), KT227989, KT226452, KT226821, KT227280, KT226571, KT226696, KT226938, KT227748, KT227165, KT227867, KT228222, KT227629, KT228107, KT227394, KT226209, KT227513, KT226330, KT227048; Melocalamus compactiflorus (Kurz) Benth., Yunnan, China, Zhang 12005 (KUN), KT227990, KT226453, KT226822, KT227281, KT226572, KT226697, KT226939, KT227749, KT227166, KT227868, KT228223, KT227630, KT228108, KT227395, KT226210, KT227514, KT226331, KT227049; Melocalamus compactiflorus var. fimbriatus (Hsueh & C.M.Hui) D.Z.Li & Z.H.Guo, Yunnan, China, YXY 149 (KUN), KT227991, KT226454, KT226823, KT227282, KT226573, KT226698, KT226940, KT227750, KT227167, KT227869, KT228224, KT227631, KT228109, KT227396, KT226211, KT227515, KT226332, KT227050; Melocalamus cordatus (T.H.Wen & Dai) D.Z.Li & M.Y.Zhou, Guangxi, China, YXY 022 (KUN), KT227995, KT226458, KT226826, KT227285, KT226577, KT226702, KT226944, KT227754, KT227171, KT227873, KT228228, KT227635, KT228113, KT227400, KT226215, KT227519, KT226336, KT227054; Melocalamus yunnanensis (T.H.Wen) T.P.Yi, Yunnan, China, Zhang Y.X. 12153 (KUN), KT227992, KT226455, KT226824, KT227283, KT226574, KT226699, KT226941, KT227751, KT227168, KT227870, KT228225, KT227632, KT228110, KT227397, KT226212, KT227516, KT226333, KT227051; Mullerochloa moreheadiana (F.M.Bailey) K.M.Wong, –, –, –, –, –, –, EU434079.1*, –, EU434207.1*, KF365123.1*, KF365170.1*, JN033960.1*, –, KF365009.1*, EU434271.1*, EU434143.1*, KF365059.1*, KF365223.1*; Neololeba atra (Lindl.) Widjaja, KJ870996*; Neomicrocalamus prainii (Gamble) P.C.Keng 1, Xizang, China, LL 07236 (KUN), KT227998, KT226461, KT226829, KT227288, KT226580, KT226705, KT226947, KT227757, KT227174, KT227876, KT228231, KT227638, KT228116, KT227403, KT226218, KT227522, KT226339, KT227057; Neomicrocalamus prainii (Gamble) P.C.Keng 2, Xizang, China, MPF 10060 (KUN), KT227997, KT226460, KT226828, KT227287, KT226579, KT226704, KT226946, KT227756, KT227173, KT227875, KT228230, KT227637, KT228115, KT227402, KT226217, KT227521, KT226338, KT227056; Oreobambos buchwaldii K.Schum., –, –, –, –, –, –, EU434080.1*, –, EU434208.1*, –, –, –, –, –, EU434272.1*, EU434144.1*, –, –; Oxytenanthera abyssinica (A.Rich.) Munro, Ghana, DZL 200206 (KUN), KT228001, KT226464, KT226832, KT227291, KT226584, KT226709, KT226950, KT227760, KT227177, KT227879, KT228234, KT227641, KT228118, KT227406, KT226221, KT227525, KT226342, KT227060; Phuphanochloa speciosa Sungkaew & Teerawat., –, –, –, –, –, –, EU434070.1*, –, EU434198.1*, KF365139.1*, KF365186.1*, JN033962.1*, –, KF365025.1*, EU434262.1*, EU434134.1*, KF365075.1*, KF365239.1*; Pseudoxytenanthera monadelpha (Thwaites) Soderstr. & R.P.Ellis, P02581674 (MNHN), KT228003, KT226466, KT226834, KT227293, KT226586, KT226711, –, –, KF365096.1*, KF365140.1*, KF365187.1*, –, –, KF365026.1*, KF364978.1*, –, KF365076.1*, KF365240.1*; Soejatmia ridleyi (Gamble) K.M.Wong, –, –, –, –, –, –, –, GU391017.1*, –, FJ416355.1*, GU390936.1*, GU390963.1*, –, –, –, –, –, –; Sphaerobambos hirsuta S.Dransf., –, –, –, –, –, –, –, GU391016.1*, –, GU390911.1*, GU390935.1*, GU390962.1*, –, –, –, –, –, –; Temburongia simplex S.Dransf. & K.M.Wong, Brunei, WKM 3129, KT228016, KT226477, KT226846, KT227303, KT226599, KT226725, KT226961, KT227774, KT227189, KT227892, KT228246, KT227652, KT228129, KT227417, KT226235, KT227538, KT226355, KT227071; Temochloa liliana S.Dransf., –, KC020563.1*, –, –, –, –, EU434076.1*, –, EU434204.1*, KF365125.1*, KF365172.1*, KC020543.1*, KC020528.1*, KF365011.1*, EU434268.1*, EU434140.1*, KF365061.1*, KF365225.1*; Temochloa