Geometric Number Theory Lenny Fukshansky

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Number Theory Lenny Fukshansky Geometric Number Theory Lenny Fukshansky Minkowski's creation of the geometry of numbers was likened to the story of Saul, who set out to look for his father's asses and discovered a Kingdom. J. V. Armitage Contents Chapter 1. Geometry of Numbers 1 1.1. Introduction 1 1.2. Norms, sets, and volumes 2 1.3. Lattices 7 1.4. Theorems of Blichfeldt and Minkowski 15 1.5. Successive minima 18 1.6. Inhomogeneous minimum 23 1.7. Problems 26 Chapter 2. Discrete Optimization Problems 30 2.1. Sphere packing, covering and kissing number problems 30 2.2. Lattice packings in dimension 2 36 2.3. Algorithmic problems on lattices 41 2.4. Problems 45 Chapter 3. Quadratic Forms 46 3.1. Introduction to quadratic forms 46 3.2. Minkowski's reduction 53 3.3. Sums of squares 56 3.4. Problems 60 Chapter 4. Diophantine Approximation 63 4.1. Real and rational numbers 63 4.2. Algebraic and transcendental numbers 65 4.3. Dirichlet's Theorem 69 4.4. Liouville's theorem and construction of a transcendental number 73 4.5. Roth's theorem 75 4.6. Continued fractions 78 4.7. Kronecker's theorem 84 4.8. Problems 87 Chapter 5. Algebraic Number Theory 90 5.1. Some field theory 90 5.2. Number fields and rings of integers 96 5.3. Noetherian rings and factorization 105 5.4. Norm, trace, discriminant 109 5.5. Fractional ideals 113 5.6. Further properties of ideals 117 5.7. Minkowski embedding 121 5.8. The class group 124 v vi CONTENTS 5.9. Dirichlet's unit theorem 127 5.10. Problems 131 Chapter 6. Transcendental Number Theory 135 6.1. Function fields and transcendence 135 6.2. Hermite, Lindemann, Weierstrass 138 6.3. Beyond Lindemann-Weierstrass 144 6.4. Siegel's Lemma 147 6.5. The Six Exponentials Theorem 151 6.6. Problems 154 Chapter 7. Further Topics 155 7.1. Frobenius problem 155 7.2. Lattice point counting in homogeneously expanding domains 162 7.3. Simultaneous Diophantine approximation 169 7.4. Absolute values and height functions 175 7.5. Mahler measure and Lehmer's problem 188 7.6. Points of small height 192 7.7. Problems 195 Appendices Appendix A. Some properties of abelian groups 198 Appendix B. Maximum Modulus Principle and Fundamental Theorem of Algebra 201 Appendix C. Brief remarks on exponential and logarithmic functions 203 Appendix. Bibliography 207 CHAPTER 1 Geometry of Numbers 1.1. Introduction The foundations of the Geometry of Numbers were laid down by Hermann Minkowski in his monograph \Geometrie der Zahlen", which was published in 1910, a year after his death. This subject is concerned with the interplay of compact convex 0-symmetric sets and lattices in Euclidean spaces. A set K ⊂ Rn is compact if it is closed and bounded, and it is convex if for any pair of points x; y 2 K the line segment connecting them is entirely contained in K, i.e. for any 0 ≤ t ≤ 1, tx + (1 − t)y 2 K. Further, K is called 0-symmetric if for any x 2 K, −x 2 K. Given such a set K in Rn, one can ask for an easy criterion to determine if K contains any nonzero points with integer coordinates. While for an arbitrary set K such a criterion can be rather difficult, in case of K as above a criterion purely in terms of its volume is provided by Minkowski's fundamental theorem. It is not difficult to see that K must in fact be convex and 0-symmetric for a criterion like this purely in terms of the volume of K to be possible. Indeed, the rectangle 2 R = (x; y) 2 R : 1=3 ≤ x ≤ 2=3; −t ≤ y ≤ t is convex for every t, but not 0-symmetric, and its area is 2t=3, which can be arbitrarily large depending on t while it still contains no integer points at all. On the other hand, the set R+ [ −R+ where R+ = f(x; y) 2 R : y ≥ 0g and −R+ = f(−x; −y):(x; y) 2 R+g is 0-symmetric, but not convex, and again can have arbitrarily large area while containing no integer points. Minkowski's theory applies not only to the integer lattice, but also to more general lattices. Our goal in this chapter is to introduce Minkowski's powerful theory, starting with the basic notions of lattices. 1 2 1. GEOMETRY OF NUMBERS 1.2. Norms, sets, and volumes Throughout this section we will work in the real vector space Rn, where n ≥ 1. Definition 1.2.1. A function F : Rn ! R is called a norm if (1) F (x) ≥ 0 with equality if and only if x = 0, (2) F (ax) = jajF (x) for each a 2 R, x 2 Rn, (3) Triangle inequality: F (x + y) ≤ F (x) + F (y) for all x; y 2 Rn. n For each positive integer p, we can introduce the Lp-norm k kp on R defined by n !1=p X p kxkp = jxij ; i=1 n for each x = (x1; : : : ; xn) 2 R . We also define the sup-norm, given by jxj = max jxij: 1≤i≤n These indeed are norms on Rn (Problem 1.1). Unless stated otherwise, we will regard Rn as a normed linear space (i.e. a vector space equipped with a norm) with respect to the Euclidean norm k k2: from now on we will refer to it simply as k k. Recall that for every two points x; y 2 Rn, Euclidean distance between them is given by d(x; y) = kx − yk: We start with definitions and examples of a few different types of subsets of Rn that we will often encounter. Definition 1.2.2. A subset X ⊆ Rn is called compact if it is closed and bounded. Recall that a set is closed if it contains all of its limit points, and it is bounded if there exists M 2 R>0 such that for every two points x; y in this set d(x; y) ≤ M. For instance, the closed unit ball centered at the origin in Rn n Bn = fx 2 R : kxk ≤ 1g is a compact set, but its interior, the open ball o n Bn = fx 2 R : kxk < 1g is not a compact set. If we now write n Sn−1 = fx 2 R : kxk = 1g n for the unit sphere centered at the origin in R , then it is easy to see that Bn = o Sn−1 [ Bn, and we refer to Sn−1 as the boundary of Bn (sometimes we will write o Sn−1 = @Bn) and to Bn as the interior of Bn. From here on we will also assume that all our compact sets have no isolated points. Then we can say more generally that every compact set X ⊂ Rn has boundary @X and interior Xo, and can be represented as X = @X [ Xo. To make this notation precise, we say that a point x 2 X is a boundary point of X if every open neighborhood U of x contains points in X and points not in X; we write @X for the set of all boundary points of X. All points x 2 X that are not in @X are called interior points of X, and we write Xo for the set of all interior points of X. 1.2. NORMS, SETS, AND VOLUMES 3 Definition 1.2.3. A compact subset X ⊆ Rn is called convex if whenever x; y 2 X, then any point of the form tx + (1 − t)y; where t 2 [0; 1], is also in X; i.e. whenever x; y 2 X, then the entire line segment from x to y lies in X. We now briefly mention a special class of convex sets. Given a set X in Rn, we define the convex hull of X to be the set ( ) X X Co(X) = txx : tx ≥ 0 8 x 2 X; tx = 1 : x2X x2X It is easy to notice that whenever a convex set contains X, it must also contain Co(X). Hence convex hull of a collection of points should be thought of as the smallest convex set containing all of them. If the set X is finite, then its convex hull is called a convex polytope. Most of the times we will be interested in convex polytopes, but occasionally we will also need convex hulls of infinite sets. There is an alternative way of describing convex polytopes. Recall that a hyperplane in Rn is a translate of a co-dimension one subspace, i.e. a subset H in Rn is called a hyperplane if ( n ) n X (1.1) H = x 2 R : aixi = b ; i=1 n for some a1; : : : ; an; b 2 R. Notice that each hyperplane divides R into two halfs- paces. More precisely, a closed halfspace H in Rn is a set of all x 2 Rn such that Pn Pn either i=1 aixi ≥ b or i=1 aixi ≤ b for some a1; : : : ; an; b 2 R. Minkowski-Weyl theorem (Problem 1.4) asserts that a set is a convex polytope in Rn if and only if it is a bounded intersection of finitely many halfspaces. Polytopes form a very nice class of convex sets in Rn, and we will talk more about them later. There is, of course, a large variety of sets that are not necessarily convex. Among these, ray sets and star bodies form a particularly nice class.
Recommended publications
  • Kissing Numbers: Surprises in Dimension Four Günter M
    Kissing numbers: Surprises in Dimension Four Günter M. Ziegler, TU Berlin The “kissing number problem” is a basic geometric problem that got its name from billards: Two balls “kiss” if they touch. The kissing number problem asks how many other balls can touch one given ball at the same time. If you arrange the balls on a pool ta- ble, it is easy to see that the answer is exactly six: Six balls just perfectly surround a given ball. Graphic: Detlev Stalling, ZIB Berlin and at the same time Vladimir I. Levenstein˘ in Russia proved that the correct, exact maximal numbers for the kissing number prob- lem are 240 in dimension 8, and 196560 in dimension 24. This is amazing, because these are also the only two dimensions where one knows a precise answer. It depends on the fact that mathemati- cians know very remarkable configurations in dimensions 8 and 24, which they call the E8 lattice and the Leech lattice, respectively. If, however, you think about this as a three-dimensional problem, So the kissing number problem remained unsolved, in particular, the question “how many balls can touch a given ball at the same for the case of dimension four. The so-called 24-cell, a four- time” becomes much more interesting — and quite complicated. In dimensional “platonic solid” of remarkable beauty (next page), fact, The 17th century scientific genius Sir Isaac Newton and his yields a configuration of 24 balls that would touch a given one in colleague David Gregory had a controversy about this in 1694 — four-dimensional space.
    [Show full text]
  • Gazette Des Mathématiciens
    JUILLET 2018 – No 157 la Gazette des Mathématiciens • Autour du Prix Fermat • Mathématiques – Processus ponctuels déterminantaux • Raconte-moi... le champ libre gaussien • Tribune libre – Quelle(s) application(s) pour le plan Torossian-Villani la GazetteComité de rédaction des Mathématiciens Rédacteur en chef Sébastien Gouëzel Boris Adamczewski Université de Nantes Institut Camille Jordan, Lyon [email protected] [email protected] Sophie Grivaux Rédacteurs Université de Lille [email protected] Thomas Alazard École Normale Supérieure de Paris-Saclay [email protected] Fanny Kassel IHÉS Maxime Bourrigan [email protected] Lycée Saint-Geneviève, Versailles [email protected] Pauline Lafitte Christophe Eckès École Centrale, Paris Archives Henri Poincaré, Nancy [email protected] [email protected] Damien Gayet Romain Tessera Institut Fourier, Grenoble Université Paris-Sud [email protected] [email protected] Secrétariat de rédaction : smf – Claire Ropartz Institut Henri Poincaré 11 rue Pierre et Marie Curie 75231 Paris cedex 05 Tél. : 01 44 27 67 96 – Fax : 01 40 46 90 96 [email protected] – http://smf.emath.fr Directeur de la publication : Stéphane Seuret issn : 0224-8999 À propos de la couverture. Cette image réalisée par Alejandro Rivera (Institut Fourier) est le graphe de la partie positive du champ libre gaussien sur le tore plat 2=(2á2) projeté sur la somme des espaces propres du laplacien de valeur propre plus petite que 500. Les textures et couleurs ajoutées sur le graphe sont pure- ment décoratives. La fonction a été calculée avec C++ comme une somme de polynômes trigonométriques avec des poids aléatoires bien choisis, le graphe a été réalisé sur Python et les textures et couleurs ont été réalisées avec gimp.
    [Show full text]
  • Algebraic Generality Vs Arithmetic Generality in the Controversy Between C
    Algebraic generality vs arithmetic generality in the controversy between C. Jordan and L. Kronecker (1874). Frédéric Brechenmacher (1). Introduction. Throughout the whole year of 1874, Camille Jordan and Leopold Kronecker were quarrelling over two theorems. On the one hand, Jordan had stated in his 1870 Traité des substitutions et des équations algébriques a canonical form theorem for substitutions of linear groups; on the other hand, Karl Weierstrass had introduced in 1868 the elementary divisors of non singular pairs of bilinear forms (P,Q) in stating a complete set of polynomial invariants computed from the determinant |P+sQ| as a key theorem of the theory of bilinear and quadratic forms. Although they would be considered equivalent as regard to modern mathematics (2), not only had these two theorems been stated independently and for different purposes, they had also been lying within the distinct frameworks of two theories until some connections came to light in 1872-1873, breeding the 1874 quarrel and hence revealing an opposition over two practices relating to distinctive cultural features. As we will be focusing in this paper on how the 1874 controversy about Jordan’s algebraic practice of canonical reduction and Kronecker’s arithmetic practice of invariant computation sheds some light on two conflicting perspectives on polynomial generality we shall appeal to former publications which have already been dealing with some of the cultural issues highlighted by this controversy such as tacit knowledge, local ways of thinking, internal philosophies and disciplinary ideals peculiar to individuals or communities [Brechenmacher 200?a] as well as the different perceptions expressed by the two opponents of a long term history involving authors such as Joseph-Louis Lagrange, Augustin Cauchy and Charles Hermite [Brechenmacher 200?b].
    [Show full text]
  • Local Covering Optimality of Lattices: Leech Lattice Versus Root Lattice E8
    Local Covering Optimality of Lattices: Leech Lattice versus Root Lattice E8 Achill Sch¨urmann, Frank Vallentin ∗ 10th November 2004 Abstract We show that the Leech lattice gives a sphere covering which is locally least dense among lattice coverings. We show that a similar result is false for the root lattice E8. For this we construct a less dense covering lattice whose Delone subdivision has a common refinement with the Delone subdivision of E8. The new lattice yields a sphere covering which is more than 12% less dense than the formerly ∗ best known given by the lattice A8. Currently, the Leech lattice is the first and only known example of a locally optimal lattice covering having a non-simplicial Delone subdivision. We hereby in particular answer a question of Dickson posed in 1968. By showing that the Leech lattice is rigid our answer is even strongest possible in a sense. 1 Introduction The Leech lattice is the exceptional lattice in dimension 24. Soon after its discovery by Leech [Lee67] it was conjectured that it is extremal for several geometric problems in R24: the kissing number problem, the sphere packing problem and the sphere covering problem. In 1979, Odlyzko and Sloane and independently Levenshtein solved the kissing number problem in dimension 24 by showing that the Leech lattice gives an optimal solution. Two years later, Bannai and Sloane showed that it gives the unique solution up to isometries (see [CS88], Ch. 13, 14). Unlike the kissing number problem, the other two problems are still open. Recently, Cohn and Kumar [CK04] showed that the Leech lattice gives the unique densest lattice sphere packing in R24.
    [Show full text]
  • The BEST WRITING on MATHEMATICS
    The BEST WRITING on MATHEMATICS 2012 The BEST WRITING on MATHEMATICS 2012 Mircea Pitici, Editor FOREWORD BY DAVID MUMFORD P RI NC E TO N U N IVER S I T Y P RE SS P RI NC E TO N A N D OX FORD Copyright © 2013 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved ISBN 978- 0- 691-15655-2 This book has been composed in Perpetua Printed on acid- free paper. ∞ Printed in the United States of America 1 3 5 7 9 10 8 6 4 2 For my parents Contents Foreword: The Synergy of Pure and Applied Mathematics, of the Abstract and the Concrete DAVID MUMFORD ix Introduction MIRCEA PITICI xvii Why Math Works MARIO LIVIO 1 Is Mathematics Discovered or Invented? TIMOTHY GOWERS 8 The Unplanned Impact of Mathematics PETER ROWLETT 21 An Adventure in the Nth Dimension BRIAN HAYES 30 Structure and Randomness in the Prime Numbers TERENCE TAO 43 The Strangest Numbers in String Theory JOHN C. BAEZ AND JOHN HUERTA 50 Mathematics Meets Photography: The Viewable Sphere DAVID SWART AND BRUCE TORRENCE 61 Dancing Mathematics and the Mathematics of Dance SARAH- MARIE BELCASTRO AND KARL SCHAFFER 79 Can One Hear the Sound of a Theorem? ROB SCHNEIDERMAN 93 Flat- Unfoldability and Woven Origami Tessellations ROBERT J. LANG 113 A Continuous Path from High School Calculus to University Analysis TIMOTHY GOWERS 129 viii Contents Mathematics Teachers’ Subtle, Complex Disciplinary Knowledge BRENT DAVIS 135 How to Be a Good Teacher Is an Undecidable Problem ERICA FLAPAN 141 How Your Philosophy of Mathematics Impacts Your Teaching BONNIE GOLD 149 Variables in Mathematics Education SUSANNA S.
    [Show full text]
  • Mathematical Circus & 'Martin Gardner
    MARTIN GARDNE MATHEMATICAL ;MATH EMATICAL ASSOCIATION J OF AMERICA MATHEMATICAL CIRCUS & 'MARTIN GARDNER THE MATHEMATICAL ASSOCIATION OF AMERICA Washington, DC 1992 MATHEMATICAL More Puzzles, Games, Paradoxes, and Other Mathematical Entertainments from Scientific American with a Preface by Donald Knuth, A Postscript, from the Author, and a new Bibliography by Mr. Gardner, Thoughts from Readers, and 105 Drawings and Published in the United States of America by The Mathematical Association of America Copyright O 1968,1969,1970,1971,1979,1981,1992by Martin Gardner. All riglhts reserved under International and Pan-American Copyright Conventions. An MAA Spectrum book This book was updated and revised from the 1981 edition published by Vantage Books, New York. Most of this book originally appeared in slightly different form in Scientific American. Library of Congress Catalog Card Number 92-060996 ISBN 0-88385-506-2 Manufactured in the United States of America For Donald E. Knuth, extraordinary mathematician, computer scientist, writer, musician, humorist, recreational math buff, and much more SPECTRUM SERIES Published by THE MATHEMATICAL ASSOCIATION OF AMERICA Committee on Publications ANDREW STERRETT, JR.,Chairman Spectrum Editorial Board ROGER HORN, Chairman SABRA ANDERSON BART BRADEN UNDERWOOD DUDLEY HUGH M. EDGAR JEANNE LADUKE LESTER H. LANGE MARY PARKER MPP.a (@ SPECTRUM Also by Martin Gardner from The Mathematical Association of America 1529 Eighteenth Street, N.W. Washington, D. C. 20036 (202) 387- 5200 Riddles of the Sphinx and Other Mathematical Puzzle Tales Mathematical Carnival Mathematical Magic Show Contents Preface xi .. Introduction Xlll 1. Optical Illusions 3 Answers on page 14 2. Matches 16 Answers on page 27 3.
    [Show full text]
  • Basic Understanding of Condensed Phases of Matter Via Packing Models S
    Perspective: Basic understanding of condensed phases of matter via packing models S. Torquato Citation: The Journal of Chemical Physics 149, 020901 (2018); doi: 10.1063/1.5036657 View online: https://doi.org/10.1063/1.5036657 View Table of Contents: http://aip.scitation.org/toc/jcp/149/2 Published by the American Institute of Physics Articles you may be interested in Announcement: Top reviewers for The Journal of Chemical Physics 2017 The Journal of Chemical Physics 149, 010201 (2018); 10.1063/1.5043197 Perspective: How to understand electronic friction The Journal of Chemical Physics 148, 230901 (2018); 10.1063/1.5035412 Aqueous solvation from the water perspective The Journal of Chemical Physics 148, 234505 (2018); 10.1063/1.5034225 Perspective: Ring-polymer instanton theory The Journal of Chemical Physics 148, 200901 (2018); 10.1063/1.5028352 Communication: Contact values of pair distribution functions in colloidal hard disks by test-particle insertion The Journal of Chemical Physics 148, 241102 (2018); 10.1063/1.5038668 Adaptive resolution molecular dynamics technique: Down to the essential The Journal of Chemical Physics 149, 024104 (2018); 10.1063/1.5031206 THE JOURNAL OF CHEMICAL PHYSICS 149, 020901 (2018) Perspective: Basic understanding of condensed phases of matter via packing models S. Torquatoa) Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA (Received 17 April 2018; accepted 14 June 2018; published online 10 July 2018) Packing problems have been a source of fascination for millennia and their study has produced a rich literature that spans numerous disciplines.
    [Show full text]
  • The History of the Abel Prize and the Honorary Abel Prize the History of the Abel Prize
    The History of the Abel Prize and the Honorary Abel Prize The History of the Abel Prize Arild Stubhaug On the bicentennial of Niels Henrik Abel’s birth in 2002, the Norwegian Govern- ment decided to establish a memorial fund of NOK 200 million. The chief purpose of the fund was to lay the financial groundwork for an annual international prize of NOK 6 million to one or more mathematicians for outstanding scientific work. The prize was awarded for the first time in 2003. That is the history in brief of the Abel Prize as we know it today. Behind this government decision to commemorate and honor the country’s great mathematician, however, lies a more than hundred year old wish and a short and intense period of activity. Volumes of Abel’s collected works were published in 1839 and 1881. The first was edited by Bernt Michael Holmboe (Abel’s teacher), the second by Sophus Lie and Ludvig Sylow. Both editions were paid for with public funds and published to honor the famous scientist. The first time that there was a discussion in a broader context about honoring Niels Henrik Abel’s memory, was at the meeting of Scan- dinavian natural scientists in Norway’s capital in 1886. These meetings of natural scientists, which were held alternately in each of the Scandinavian capitals (with the exception of the very first meeting in 1839, which took place in Gothenburg, Swe- den), were the most important fora for Scandinavian natural scientists. The meeting in 1886 in Oslo (called Christiania at the time) was the 13th in the series.
    [Show full text]
  • On the Origin and Early History of Functional Analysis
    U.U.D.M. Project Report 2008:1 On the origin and early history of functional analysis Jens Lindström Examensarbete i matematik, 30 hp Handledare och examinator: Sten Kaijser Januari 2008 Department of Mathematics Uppsala University Abstract In this report we will study the origins and history of functional analysis up until 1918. We begin by studying ordinary and partial differential equations in the 18th and 19th century to see why there was a need to develop the concepts of functions and limits. We will see how a general theory of infinite systems of equations and determinants by Helge von Koch were used in Ivar Fredholm’s 1900 paper on the integral equation b Z ϕ(s) = f(s) + λ K(s, t)f(t)dt (1) a which resulted in a vast study of integral equations. One of the most enthusiastic followers of Fredholm and integral equation theory was David Hilbert, and we will see how he further developed the theory of integral equations and spectral theory. The concept introduced by Fredholm to study sets of transformations, or operators, made Maurice Fr´echet realize that the focus should be shifted from particular objects to sets of objects and the algebraic properties of these sets. This led him to introduce abstract spaces and we will see how he introduced the axioms that defines them. Finally, we will investigate how the Lebesgue theory of integration were used by Frigyes Riesz who was able to connect all theory of Fredholm, Fr´echet and Lebesgue to form a general theory, and a new discipline of mathematics, now known as functional analysis.
    [Show full text]
  • Sphere Packing, Lattice Packing, and Related Problems
    Sphere packing, lattice packing, and related problems Abhinav Kumar Stony Brook April 25, 2018 Sphere packings Definition n A sphere packing in R is a collection of spheres/balls of equal size which do not overlap (except for touching). The density of a sphere packing is the volume fraction of space occupied by the balls. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ In dimension 1, we can achieve density 1 by laying intervals end to end. In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 1, we can achieve density 1 by laying intervals end to end. Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 1, we can achieve density 1 by laying intervals end to end. In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem II In dimension 3, the best possible way is to stack layers of the solution in 2 dimensions. This is Kepler's conjecture, now a theorem of Hales and collaborators. mmm m mmm m There are infinitely (in fact, uncountably) many ways of doing this! These are the Barlow packings. Face centered cubic packing Image: Greg A L (Wikipedia), CC BY-SA 3.0 license But (until very recently!) no proofs. In very high dimensions (say ≥ 1000) densest packings are likely to be close to disordered.
    [Show full text]
  • New Upper Bounds for Kissing Numbers from Semidefinite Programming
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 21, Number 3, July 2008, Pages 909–924 S 0894-0347(07)00589-9 Article electronically published on November 29, 2007 NEW UPPER BOUNDS FOR KISSING NUMBERS FROM SEMIDEFINITE PROGRAMMING CHRISTINE BACHOC AND FRANK VALLENTIN 1. Introduction In geometry, the kissing number problem asks for the maximum number τn of unit spheres that can simultaneously touch the unit sphere in n-dimensional Euclidean space without pairwise overlapping. The value of τn is only known for n =1, 2, 3, 4, 8, 24. While its determination for n =1, 2 is trivial, it is not the case for other values of n. The case n = 3 was the object of a famous discussion between Isaac Newton and David Gregory in 1694. For a historical perspective of this discussion we refer to [6]. The first valid proof of the fact “τ3 = 12”, as in the icosahedron configuration, was only given in 1953 by K. Sch¨utte and B.L. van der Waerden in [23]. In the 1970s, P. Delsarte developed a method, initially aimed at bounding codes on finite fields (see [8]) that yields an upper bound for τn as a solution of a linear program and more generally yields an upper bound for the size of spherical codes of given minimal distance. We shall refer to this method as the LP method. With this method, A.M. Odlyzko and N.J.A. Sloane ([16]), and independently V.I. Leven- shtein ([14]), proved τ8 = 240 and τ24 = 196560 which are, respectively, the number of shortest vectors in the root lattice E8 and in the Leech lattice.
    [Show full text]
  • Transcendental Numbers
    INTRODUCTION TO TRANSCENDENTAL NUMBERS VO THANH HUAN Abstract. The study of transcendental numbers has developed into an enriching theory and constitutes an important part of mathematics. This report aims to give a quick overview about the theory of transcen- dental numbers and some of its recent developments. The main focus is on the proof that e is transcendental. The Hilbert's seventh problem will also be introduced. 1. Introduction Transcendental number theory is a branch of number theory that concerns about the transcendence and algebraicity of numbers. Dated back to the time of Euler or even earlier, it has developed into an enriching theory with many applications in mathematics, especially in the area of Diophantine equations. Whether there is any transcendental number is not an easy question to answer. The discovery of the first transcendental number by Liouville in 1851 sparked up an interest in the field and began a new era in the theory of transcendental number. In 1873, Charles Hermite succeeded in proving that e is transcendental. And within a decade, Lindemann established the tran- scendence of π in 1882, which led to the impossibility of the ancient Greek problem of squaring the circle. The theory has progressed significantly in recent years, with answer to the Hilbert's seventh problem and the discov- ery of a nontrivial lower bound for linear forms of logarithms of algebraic numbers. Although in 1874, the work of Georg Cantor demonstrated the ubiquity of transcendental numbers (which is quite surprising), finding one or proving existing numbers are transcendental may be extremely hard. In this report, we will focus on the proof that e is transcendental.
    [Show full text]