Essays on the Economics of the Aluminium Industry

Total Page:16

File Type:pdf, Size:1020Kb

Essays on the Economics of the Aluminium Industry 2007:06 DOCTORAL T H E SI S Essays on the Economics of the Aluminium Industry Jerry Blomberg Luleå University of Technology Department of Business Administration and Social Sciences Division of Economics Unit 2007:06|: 02-544|: - -- 07⁄6 -- Essays on the Economics of the Aluminium Industry Jerry Blomberg Economics Unit Luleå University of Technology Department of Business Administration and Social Sciences SE-971 87 Luleå, Sweden Abstract This thesis consists of an introduction and five self-contained papers all dealing with various aspects of the economics of aluminium markets and production. Paper I focuses on various efficiency issues within the global primary aluminium industry. Using Data Envelopment Analysis (DEA) and data for the year 2003, we find that in general primary aluminium smelters are efficient given the scale of operation. However, many smelters operate with increasing returns to scale. Thus, many smelters would lower their average costs if the scale of production was increased. Furthermore, there exist substantial allocative inefficiencies in the industry, i.e., smelters are inefficient in changing the factor set up according to market prices. Overall, there are significant variations in the level of efficiency across smelter locations. Finally, we estimate the potential for factor reductions across smelter technologies and locations. Paper II analyzes the development in total factor productivity (TFP) over the period 1993-2003 in the global primary aluminium industry using DEA. The Malmquist indices calculated show that with the exception of Western Europe, smelters in high cost regions have experienced rapid TFP-growth, mainly driven by technical progress and not (as a priori assumed) by efficiency improvements. In regions with rapid capacity build-up, TFP- change is found to be weaker but likewise driven mainly by technical change. Finally, we do not find support for the notion that the dispersion of different smelter technologies affects regional smelter performance. Using a Translog variable cost function model, Paper III examines the ex post factor substitution possibilities in the primary aluminium industry in Western Europe and the Africa-Middle East region (AME) for the period 1990-2003. The results indicate higher short-run own- and cross-price elasticities at smelters in the AME region than in Western Europe, at least when it comes to labour and electricity demand. The results also suggest that in both regions the demand for electricity has over time become less sensitive to short-run price changes, while the substitution possibilities between labour and material have increased but only in the AME-region. The liberalization of the Western European electricity markets in combination with the rigid labour markets in this part of the world suggest that the shift in production capacity from the western world to the AME-region as well as China may continue. Paper IV provides an econometric analysis of the determinants of short-run supply and demand in the Western European market for secondary aluminium for the period 1983-1997. The empirical results indicate both price inelastic demand and supply. Policies aimed at increasing aluminium recycling by manipulating price will thus be ineffective considering the low own-price elasticity of secondary supply. However, increased demand for better fuel efficiency and safety in cars might increase the demand for materials with a favourable strength to weight ratio, such as aluminium, thus potentially increasing the demand for secondary aluminium. Finally, Paper V extends the analyzes in Paper IV by; (a) explicitly modelling the interdependencies between the primary and the secondary aluminium markets; (b) estimating secondary aluminium supply in a Cobb- Douglas framework; and (c) modelling aluminium scrap generation. The econometric results indicate that the secondary industry acts like a price taker to the primary aluminium industry. Taking account of the dependencies between input and output prices in secondary aluminium production, we find inelastic supply responses, thus confirming the ineffectiveness of price- driven policies aimed at stimulating recycling. We further calculate a continuously growing stock of scrap. Increased availability of aluminium scrap raises the probability of secondary producers to find the wanted quality, thus lowering the cost of recycling. The impact on supply is however found to be small. Given that increased recycling probably must come from the stock, the low responsiveness of supply from increased scrap availability indicates that attempts to stimulate ‘mining’ of the scrap stock may be costly. i To Åsa, William and Alva List of Papers This thesis contains an introduction and the following papers: Paper [I]: Blomberg, J. and B. Jonsson (2007). Calculating and Decomposing the Sources of Inefficiency within the Global Primary Aluminium Smelting Industry – A Data Envelopment Approach. Paper [II]: Blomberg, J. and B. Jonsson (2007). Regional Differences in Productivity Growth in the Primary Aluminium Industry. Paper [III]: Blomberg, J. and P. Söderholm (2007). Factor Demand Flexibility in the Primary Aluminium Industry: Evidence from Stagnating and Expanding Regions. Paper [IV]: Blomberg, J. and S. Hellmer (2000). Short-run Demand and Supply Elasticities in the West European Market for Secondary Aluminium. Resources Policy. Vol. 26. pp 39-50. (Reprinted with permission from Elsevier). Paper [V]: Blomberg, J. (2000). Economic Models of Secondary Aluminium Pricing and Supply. (An earlier version of this paper was published