sp., Khamouane, Laos, THLAO 005 (MNHN), KT228017, KT226478, KT226847, KT227304, KT226600, KT226726, KT226962, KT227775, KT227190, KT227893, KT228247, KT227653, KT228130, KT227418, KT226236, KT227539, KT226356, KT227072; Thyrsostachys siamensis Gamble, Yunnan, China, Zhang Y.X. 12175 (KUN), KT228018, KT226479, KT226848, KT227305, KT226601, KT226727, KT226963, KT227776, KT227191, KT227894, KT228248, KT227654, KT228131, KT227419, KT226237, KT227540, KT226357, KT227073; Vietnamosasa ciliata (A.Camus) T.Q.Nguyen, –, –, –, –, –, –, EU434074.1*, –, EU434202.1*, KF365115.1*, KF365162.1*, –, –, KF365001.1*, EU434266.1*, EU434138.1*, KF365051.1*, KF365215.1*; Vietnamosasa pusilla (A.Chev. & A.Camus) Nguyen, –, –, –, –, –, –, EU434075.1*, –, EU434203.1*, KF365116.1*, KF365163.1*, –, –, KF365002.1*, EU434267.1*, EU434139.1*, KF365052.1*, KF365216.1*. HICKELIINAE—Cathariostachys capitata (Kunth) S.Dransf., –, –, –, –, –, –, –, –, –, –, –, –, AY912201.1*, –, –, –, –, –; Cathariostachys madagascariensis (A.Camus) S.Dransf., –, –, –, –, –, –, –, –, –, –, –, –, AY912202.1*, –, –, –, –, –; Decaryochloa diadelpha A.Camus, P02635515 (MNHN), KT227938, KT226401, KT226771, KT227233, KT226520, KT226645, –, KT227698, KT227117, –, KT228174, –, AY912203.1*, –, KT226159, KT227463, KT226281, –; Hickelia madagascariensis A.Camus, KJ870994*; Hickelia perrieri (A.Camus) S.Dransf., P02356503 (MNHN), KT227987, KT226450, KT226819, –, KT226569, KT226694, –, KT227746, KT227163, KT227865, –, –, –, –, KT226207, KT227511, KT226328, –; Nastus borbonicus J.F.Gmel., –, KC020556.1*, –, –, –, –, –, –, KC020586.1*, –, –, KC020538.1*, AY912207.1*, KC020500.1*, –, –, –, –; Nastus elatus Holttum, New Guinea, KMBG 1215 (KUN), KT227994, KT226457, –, KT227284, KT226576, KT226701, KT226943, KT227753, KT227170, KT227872, KT228227, KT227634, KT228112, KT227399, KT226214, KT227518, KT226335, KT227053; Nastus elegantissimus (Hassk.) Holttum, –, –, –, –, –, –, –, –, –, –, –, –, AY912208.1*, –, –, –, –, –; Nastus elongatus A.Camus, –, –, –, –, –, –, –, –, –, –, –, –, AY912209.1*, –, –, –, –, –; Nastus productus (Pilg.) Holttum, –, –, –, –, –, –, –, –, –, –, –, –, AY912210.1*, –, –, –, –, –; Perrierbambus madagascariensis A.Camus, –, –, –, –, –, –, –, –, –, –, –, –, AY912211.1*, –, –, –, –, –;Sirochloa parvifolia (Munro) S.Dransf., P03326450 (MNHN), KT228015, –, KT226845, –, KT226598, KT226723, –, KT227773, KT227188, KT227891, –, –, AY912212.1*, –, KT226234, KT227537, KT226354, –; Valiha diffusa S.Dransf., –, –, –, –, –, –, –, –, –, –, –, –, AY912213.1*, –, –, –, –, –. MELOCANNINAE—Cephalostachyum capitatum Munro, P01935506 (MNHN), –, –, –, –, –, –, KU554721, –, –, –, –, –, –, –, –, –, –, –; Cephalostachyum chinense (Rendle) D.Z.Li & H.Q.Yang, Yunnan, China, Zhang Y.X. 12238 (KUN), KT228008, KT226470, KT226838, KT227296, KT226591, KT226716, KT226954, KT227766, KT227181, KT227884, KT228239, KT227645, KT228122, KT227410, KT226227, KT227530, KT226347, KT227064; Cephalostachyum latifolium Munro, Yunnan, China, Zhang Y.X. 12211 (KUN), KT227929,

552 Version of Record TAXON 66 (3) • June 2017: 539–553 Zhou & al. • Phylogeny of paleotropical woody bamboos (Poaceae)

Appendix 1. Continued. KT226392, KT226762, KT227226, KT226510, KT226636, KT226883, KT227689, KT227108, KT227811, KT228165, KT227575, KT228053, KT227340, KT226150, KT227454, KT226272, KT226996; Cephalostachyum pergracile Munro, Yunnan, China, Zhang Y.X. 12172 (KUN), KT227930, KT226393, KT226763, –, KT226511, KT226637, KT226884, KT227690, KT227109, KT227812, KT228166, KT227576, KT228054, KT227341, KT226151, KT227455, KT226273, KT226997; Cephalostachyum pingbianense (Hsueh & Y.M.Yang ex T.P.Yi) D.Z.Li & H.Q.Yang, Yunnan, China, Zhang Y.X. 12249 (KUN), KT227931, KT226394, KT226764, –, KT226512, KT226638, KT226885, KT227691, KT227110, KT227813, KT228167, KT227577, KT228055, KT227342, KT226152, KT227456, KT226274, KT226998; Cephalostachyum scandens Bor, Yunnan, China, MPF 1206 (KUN), KT227932, KT226395, KT226765, KT227227, KT226513, KT226639, KT226886, KT227692, KT227111, KT227814, KT228168, KT227578, KT228056, KT227343, KT226153, KT227457, KT226275, KT226999; Cephalostachyum virgatum (Munro) Kurz, Yunnan, China, Zhang Y.X. 12207 (KUN), KT227933, KT226396, KT226766, KT227228, KT226514, KT226640, KT226887, KT227693, KT227112, KT227815, KT228169, KT227579, KT228057, KT227344, KT226154, KT227458, KT226276, KT227000; Davidsea attenuata (Thwaites) Soderstr. & R.P.Ellis, Sri Lanka, F 1012108, KT227937, KT226400, KT226770, KT227232, KT226519, KT226644, KT226891, KT227697, KT227116, KT227819, KT228173, KT227583, KT228061, KT227348, KT226158, KT227462, KT226280, KT227003; Melocanna humilis Kurz, Taiwan, China, Zhang Y.X. 12326 (KUN), KT227993, KT226456, KT226825, –, KT226575, KT226700, KT226942, KT227752, KT227169, KT227871, KT228226, KT227633, KT228111, –, KT226213, KT227517, KT226334, KT227052; Neohouzeaua fimbriata S.Dransf., Pattan. & Sungkaew, –, –, –, –, –, –, EU434083.1*, –, EU434211.1*, –, –, –, –, –, EU434275.1*, EU434147.1*, –, –; Neohouzeaua kerriana S.Dransf., Pattan. & Sungkaew, –, –, –, –, –, –, EU434084.1*, –, EU434212.1*, –, –, –, –, –, EU434276.1*, EU434148.1*, –, –; Ochlandra stridula Thwaites, P02350915 (MNHN), –, –, –, –, KT226581, KT226706, –, –, –, –, –, –, –, –, –, –, –, –; Pseudostachyum polymorphum Munro, Yunnan, China, Zhang Y.X. 12173 (KUN), KT228002, KT226465, KT226833, KT227292, KT226585, KT226710, KT226951, KT227761, KT227178, KT227880, KT228235, KT227642, KT228119, KT227407, KT226222, KT227526, KT226343, KT227061; Schizostachyum blumei Nees, GU062944.1*, –, –, –, –, –, DQ137366.1*, GU063072.1*, GU063008.1*, –, –, –, –, –, –, –, –, –; Schizostachyum dif- fusum (Blanco) Merr., Taiwan, China, Zhang Y.X. 12319 (KUN), KT228009, KT226471, KT226839, KT227297, KT226592, KT226717, KT226955, KT227767, KT227182, KT227885, KT228240, KT227646, KT228123, KT227411, KT226228, KT227531, KT226348, KT227065; Schizostachyum dumetorum (Hance ex Walp.) Munro, Guangdong, China, Zhou M.Y. 023 (KUN), KT228010, KT226472, KT226840, KT227298, KT226593, KT226718, KT226956, KT227768, KT227183, KT227886, KT228241, KT227647, KT228124, KT227412, KT226229, KT227532, KT226349, KT227066; Schizostachyum funghomii McClure, Yunnan, China, Zhang Y.X. 12156 (KUN), KT228011, KT226473, KT226841, KT227299, KT226594, KT226719, KT226957, KT227769, KT227184, KT227887, KT228242, KT227648, KT228125, KT227413, KT226230, KT227533, KT226350, KT227067; Schizostachyum hainanense Merr. ex McClure, Hainan, China, Zhou M.Y. 032 (KUN), KT228012, KT226474, KT226842, KT227300, KT226595, KT226720, KT226958, KT227770, KT227185, KT227888, KT228243, KT227649, KT228126, KT227414, KT226231, KT227534, KT226351, KT227068; Schizostachyum pseudolima McClure, Hainan, China, Zhou M.Y. 040 (KUN), KT228013, KT226475, KT226843, KT227301, KT226596, KT226721, KT226959, KT227771, KT227186, KT227889, KT228244, KT227650, KT228127, KT227415, KT226232, KT227535, KT226352, KT227069; Schizostachyum sp., Cambodia, Li s.n. (KUN), KT228014, KT226476, KT226844, KT227302, KT226597, KT226722, KT226960, KT227772, KT227187, KT227890, KT228245, KT227651, KT228128, KT227416, KT226233, KT227536, KT226353, KT227070. RACEMOBAMBOSINAE—Racemobambos gibbsiae (Stapf) Holttum, –, –, –, –, –, –, –, –, –, JN033907.1*, JN033935.1*, JN033963.1*, –, –, –, –, –, –; Racemobambos hepburnii S.Dransf., 1973 (147), DNA Bank (Kew), KT228004, KC020561.1*, –, –, KT226587, KT226712, HQ292328.1*, KT227762, KC020595.1*, JN033908.1*, JN033936.1*, JN033964.1*, KC020524.1*, KC020506.1*, KT226223, –, –, –; Racemobambos novohibernica S.Dransf., P01883598 (MNHN), KT228005, KT226467, KT226835, –, KT226588, KT226713, –, KT227763, –, KT227881, KT228236, –, –, –, KT226224, KT227527, KT226344, –; Racemobambos raynalii Holttum, 20705 (179), DNA Bank (Kew), KT228006, KT226468, KT226836, KT227294, KT226589, KT226714, KT226952, KT227764, KT227179, KT227882, KT228237, KT227643, KT228120, KT227408, KT226225, KT227528, KT226345, KT227062. OUTGROUP: NEOTROPICAL WOODY BAMBOOS: GUADUANAE—Guadua aculeata Rupr. & E.Fourn., Mexico, KMBG 1220 (KUN), KT227983, KT226446, KT226815, KT227276, KT226565, KT226690, KT226934, KT227742, KT227160, KT227862, KT228218, KT227625, KT228103, KT227390, KT226203, KT227507, KT226324, KT227044; Guadua angustifolia Kunth, Taiwan, China, Zhang Y.X. 12325 (KUN), KT227984, KT226447, KT226816, KT227277, KT226566, KT226691, KT226935, KT227743, KT227161, KT227863, KT228219, KT227626, KT228104, KT227391, KT226204, KT227508, KT226325, KT227045; Guadua angustifolia subsp. chacoensis (Rojas) S.M.Young & Judd, Yunnan, China, Zhang Y.X. 12282 (KUN), KT227985, KT226448, KT226817, KT227278, KT226567, KT226692, KT226936, KT227744, KT227162, KT227864, KT228220, KT227627, KT228105, KT227392, KT226205, KT227509, KT226326, KT227046; Otatea fimbriata Soderstr., Mexico, KMBG 1222 (KUN), KT227999, KT226462, KT226830, KT227289, KT226582, KT226707, KT226948, KT227758, KT227175, KT227877, KT228232, KT227639, –, KT227404, KT226219, KT227523, KT226340, KT227058; Otatea glauca L.G.Clark & G.Cortés, Mexico, KMBG 1223 (KUN), KT228000, KT226463, KT226831, KT227290, KT226583, KT226708, KT226949, KT227759, KT227176, KT227878, KT228233, KT227640, KT228117, KT227405, KT226220, KT227524, KT226341, KT227059. ARTHROSTYLIDIINAE—Rhipidocladum racemiflorum (Steud.) McClure, Mexico, KMBG 1224 (KUN), KT228007, KT226469, KT226837, KT227295, KT226590, KT226715, KT226953, KT227765, KT227180, KT227883, KT228238, KT227644, KT228121, KT227409, KT226226, KT227529, KT226346, KT227063. CHUSQUEINAE—Chusquea bilimekii E.Fourn., Mexico, KMBG 1216 (KUN), KT227934, KT226397, KT226767, KT227229, KT226515, KT226641, KT226888, KT227694, KT227113, KT227816, KT228170, KT227580, KT228058, KT227345, KT226155, KT227459, KT226277, KT227001; Chusquea subtessellata Hitchc., Costa Rica, CRB 06 (KUN), KT227935, KT226398, KT226768, KT227230, KT226516, KT226642, KT226889, KT227695, KT227114, KT227817, KT228171, KT227581, KT228059, KT227346, KT226156, KT227460, KT226278, KT227002; Chusquea talamancensis Y.Widmer & L.G.Clark, Costa Rica, CRB 07, KT227936, KT226399, KT226769, KT227231, KT226517, KT226643, KT226890, KT227696, KT227115, KT227818, KT228172, KT227582, KT228060, KT227347, KT226157, KT227461, KT226279, –.

Version of Record 553