Mineralogical Profile of Supergene Sulfide Ore in the Western Copper Area, Morenci Mine, Arizona

Total Page:16

File Type:pdf, Size:1020Kb

Mineralogical Profile of Supergene Sulfide Ore in the Western Copper Area, Morenci Mine, Arizona 391 The Canadian Mineralogist Vol. 57, pp. 391-401 (2019) DOI: 10.3749/canmin.1800020 MINERALOGICAL PROFILE OF SUPERGENE SULFIDE ORE IN THE WESTERN COPPER AREA, MORENCI MINE, ARIZONA § BENJAMIN N. SCHUMER * University of Arizona, Department of Geosciences, 1040 E. 4th Street Tucson, Arizona 85721 USA RALPH J. STEGEN Freeport McMoRan, Inc., 10861 N. Mavinee Dr. Ste. 141, Oro Valley, Arizona 85737 USA MARK D. BARTON University of Arizona, Department of Geosciences 1040 E. 4th Street Tucson, Arizona 85721 USA J. BRENT HISKEY University of Arizona, Department of Mining and Geological Engineering 1235 James E. Rogers Way, Tucson, Arizona 85721 USA ROBERT T. DOWNS University of Arizona, Department of Geosciences 1040 E. 4th Street Tucson, Arizona 85721 USA ABSTRACT The intergrowths and compositions of supergene copper sulfide minerals from drill hole MOR-4511 in the Western Copper area of the Morenci mine, Greenlee County, Arizona, have been examined by reflected light microscopy and electron probe microanalysis (EPMA) to better understand the formation of supergene sulfides with implications for hydrometallurgical processing. The supergene copper sulfides occur in three main textures: partial to complete replacement of chalcopyrite, partial replacement of pyrite, and partial to complete replacement of one another. Compositions of copper sulfides vary widely, but (CuþFe):Sratiosof1.806 0.05, 1.92 6 0.03, and 1.10 6 0.10 are dominant. No stoichiometric Cu2S was found. At shallower depths in the supergene blanket and near/within faults, high (CuþFe):S phases (with ratios of 1.80 6 0.05 and 1.92 6 0.03) replacing primary chalcopyrite and pyrite or lower (CuþFe):S supergene sulfides are dominant, and near the base of the blanket low (CuþFe):S phases (with ratios of 1.10 6 0.10) replacing primary chalcopyrite or higher (CuþFe):S supergene sulfides gradually become more dominant. This indicates high concentration of Fe3þ,Fe2þ, and Cu2þ, necessary to form high (CuþFe):S phases, at shallower depths and near sources of unreacted fluid, such as faults. Formation of low (CuþFe):S phases directly from chalcopyrite or from high (CuþFe):S phases could be controlled by decreased concentrations of iron species and Cu2þ due to reaction with primary chalcopyrite and pyrite as fluids descend or migrate away from faults, reduced access to supergene fluids, and/or lower pyrite-chalcopyrite ratios. The compositional patterns of supergene copper sulfide minerals observed at Morenci are similar to those observed in other supergene enrichment blankets of porphyry copper systems worldwide and are even more similar to compositions seen in leaching experiments of synthetic copper and copper-iron sulfides. Keywords: chalcocite, copper sulfides, supergene enrichment, porphyry copper, electron microprobe analysis, Morenci, Arizona. § Corresponding author e-mail address: [email protected] * Present affiliation: Kappes, Cassiday and Associates, 7950 Security Cir. Reno, Nevada 89506 USA Downloaded from https://pubs.geoscienceworld.org/canmin/article-pdf/57/3/391/4699700/i1499-1276-57-3-391.pdf by University of Arizona user on 29 May 2019 392 THE CANADIAN MINERALOGIST INTRODUCTION TABLE 1. MINERALS IN THE SYSTEM Cu–S Porphyry copper deposits contain some of the Name Formula Cu:S largest endowments of copper on Earth. They are Chalcocite Cu2S2 characterized by large tonnages of relatively low- Djurleite Cu31S16 1.9375 grade Cu-bearing minerals in vein stockworks and Digenite* Cu9S5 1.8 disseminations within hydrothermally altered rock Roxbyite Cu9S5 1.8 (e.g., Seedorff et al. 2005). Supergene processes Anilite Cu7S4 1.75 acting initially on primary low-grade ore in exhumed Geerite Cu8S5 1.6 porphyry systems produce diverse sulfide, oxide, and Spionkopite Cu39S28 1.39 oxysalt copper phases to form supergene enrich- Yarrowite Cu9S8 1.125 ments. It is common for subsequent supergene cycles Covellite CuS 1 to leach and enrich the prior-formed supergene Villamanı´nite CuS2 0.5 deposits to produce masses of rock with chalcocite Note: * Digenite is stable only in the system Cu–Fe–S. and oxide copper having significantly higher grade Bold entries have known crystal structures. Data for than the primary ore (Anderson 1982, Titley & villamanı´nite are from Bayliss (1989), all other data are Marozas 1995, Chavez 2000, Sillitoe 2005). Pro- from Anthony et al. (1990). cessing of supergene sulfide ‘‘chalcocite’’ ores is typically carried out via concentration or leaching whereby the copper oxides, such as chrysocolla, are recovered by solvent-extraction-electrowinning (SX- EW) methods. descriptions of supergene copper sulfides in the Mineralogical characterization of supergene pro- southwestern United States generally consist of cesses in copper deposits is exceedingly important for varying proportions of chalcocite and covellite that mineral processing methods and recovery determina- replaced chalcopyrite and pyrite. One example is the tions. Supergene sulfide deposits often contain a porphyry copper-molybdenum deposit at Morenci, mixture of minerals in the Cu–S system (Table 1). Arizona, where a general overview of supergene The Cu-sulfide minerals typically occur in varying copper sulfide mineralogy was provided by Enders amounts with hypogene sulfides consisting principally (2000), but a detailed mineralogical study of super- of pyrite, chalcopyrite, bornite, and molybdenite, gene enrichment is lacking. which each react differently in processing methods The Morenci mine in Greenlee County, Arizona using sulfuric acid-ferric sulfate leach solutions. (Fig. 1), produces copper from supergene and Leaching studies of chalcopyrite (e.g., Cordoba´ et al. hypogene deposits. Historically, the highest-grade ores 2008) and other copper bearing minerals using acidic at Morenci were oxide copper deposits within skarn Fe3þ solutions determined relative recovery amounts and massive chalcocite from enriched veins and specific to individual minerals that have broad stockworks in monzonitic stocks. With the depletion application to processes used in modern heap-leach of these high-grade ores, mining progressed to open- operations (Sullivan 1933, Goble 1981, Whiteside & pit methods to recover copper from the immense Goble 1986). tonnages of relatively lower-grade chalcocite using However, there are comparatively few detailed concentrators. The implementation of SX-EW tech- mineralogical studies of natural supergene copper nology in the late 1980s at Morenci provided for the sulfides. Sillitoe & Clark (1969) studied the supergene recovery of copper from oxide copper and low-grade copper and copper-iron sulfides in the Copiapo´ mining chalcocite that is not of sufficient grade for concen- district, Chile, and Goble & Smith (1973) conducted trating. Morenci currently recovers copper from an electron microprobe study on copper sulfides in red concentrating, heap leaching of chalcocite, and run- bed copper deposits of Alberta. Reich et al. (2010) of-mine leaching of oxide copper and chalcocite. The used electron microprobe, secondary ion mass spec- reserves at Morenci total 12.1 billion pounds of trometry, and transmission electron microscopy to recoverable copper from 664 metric tonnes of mill investigate trace element chemistry of supergene ore grading 0.42% Cu, 356 million metric tonnes of digenite in Chilean copper deposits. Reich & heap leach averaging 0.51% Cu, and 2243 million Vasconcelos (2015) provided a summary of supergene metric tonnes of run-of-mine leach with an average processes and mineralogy in copper deposits, and grade of 0.18% Cu (Freeport McMoRan 2016 Form Zammit et al. (2015) described the roles of microbial 10-K Report). action in supergene processes that lead to the This study was undertaken to aid ore processing at formation of enrichment blankets. Mineralogical Morenci and to better understand the mineralogy of Downloaded from https://pubs.geoscienceworld.org/canmin/article-pdf/57/3/391/4699700/i1499-1276-57-3-391.pdf by University of Arizona user on 29 May 2019 MINERALOGY OF SUPERGENE SULFIDES, MORENCI MINE 393 2þ þ 2À FeS2 þ 7=2O2 þ H2O ! Fe þ 2H þ 2SO4 ð1Þ 2þ þ 3þ Fe þ 1=4O2 þ H ! Fe þ 1=2H2O ð2Þ 3þ 2þ 2þ CuFeS2 þ 16Fe þ 8H2O ! Cu þ 17Fe þ 2À þ 16H þ 2SO4 ð3Þ Copper-rich solutions migrate downward and precip- itate copper sulfide minerals by reaction with hypo- gene and/or other supergene sulfide minerals lower in the deposit. The simplified supergene profile (Fig. 2) consists of two zones: (1) a barren, leached zone in which hypogene sulfides were oxidized and much of the copper mobilized, leading to very low copper grades occurring with varying amounts and types of iron oxides; the first zone caps (2) a zone of enrichment in which supergene sulfides replace hypogene sulfides (Titley & Marozas 1995). Oxide copper zones that include chrysocolla, brochantite, tenorite, and native copper with hematite and/or goethite occur within or proximal to the leached zone and are the product of in situ oxidation of hypogene or supergene sulfide minerals that likely formed as a result of low pyrite–chalcopyrite ratios, reactive host rocks, and other factors which inhibit the leaching and FIG. 1. Location map, from Enders et al. (2006). Western transport of copper (Chavez 2000). Copper (WC) is at the middle right in the lower right hand Additionally, bacterial action is thought to play an inset. essential role in supergene processes. Acidithiobacillus bacteria, found by Enders et al. (2006) in the 5200 bench of the Metcalf area at Morenci, catalyze the normally very slow process of abiotic pyrite oxidation, supergene sulfide minerals and the natural processes resulting in a rate five orders of magnitude faster than governing the formation of supergene copper sulfides. abiotic oxidation alone [reactions (4) and (5)]: The results from this study also provide mineralogical 2þ þacidithiobacillus 3þ characteristics that could be useful in leach processing Fe þ 1=4O2 þ H ! Fe þ 1=2H2O and recovery determinations. ð4Þ SUPERGENE PROCESSES IN PORPHYRY COPPER DEPOSITS 3þ 2þ FeS2 þ 14Fe þ 8H2O þ Fe 2þ 2À þ The formation of enriched sulfide ore in porphyry ! 15Fe þ 2SO4 þ 16H ð5Þ systems is broadly dependent upon hypogene ore mineralogy, lithology of host rocks, and character of According to Enders et al.
Recommended publications
  • Abstract in PDF Format
    PGM Associations in Copper-Rich Sulphide Ore of the Oktyabr Deposit, Talnakh Deposit Group, Russia Olga A. Yakovleva1, Sergey M. Kozyrev1 and Oleg I. Oleshkevich2 1Institute Gipronickel JS, St. Petersburg, Russia 2Mining and Metallurgical Company “Noril’sk Nickel” JS, Noril’sk, Russia e-mail: [email protected] The PGM assemblages of the Cu-rich 6%; the Ni content ranges 0.8 to 1.3%, and the ratio sulphide ores occurring in the western exocontact Cu/S = 0.1-0.2. zone of the Talnakh intrusion and the Kharaelakh Pyrrhotite-chalcopyrite ore occurs at the massive orebody have been studied. