Nanowire photoelectrochemistry § Jiao Deng1, Yude Su2, , Dong Liu3, Peidong Yang2,4,5,6,*, Bin Liu3,*, Chong Liu1,* 1 Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA 2 Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA 3 School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore 4 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 5 Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA 6 Kavli Energy NanoScience Institute, Berkeley, CA 94720, USA * To whom correspondence may be addressed. Email:
[email protected] (P. Y.);
[email protected] (B. L.);
[email protected] (C.L.). 1 Abstract Recent applications of photoelectrochemistry at the semiconductor/liquid interface provide a renewable route of mimicking natural photosynthesis and yielding chemicals from sunlight, water, and air. Nanowires, defined as one-dimensional nanostructures, exhibit multiple unique features for photoelectrochemical applications and promise better performance as compared to their bulk counterparts. This review aims to provide a summary for the use of semiconductor nanowires in photoelectrochemistry. After a tutorial-type introduction of nanowires and photoelectrochemistry, the summary strives to provide answers to the following questions: 1) How can we interface semiconductor nanowires with other building blocks for enhanced photoelectrochemical responses? 2) How are nanowires utilized for photoelectrochemical half reactions? 3) What are the techniques that allow us to obtain fundamental insights of photoelectrochemistry at single-nanowire level? 4) What are the design strategies for an integrated nanosystem that mimics a closed cycle in artificial photosynthesis? We postulate that this summary will help the readers to evaluate the features of nanowires for photoelectrochemical applications.