in the conference proceedings volume of the “Recycling and Waste Treatment in Mineral and Metal Processing: Technical and Economic Aspects” conference, Luleå, Sweden, 16-20 June 2002). v Acknowledgements More than a decade ago – I believe it was early spring time – I took a bus trip that, as it turned out, would impact my academic career greatly. During the trip, Professor Marian Radetzki asked me if I was interested in becoming a Ph.D. student in economics at Luleå University of Technology. He even gave me a choice of topics; Russian coal or metal recycling. After some profound soul searching I picked the latter topic – in reality mostly because I thought studying Russian coal mining sounded somewhat dreary and depressing. With the benefit of hindsight, I now know that explaining to a non-economist (and probably most economists too) why focusing on aluminium markets is much more fun than Russian coal is difficult. And still, after many and long detours, I have finally reached the final destination of that bus trip, and you now hold the result in your hands. So, read on and have fun!1 Over the years, many individuals have provided invaluable advice, assistance and help without which this thesis never would have been completed. Marian Radetzki, aside from all the constructive criticism and supervision, most likely did wear out several pairs of good shoes kicking me “in the butt” to make me complete my Licentiate thesis, which today makes up parts of this thesis. Stefan Hellmer accompanied me in my travels searching for data, and taught me the value of “getting my fingers dirty” with the data and stop reading obscure journal papers. In the latter parts of my attempts to get me a Ph.D. degree, Patrik Söderholm and Bo Jonsson have had pivotal importance. Patrik has the eye of an experienced general for what can, need and should be done to overcome and prevail (i.e., to wrap up this thesis). Beside this, he has a (in my case much needed) gift and patience for language editing.2 Bo, however packed his schedule ever was, always found time to explain for me for the umpteen time how some particular issue in DEA work or do not work. And even more importantly, he helped me with that big, glowing thing residing on my office desk (I believe they call it a computer). Furthermore, I wish to thank all the past and present members of the International Advisory Board who assist the research at the Economics Unit and who all have provided invaluable advice in one way or another. They are; Professor Chris Gilbert, University of Trento, Professor John Tilton, Colorado School of Mines, Professor James Griffin, Texas A & M University, the late Professor David Pearce, University College London, David 1 Be forewarned though; Professor Radetzki once remarked at a seminar treating the first paper in this thesis that it looked like “a solid paper, but OOOHHH so dull”. 2 Even this particular sentence needed editing! vii Humphreys, formerly at Rio Tinto Ltd, Professor Ernst Berndt, MIT and Professor Thorvaldur Gylfasson, University of Iceland. Here I also would like to take the opportunity to thank Professor Christian Azar, Chalmers University of Technology, who served as the discussant at my Licentiate seminar, and Professor Lennart Hjalmarsson, Gothenburg University, who provided invaluable comments at my trial thesis defense. Of course there are also all the past and present colleagues at the Economics Unit. Thank you; Anna C, Anna D, Anna G-K, Anna K-R, Kristina, Christer, Robert, Linda, Olle, Thomas S, Thomas E, Mats, Eva, Fredrik, Gerd, Berith and Åsa. Not only have you provided constructive criticism and ideas for my research, but perhaps even more importantly, you have all contributed in making this workplace a place where I enjoy working. A special thank you to Staffan J, who once every fall opens up his sports cabin to feed (the enlightened parts) of the Economics Unit dumplings made from moose blood, with boiled liver and
Recommended publications
  • History of the Chlor-Alkali Industry
    2 History of the Chlor-Alkali Industry During the last half of the 19th century, chlorine, used almost exclusively in the textile and paper industry, was made [1] by reacting manganese dioxide with hydrochloric acid 100–110◦C MnO2 + 4HCl −−−−−−→ MnCl2 + Cl2 + 2H2O (1) Recycling of manganese improved the overall process economics, and the process became known as the Weldon process [2]. In the 1860s, the Deacon process, which generated chlorine by direct catalytic oxidation of hydrochloric acid with air according to Eq. (2) was developed [3]. ◦ 450–460 C;CuCl2 cat. 4HCl + O2(air) −−−−−−−−−−−−−−→ 2Cl2 + 2H2O(2) The HCl required for reactions (1) and (2) was available from the manufacture of soda ash by the LeBlanc process [4,5]. H2SO4 + 2NaCl → Na2SO4 + 2HCl (3) Na2SO4 + CaCO3 + 2C → Na2CO3 + CaS + 2CO2 (4) Utilization of HCl from reaction (3) eliminated the major water and air pollution problems of the LeBlanc process and allowed the generation of chlorine. By 1900, the Weldon and Deacon processes generated enough chlorine for the production of about 150,000 tons per year of bleaching powder in England alone [6]. An important discovery during this period was the fact that steel is immune to attack by dry chlorine [7]. This permitted the first commercial production and distribu- tion of dry liquid chlorine by Badische Anilin-und-Soda Fabrik (BASF) of Germany in 1888 [8,9]. This technology, using H2SO4 for drying followed by compression of the gas and condensation by cooling, is much the same as is currently practiced. 17 “chap02” — 2005/5/2 — 09Brie:49 — page 17 — #1 18 CHAPTER 2 In the latter part of the 19th century, the Solvay process for caustic soda began to replace the LeBlanc process.
    [Show full text]
  • Aluminium Production Process: Challenges and Opportunities
    metals Editorial Aluminium Production Process: Challenges and Opportunities Houshang Alamdari Aluminium Research Centre—REGAL, Université Laval, Quebec City, QC G1V 0A6, Canada; [email protected]; Tel.: +1-418-656-7666 Academic Editor: Hugo F. Lopez Received: 29 March 2017; Accepted: 6 April 2017; Published: 11 April 2017 Aluminium, with more than 50 Mt annual production in 2016, is an essential material in modern engineering designs of lightweight structures. To obtain aluminium ingots from bauxite, three main processes are involved: the Bayer process to produce alumina from bauxite; the anode manufacturing process to produce electrodes, and the smelting process using the Hall-Héroult technology. The Hall-Héroult process, involves the electrolysis of alumina, dissolved in molten cryolite to produce liquid aluminium that should be casted to produce ingots of different types of alloys. The technology is now about 130 years old and the aluminium production experienced a phenomenal growth during the past two decades—the highest growth rate for a commodity metal. The aluminium electrolysis cell is made of a steel shell, the internal surfaces of which are covered with a series of insulating linings made of refractory materials. The top lining, made of carbon, is in direct contact with the molten metal and acts as the cathode. The anode is also made of carbon, suspended in the electrolyte and consumed during electrolysis. According to the International Aluminium Institute [1] the energy required to produce one ton of aluminium varies between 12.8 and 16 MWh, depending on the technology used and the age of the smelters. Carbon consumption of the process—roughly about 400 kg of carbon for tone of aluminium—is also significant, contributing to the generation of about 1.5 tons of CO2 per ton of aluminium.
    [Show full text]
  • Energy and Exergy Analyses of Different Aluminum Reduction Technologies
    sustainability Article Energy and Exergy Analyses of Different Aluminum Reduction Technologies Mazin Obaidat 1, Ahmed Al-Ghandoor 1, Patrick Phelan 2, Rene Villalobos 2 and Ammar Alkhalidi 3,* ID 1 Department of Industrial Engineering, The Hashemite University, Az-Zarqa 13133, Jordan; [email protected] (M.O.); [email protected] (A.A.-G.) 2 Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA; [email protected] (P.P.); [email protected] (R.V.) 3 Energy Engineering Department, German Jordanian University, Amman 11180, Jordan * Correspondence: [email protected]; Tel.: +962-7-9611-2506 Received: 23 February 2018; Accepted: 11 April 2018; Published: 17 April 2018 Abstract: This paper examines and compares different aluminum reduction technologies found in the literature as alternatives to the current Hall–Heroult technology. The main inefficiencies in the current Hall–Heroult technology were identified and the advantages of the different proposed technologies over the Hall–Heroult technology were determined. The comparison between the different technologies, namely Hall–Heroult, wetted drained cathode, inert anode, and carbothermic, was based on energy and material requirements, and environmental impact. In order to combine all of the evaluation criteria into one numerical value, the exergy concept was utilized as a decision tool. The results emphasize that in order to analyze any conversion system, the exergy of energy, material, environmental impact, and their associated chain production should be taken into consideration. Keywords: exergy; aluminum; Hall–Heroult; inert anode; wetted drained cathode; carbothermic 1. Introduction Aluminum’s unique properties of low density and corrosion resistance make it a very important metal and a metal of choice to modern manufacturing.
    [Show full text]
  • Special Edition Arabal 2019 Conference
    UMINIUM Journal L International A Special Edition Arabal 2019 Conference Alba to host Arabal 2019 Conference The primary aluminium in- dustry in the Gulf region System optimization for emissions reductions in feeding systems for alu- minium electrolysis cells Gautschi Engineering: Technologically up to the mark with the best market participants More efficiency in fur- nace tending operations New protections © Alba against potline freeze 19 to 21 November 2019 2019 Conference L in the Kingdom of Bahrain A B A AR SPECIAL MÖLLER® PNEUMATIC CONVEYING AND STORAGE Reduce emission with Direct Pot Feeding System KEY BENEFITS ֆ Reduced dust emission. ֆ Consistent alumina quality. ֆ No scaling, no attrition and no segregation. We help you to reduce your dust emissions up to Get in touch with us 90% from the pot feeding system to the gas treatment +49 4101 788-124 centre. At the same time your pots will be fed with qqqҶƇmgb\naҶ[igԐgi]ee]l a consistent alumina quality, thanks to the next level of MÖLLER® pneumatic conveying technology. ALUMINIUM · Special Edition 2019 3 SPECIAL AR A B al 2 0 1 9 C O N F E R ence COntent Alba the host of Arabal 2019 Conference ....................... 4 Arabal 2019 – the conference programme ..................... 5 The primary aluminium industry in the Gulf region .......... 6 Successful system optimization for emissions reductions in feeding systems for aluminium electrolysis cells .......... 10 Sohar Aluminium – ‘Smelter of the Future’ .................... 14 EGA: innovative equipment for safe 10 operation of potrooms ............................................... 16 Hertwich supplies multi-chamber melting furnace to Exlabesa ...................................... 20 Innovations in charging and skimming ........................
    [Show full text]
  • ELECTROWINNING of TITANIUM from TITANIUM TETRACHLORIDE: PILOT PLANT EXPERIENCE and PRODUCTION PLANT PROJECTIONS George Gobel, Jo
    ELECTROWINNING OF TITANIUM FROM TITANIUM TETRACHLORIDE: PILOT PLANT EXPERIENCE AND PRODUCTION PLANT PROJECTIONS George Gobel, John Fisher and Linden E. Snyder The Dow Chemical Company, Midland, Michigan Howmet Turbine Components Corporation, Whitehall, Michigan Introduction High purity electrolytic titanium is being successfully produced on a pilot plant basis by D-H Titanium Company, a joint venture of The Dow Chemical Company and Howmet Turbine Components Corporation. The technology is an out­ growth of work originating at the U.S. Bureau· of Mines, Boulder City, Nevada. [l] The project is aimed at commercialization of this prior bench-scale research. Full-scale prot_otype components are being operated in a single ,anode 5,000 AMP cell producing approximately 45 kg./day of metal. Construction of industrial scale multiple anode cells is presently'underway that will culminate in opera­ tion of a one half to one million kg. per year demonstration plant in 1981. Previous research in the field has been extensive. Major efforts at prototype scale-up have been conducted by the New Jersey Zinc Co. (2 land Titanium Metals Corporation o.f America. [3] In both processes the diaphragm, which is required to ~nable selective oxidation of the chloride ion, was generated in the cell. A substantial fraction of the cathodic current was directed to a screen or perforate plate that divided the cell into anolyte and catholyte areas. As metal deposited restricting the plate openings an efficient semipermeable membrane was set-up which excluded Ti+2, Ti+3 interactions at the anode and cathode. High purity titanium was produced by both companies, how­ ever, the methods employed had several 'inherent shortcomings.
    [Show full text]
  • Development of Iceland's Geothermal Energy for Aluminium Production
    Development of Iceland’s geothermal energy potential for aluminium production – a critical analysis Jaap Krater1 and Miriam Rose In: Abrahamsky, K. (ed.) (2009) Sparking a World-wide Energy Revolution: Social Struggles in the Transition to a Post-Petrol World. AK Press, Edinburgh. Abstract Iceland is developing its hydro and geothermal resources in the context of an energy master plan, mainly to provide power for expansion of the aluminium industry. This paper tests perceptions of geothermal energy as low-carbon, renewable and environmentally benign, using Icelandic geothermal industry as a case study. The application of geothermal energy for aluminium smelting is discussed as well as environmental and human rights record of the aluminium industry in general. Despite application of renewable energy technologies, emission of greenhouse gases by aluminium production is set to increase. Our analysis further shows that carbon emissions of geothermal installations can approximate those of gas-powered plants. In intensely exploited reservoirs, life of boreholes is limited and reservoirs need extensive recovery time after exploitation, making geothermal exploitation at these sites not renewable in the short to medium term. Pollution and landscape impacts are extensive when geothermal technology is applied on a large scale. Background Iceland is known for its geysers, glaciers, geology and Björk, for its relatively successful fisheries management and its rather unsuccessful financial management. But this northern country also harbours the largest remaining wilderness in Europe, an endless landscape of volcanoes, glaciers, powerful rivers in grand canyons, lava fields, swamps and wetlands teeming with birds in summer, and plains of tundra covered with bright coloured mosses and dwarf willow.
    [Show full text]
  • Electrolysis of Water - Wikipedia 1 of 15
    Electrolysis of water - Wikipedia 1 of 15 Electrolysis of water Electrolysis of water is the decomposition of water into oxygen and hydrogen gas due to the passage of an electric current. This technique can be used to make hydrogen gas, a main component of hydrogen fuel, and breathable oxygen gas, or can mix the two into oxyhydrogen, which is also usable as fuel, though more volatile and dangerous. It is also called water splitting. It ideally requires a potential difference of 1.23 volts to split water. Simple setup for demonstration of Contents electrolysis of water at home History Principle Equations Thermodynamics Electrolyte selection Electrolyte for water electrolysis Pure water electrolysis Techniques Fundamental demonstration Hofmann voltameter Industrial High-pressure High-temperature An AA battery in a glass of tap water Alkaline water with salt showing hydrogen Polymer electrolyte membrane produced at the negative terminal Nickel/iron Nanogap electrochemical cells Applications Efficiency Industrial output Overpotential Thermodynamics https://en.wikipedia.org/wiki/Electrolysis_of_water Electrolysis of water - Wikipedia 2 of 15 See also References External links History Jan Rudolph Deiman and Adriaan Paets van Troostwijk used, in 1789, an electrostatic machine to make electricity which was discharged on gold electrodes in a Leyden jar with water.[1] In 1800 Alessandro Volta invented the voltaic pile, and a few weeks later the English scientists William Nicholson and Anthony Carlisle used it for the electrolysis of water. In 1806
    [Show full text]
  • Subsidies to the Aluminium Industry and Climate Change
    THE AUSTRALIA INSTITUTE Background Paper No. 21 Subsidies to the Aluminium Industry and Climate Change Clive Hamilton and Hal Turton Submission to Senate Environment References Committee Inquiry into Australia’s Response to Global Warming, November 1999 The Australia Institute Garden Wing, University House, ANU, ACT 0200 Tel: 02 6249 6221 Fax: 02 6249 6448 Email: [email protected] Website: www.tai.org.au Contents Executive summary 3 1. The aluminium smelting industry and the climate change debate 5 2. Structure of the aluminium smelting industry 6 3. Ownership of the industry 9 4. Electricity pricing and subsidies 13 5. Costs of pollution from the aluminium smelting industry 15 6. Implications of the subsidisation of aluminium smelting industry 17 7. Concluding comments 18 References 20 Appendix 1 Ownership of primary aluminium production in Australia 22 Appendix 2 Aluminium cash price, 1990-1997 25 The Australia Institute 2 Executive summary The aluminium smelting industry accounts for 16% of greenhouse gas emissions from the electricity sector and 6.5% of Australia’s total emissions (excluding land-use change). The aluminium industry has been a strident voice in the debate over climate change policy and has led industry resistance to effective measures to cut emissions. The industry argues that it is of great economic importance to Australia, especially for the foreign exchange its exports earn. It frequently threatens governments with the prospect of closing down its Australian smelters and moving offshore if it is forced to pay higher prices for electricity as a result of climate change policies. Since the Kyoto Protocol was agreed in December 1997, it has argued that the burden for cutting emissions should be placed on other sectors of the economy and households rather than being distributed equally across polluting sectors.
    [Show full text]
  • 5. Electrolytic Processes
    5. Electrolytic Processes 5.1 Introduction • The fact that electrical energy can produce chemical changes and the processes based on it, called the “electrolytic processes”, are widely used for extraction of pure metals from their ores (such as aluminum, zinc, copper, magnesium, sodium etc.), manufacturing of various chemicals (such as caustic soda, potassium permanganate, hydrogen, oxygen, chlorine etc.), electro deposition of metals including electroplating, electrotyping, electroforming, building up of worn-out parts in metallurgical, chemical and other industries. 5.2 Principle of electrolysis • As discussed in the definition of electrolyte, whenever any electrolyte gets dissolved in water, its molecules split into cations and anions moving freely in the electrolytic solution. • Now two metal rods are immersed in the solution and an electrical potential difference applied between the rods externally preferably by a battery. These partly immersed rods are technically referred as electrodes. • The electrode connected with negative terminal of the battery is known as cathode and the electrode connected with positive terminal of the battery is known as anode. • The freely moving positively charged cations are attracted by cathode and negatively charged anions are attracted by anode. - e- e Battery Impure Copper Pure Copper C A a n t SO4- o Cu+ h d + o SO4- Cu e Cu+ d e Cu+ Electrolyte (CuSO4) Impurities Figure 5.1 Electrolysis Prof. Rajan Detroja, EE Department Utilization of Electrical Energy and Traction (2160907) 1 5. Electrolytic Processes • In cathode, the positive cations take electrons from negative cathode and in anode, negative anions give electrons to the positive anode. For continually taking and giving electrons in cathode and anode respectively, there must be flow of electrons in the external circuit of the electrolytic.
    [Show full text]
  • The Need for Effective Risk Mitigation in Aluminium Plants
    PERSPECTIVES THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVETHE NEED RISK FOR MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOREFFECTIVE EFFECTIVE RISK RISK MITIGATION MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATIONIN ALUMINIUM IN ALUMINIUM PLANTS PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATIONRISK ENGINEERING IN DEPARTMENT, ALUMINIUM JUNE 2018 PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVEWWW.TRUSTRE.COM RISK MITIGATION IN ALUMINIUM PLANTS THE NEED FOR EFFECTIVE RISK MITIGATION IN ALUMINIUM PLANTS The need for effective risk mitigation in Aluminium plants Aluminium, the world’s second most preferred metal after iron has a unique combination of qualities. It is lightweight; (approximately one-third the weight of steel for the same volume), has excellent corrosion resistance, and it is non- magnetic with high thermal and electrical conductivity.
    [Show full text]
  • Twenty Compressors Reduce Environmental Impact for Bechtel
    CASE STUDY CONSTRUCTION Twenty Overview compressors Client Betchel reduce Location environmental Alcoa Fjaroaal Smelter Project, Fjaroabyggo, East Iceland Application impact for Bechtel Construction phases and operation of aluminium CompAir has proved its cool credentials in Iceland smelting plant thanks to the hot performance of its industrial and portable compressors, which have helped to Products reduce environmental impact by up to 30%. Various portable and industrial compressors, including new C180TS-9 TurboScrews Twenty compressors were purchased as part of an exclusive partnership with global engineering solutions Customer Benefits provider Bechtel and Icelandic engineering specialist Environmental impact reduced/complete equipment HRV, for the construction of one of the world’s largest and service solution from single supplier aluminium smelting plants in Iceland. Complete Equipment Solution vibration for storage tank wall forming and provision of power for general machine tool operation. This included portable Tasked with providing a complete process solution for the C50s, C76s with electrical generators, C105-14 high-pressure construction of the one billion dollar plus Alcoa Fjarðaál units and two revolutionary, fuel saving C180TS-9 TurboScrew Smelter Project, owned by Alcoa, the world’s leading producer models. Bechtel also installed a stationary L30 compressor to of aluminium, Bechtel approached CompAir to provide the run the cathode rodding induction furnace, a key process compressed air solutions required for both the construction
    [Show full text]
  • Electrolytic Concentration of Caustic Soda Carl Rene Vander Linden Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1950 Electrolytic concentration of caustic soda Carl Rene Vander Linden Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Chemical Engineering Commons Recommended Citation Vander Linden, Carl Rene, "Electrolytic concentration of caustic soda " (1950). Retrospective Theses and Dissertations. 14031. https://lib.dr.iastate.edu/rtd/14031 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps.
    [Show full text]