Highlights a Showcase of Cutting-Edge Research from 2012 New Journal of Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Citation Analysis for the Modern Instructor: an Integrated Review of Emerging Research
CITATION ANALYSIS FOR THE MODERN INSTRUCTOR: AN INTEGRATED REVIEW OF EMERGING RESEARCH Chris Piotrowski University of West Florida USA Abstract While online instructors may be versed in conducting e-Research (Hung, 2012; Thelwall, 2009), today’s faculty are probably less familiarized with the rapidly advancing fields of bibliometrics and informetrics. One key feature of research in these areas is Citation Analysis, a rather intricate operational feature available in modern indexes such as Web of Science, Scopus, Google Scholar, and PsycINFO. This paper reviews the recent extant research on bibliometrics within the context of citation analysis. Particular focus is on empirical studies, review essays, and critical commentaries on citation-based metrics across interdisciplinary academic areas. Research that relates to the interface between citation analysis and applications in higher education is discussed. Some of the attributes and limitations of citation operations of contemporary databases that offer citation searching or cited reference data are presented. This review concludes that: a) citation-based results can vary largely and contingent on academic discipline or specialty area, b) databases, that offer citation options, rely on idiosyncratic methods, coverage, and transparency of functions, c) despite initial concerns, research from open access journals is being cited in traditional periodicals, and d) the field of bibliometrics is rather perplex with regard to functionality and research is advancing at an exponential pace. Based on these findings, online instructors would be well served to stay abreast of developments in the field. Keywords: Bibliometrics, informetrics, citation analysis, information technology, Open resource and electronic journals INTRODUCTION In an ever increasing manner, the educational field is irreparably linked to advances in information technology (Plomp, 2013). -
CERN Bulletin
CERN Bulletin Nos 41 & 42 – 12 & 19 October 2011 Upstream from OPERA: extreme Science driving facilities for attention to detail particle physics his week, CERN played host to the T10th ICFA (International Commit- tee for Future Accelerators) seminar, which brought together some 200 scientists, government agency rep- resentatives and lab directors from around the world to take the pulse of our field. ICFA seminars take place every three years, and this time the emphasis was on science as the driv- ing force for facilities. The theme of this year’s seminar could not have been more timely. (Continued on page 2) News Upstream of OPERA: extreme attention to detail 1 A word from the DG LHC Report: Steady as she goes 3 No mission is impossible for LHCb 4 In this issue Touching base with OPERA 5 Let the flowers grow… 6 “Light” might be the answer 7 CERN School of Physics travels to Romania 8 At the heart of CERN for one night 9 Playing soon at a planetarium near you 10 Underground installations of the CERN Neutrinos to Gran Sasso (CNGS) project. Indian President visits CERN 11 Luis Álvarez-Gaumé to speak at El Ser Creativo First ingredient: a Two weeks ago, at a seminar held at CERN, the OPERA 2011 11 stable beam collaboration revealed their astonishing observation: neutrinos A Chat with James Watson 11 might move faster than light. The finding is currently under An exact “Tour de France” CERN produces neu- scrutiny in the scientific community. While the result downstream passes through CERN 12 trinos by sending a Did we build the LHC just to find the Higgs? 13 beam of protons to at Gran Sasso speaks for itself, upstream at CERN things are no Security Bingo 14 hit a target. -
Photons That Travel in Free Space Slower Than the Speed of Light Authors
Title: Photons that travel in free space slower than the speed of light Authors: Daniel Giovannini1†, Jacquiline Romero1†, Václav Potoček1, Gergely Ferenczi1, Fiona Speirits1, Stephen M. Barnett1, Daniele Faccio2, Miles J. Padgett1* Affiliations: 1 School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow G12 8QQ, UK 2 School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh EH14 4AS, UK † These authors contributed equally to this work. * Correspondence to: [email protected] Abstract: That the speed of light in free space is constant is a cornerstone of modern physics. However, light beams have finite transverse size, which leads to a modification of their wavevectors resulting in a change to their phase and group velocities. We study the group velocity of single photons by measuring a change in their arrival time that results from changing the beam’s transverse spatial structure. Using time-correlated photon pairs we show a reduction of the group velocity of photons in both a Bessel beam and photons in a focused Gaussian beam. In both cases, the delay is several microns over a propagation distance of the order of 1 m. Our work highlights that, even in free space, the invariance of the speed of light only applies to plane waves. Introducing spatial structure to an optical beam, even for a single photon, reduces the group velocity of the light by a readily measurable amount. One sentence summary: The group velocity of light in free space is reduced by controlling the transverse spatial structure of the light beam. Main text The speed of light is trivially given as �/�, where � is the speed of light in free space and � is the refractive index of the medium. -
Arxiv:1603.00726V1 [Physics.Optics] 2 Mar 2016
Single-pixel 3D imaging with time-based depth resolution Ming-Jie Sun,1, 2, ∗ Matthew. P. Edgar,2 Graham M. Gibson,2 Baoqing Sun,2 Neal Radwell,2 Robert Lamb,3 and Miles J. Padgett2, y 1Department of Opto-electronic Engineering, Beihang University, Beijing, 100191, China 2SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK 3Selex ES, Edinburgh, UK Time-of-flight three dimensional imaging is an important tool for many applications, such as object recognition and remote sensing. Unlike conventional imaging approach using pixelated detector array, single-pixel imaging based on projected patterns, such as Hadamard patterns, utilises an alternative strategy to acquire information with sampling basis. Here we show a modified single-pixel camera using a pulsed illumi- nation source and a high-speed photodiode, capable of reconstructing 128×128 pixel resolution 3D scenes to an accuracy of ∼ 3 mm at a range of ∼ 5 m. Furthermore, we demonstrate continuous real-time 3D video with a frame-rate up to 12 Hz. The sim- plicity of the system hardware could enable low-cost 3D imaging devices for precision ranging at wavelengths beyond the visible spectrum. Introduction Whilst a variety of 3D imaging technologies are suited for different applications, time-of-flight (TOF) systems have set the benchmark for performance with regards to a combination of accuracy and operating range. Time-of-flight imaging is performed by illuminating a scene with a pulsed light source and observing the back-scattered light. Correlating the detection time of the back-scattered light with the time of the illumination pulse allows the distance, d, to objects within the scene to be estimated by d = tc=2, where t is the TOF and c is the propagation speed of light. -
Introductory Guide for Authors This Guide Is for Early-Career Researchers Who Are Beginning to Write Papers for Publication
Introductory guide for authors This guide is for early-career researchers who are beginning to write papers for publication. publishingsupport.iopscience.org publishingsupport.iopscience.org This guide is for early-career researchers who are beginning to write papers for publication. Academic publishing is rapidly changing, with new technologies and publication models giving authors much more choice over where and how to publish their work. Whether you are writing up the results of a PhD chapter or submitting your first paper, knowing how to prepare your work for publication is essential. This guide will provide an overview of academic publishing and advice on how to make the most of the process for sharing your research. For more information and to download a digital version of this guide go to publishingsupport.iopscience.org. c o n t e n t s Page Choosing where to submit your paper 4 Writing and formatting 6 Peer-review process 8 Revising and responding to referee reports 10 Acceptance and publication 12 Promoting your published work 13 Copyright and ethical integrity 14 Frequently asked questions 15 Publishing glossary 16 IOP publications 18 Introductory guide for authors 3 publishingsupport.iopscience.org Choosing where to submit your paper It can be tempting to begin writing a paper before giving much thought to where it might be published. However, choosing a journal to target before you begin to prepare your paper will enable you to tailor your writing to the journal’s audience and format your paper according to its specific guidelines, which you may find on the journal’s website. -
Why Are New Journals Created?
Why are new journals created? An international analysis of Information and Documentation titles (2013-2018) Cristóbal Urbano; Rosângela Schwarz Rodrigues; Marta Somoza-Fernández; Josep- Manuel Rodríguez-Gairín Nota: Este artículo se puede leer en español en: http://www.elprofesionaldelainformacion.com/contenidos/2020/jul/urbano-rodrigues-somoza-rodriguez_es.pdf How to cite this article: Urbano, Cristóbal; Rodrigues, Rosângela Schwarz; Somoza-Fernández, Marta; Rodríguez-Gairín, Josep-Ma- nuel (2020). “Why are new journals created? An international analysis of Information and Documentation titles (2013-2018)”. Profesional de la información, v. 29, n. 4, e290413. https://doi.org/10.3145/epi.2020.jul.13 Manuscript received on April 28th 2020 Accepted on June 08th 2020 Cristóbal Urbano * Rosângela Schwarz Rodrigues https://orcid.org/0000-0003-0935-6436 https://orcid.org/0000-0002-9639-6390 Universitat de Barcelona, Departament Universidade Federal de Santa Catarina, de Biblioteconomia, Documentació i Programa de Pós-Graduação en Ciência da Comunicació Audiovisual Informação. Melcior de Palau, 140 Florianópolis, SC, Brazil. 08014 Barcelona, Spain [email protected] [email protected] Marta Somoza-Fernández Josep-Manuel Rodríguez-Gairín https://orcid.org/0000-0002-4769-9010 https://orcid.org/0000-0001-8375-7911 Universitat de Barcelona, Departament Universitat de Barcelona, Departament de Biblioteconomia, Documentació i de Biblioteconomia, Documentació i Comunicació Audiovisual Comunicació Audiovisual Melcior de Palau, 140 Melcior de Palau, -
Lenses Can Bend Light and Sound in Almost Any Direction 2 April 2012, by Lisa Zyga
Lenses can bend light and sound in almost any direction 2 April 2012, by Lisa Zyga a change, or gradient, in the refractive index of a lens, the scientists could create anisotropies - that is, make the lens' refractive index directionally dependent. "We explain how one can either focus or bend (at 90°, 180° and 360°) electromagnetic or pressure waves simply by creating some gradient of the refractive index, which in essence is associated with effective anisotropy," Guenneau told PhysOrg.com. "In layman's terms, we have curved the metric of space in the electromagnetic and acoustic contexts. We used realistic physical parameters and stress that one can use analogies 3D view of the electric field for a lens that bends light 90 between optics and acoustics to further the degrees. Image credit: T. M. Chang, et al. ©2012 IOP understanding: sometimes, thinking in terms of Publishing Ltd and Deutsche Physikalische Gesellschaft sound waves allows us to better grasp the foundations of transformational optics, as light waves are more elusive (light has complex physical properties such as polarization and moreover, it (PhysOrg.com) -- When an optical fiber is bent by can propagate in vacuum unlike sound waves, 90° or more, the light begins to leak away, posing which is something that still puzzles me)." a problem for fiber optics communications. But by using special lenses that can bend light by not only These GRIN lenses, which can be considered 90°, but also 180° (i.e., a U-turn) or 360° (i.e., a metamaterials and metafluids, build upon the full loop), scientists may limit light leakage in principles of the invisibility cloak, which was co- optical fibers and overcome this problem, not to discovered in the spring of 2006 by Sir John Pendry mention provide a useful material for many other of Imperial College London and Ulf Leonhardt of applications. -
Swiss Neutrino Programme Laura Baudis Nicola Serra Alain Blondel
Swiss Neutrino Programme Laura Baudis Nicola Serra Alain Blondel Teresa Montaruli Antonio Ereditato André Rubbia Swiss Neutrino Programme Basic Neutrino Properties Neutrino Oscillation Physics (supported by relevant theoretical activities) Year 2015 FTE: 19 PhD students, 21.5 PostDocs, 10.25 Senior, 9 Technicians. (30 June 2015, CHIPP) I. Kreslo, 1.04.2016 RECFA visit to Switzerland -- ETHZ 2 Past results from experiments on neutrino properties Search for Majorana neutrinos with the first two years of EXO-200 data, J. B. Albert et al, (EXO collaboration), Nature 510, (2014) 229±234 First Search for Lorentz and CPT Violation in Double Beta Decay with EXO-200, J. B. Albert et al, (EXO collaboration), arXiv:1601.07266 (2016) 6 pp. Results on Neutrinoless Double-β Decay of Ge76 from Phase I of the GERDA Experiment M. Agostini et al. (GERDA Collaboration) Phys. Rev. Lett. 111 (2013) 122503 I. Kreslo, 1.04.2016 RECFA visit to Switzerland -- ETHZ 3 Past results from neutrino oscillation experiments Measurement of Neutrino Oscillation by the K2K Experiment, M. H. Ahn et al. (K2K Collaboration), Phys. Rev. D 74 (2006), 072003 Indication of Electron Neutrino Appearance from an Accelerator-Produced Off-Axis Muon Neutrino Beam K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107 (2011) 041801 Observation of Electron Neutrino Appearance in a Muon Neutrino Beam K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 112 (2014) 061802 Measurements of π± differential yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS N. Abgrall et al., CERN-EP-2016-057, arXiv:1603.06774 Discovery of tau neutrino appearance in the CNGS neutrino beam with the OPERA experiment, N. -
Arxiv:2005.03760V1 [Physics.Class-Ph] 4 May 2020
Amplification of waves from a rotating body Marion Cromb,1 Graham M. Gibson,1 Ermes Toninelli,1 Miles J. Padgett,1, ∗ Ewan M. Wright,2 and Daniele Faccio1, 2, y 1School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK 2College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA (Dated: May 11, 2020) In 1971 Zel'dovich predicted that quantum fluctuations and classical waves reflected from a ro- tating absorbing cylinder will gain energy and be amplified. This key conceptual step towards the understanding that black holes may also amplify quantum fluctuations, has not been verified ex- perimentally due to the challenging experimental requirements on the cylinder rotation rate that must be larger than the incoming wave frequency. Here we experimentally demonstrate that these conditions can be satisfied with acoustic waves. We show that low-frequency acoustic modes with orbital angular momentum are transmitted through an absorbing rotating disk and amplified by up to 30% or more when the disk rotation rate satisfies the Zel'dovich condition. These experiments address an outstanding problem in fundamental physics and have implications for future research into the extraction of energy from rotating systems. Introduction. In 1969, Roger Penrose proposed a an amplifier. Outgoing waves then have an increased am- method to extract the rotational energy of a rotating plitude, therefore extracting energy from the rotational black hole, now known as Penrose superradiance [1]. Pen- energy of the body in the same spirit of Penrose's pro- rose suggested that an advanced civilisation might one posal. day be able to extract energy from a rotating black hole Satisfying the condition in Eq. -
PDF Program Download
May 17-20, 2021 | Virtual Conference 2021 Please visit our website for more information! CONFERENCE i2mtc2021.ieee-ims.org PROGRAM Sponsors and Organizers SPONSORS AND ORGANIZERS Table of Contents Welcome Message from the General Co-Chairs ........................................................................................................ 3 I2MTC 2021 Organizing Committee ............................................................................................................................... 5 I2MTC Board of Directors ................................................................................................................................................ 6 I2MTC 2021 Associate Technical Program Chairs .................................................................................................... 7 Special Session Organizers ............................................................................................................................................ 8 I2MTC 2021 Reviewers ...................................................................................................................................................... 9 I2MTC 2021 Conference Sponsors .............................................................................................................................. 11 I2MTC 2021 Plenary Speakers ...................................................................................................................................... 12 I2MTC 2021 Plenary Speakers (continued) .............................................................................................................. -
A Mind-Bending Technology Goes Mainstream Electronic Line Calling Get Closer to the Hawk-Eye Innovations, UK UK’S Game-Changing Technology
Taiwan and the one-China fiction IS up against the wall in Mosul In praise of quinoa, millet and teff Is there a bubble in the markets? MARCH 11TH–17TH 2017 Quantum leaps A mind-bending technology goes mainstream Electronic Line Calling Get closer to the Hawk-Eye Innovations, UK UK’s game-changing technology. Millimetres separate victory from defeat in any sport. Now used by 20 sports in over 80 tournaments worldwide, Hawk-Eye’s electronic line calling service is making sport fairer, smarter and more spectacular. It’s just one example of the ingenuity that the UK’s 5.5 million companies can offer your business. Find your ideal trade partner at great.gov.uk Contents The Economist March 11th 2017 3 5 The world this week 32 WikiLeaks, again The spy who came in for the code Leaders 33 Chicago 7 Subatomic opportunities This American carnage Quantum leaps 33 Campus free speech 8 Britain’s budget Blue on blue Spreadsheets v politics 34 Lexington 8 Stockmarkets Safety politics Bubble-spotting 9 Geopolitics The Americas Ryancare The House proposal One China, many meanings 35 Brazil’s president to amend Obamacare may 10 Food snobbery and Accidental, consequential break parts of America’s economics health-insurance market, In praise of quinoa 36 Race in the Caribbean On the cover Curry cultures page 30 After a century stuck in 38 Bello textbooks, mind-bending Letters Stealing Venezuela quantum effects are about to 11 On renewable energy power mainstream innovation: leader, page 7. Middle East and Africa Big firms and startups are Briefing 39 Defeating -
Curriculum Vitae
Curriculum vitae DATE October 30, 2013 PERSONAL DETAILS Name: Professor Ulf Leonhardt Address: Department of Physics of Complex Systems Weizmann Institute of Science Rehovot 76100, Israel E{mail: [email protected] Phone: +972 934 6337 Mobile: +972 54 2234757 Date of birth: October 9, 1965 Nationality: Germany, UK EMPLOYMENT 2012- Weizmann Institute of Science, Israel Professor of Physics 2012-2017 South China Normal University, China Visiting Distinguished Professor 2011 University of Vienna and Austrian Academy of Sciences Visiting Professor 2008 National University of Singapore Visiting Professor 2000-2012 University of St Andrews, UK Chair in Theoretical Physics 1998{2000 Royal Institute of Technology (KTH), Sweden G¨oran{Gustafssonand Feodor{Lynen Fellow 22/04 1998 Habilitation in Theoretical Physics Title of the thesis: State reconstruction in quantum mechanics 1996{1998 University of Ulm, Germany Habilitation fellow of the German Research Council (Deutsche Forschungsgemeinschaft) 1995{1996 Oregon Center for Optics, University of Oregon, Eugene, USA Otto Hahn Fellow and Research Scholar 1994{1995 Max Planck Research Group Nonclassical Radiation Postdoctoral fellow of the Max Planck Society 1 EDUCATION 17/12 1993 PhD in Physics (Dr. rer. nat.) from Humboldt University Grade: Summa Cum Laude Title of the thesis: Quantum theory of simple optical instruments Summer 1993 Imperial College London, UK Visiting doctoral student 1992{1993 Max Planck Research Group Nonclassical Radiation at Humboldt University Berlin Doctoral student May 1990 Diploma in Physics (Dipl. Phys.) from Jena University Grade: Distinction Title of the thesis: Quantum optics of oscillator media 1987{1988 Moscow State University, Russia Exchange student, studies in quantum–field theory 1984{1990 Friedrich Schiller University Jena, Germany University student, regular university study of physics AWARDS AND FELLOWSHIPS 2012 Thousand Talents Award of China 2009 Theo Murphy Blue Skies Award of the Royal Society Research fellowship.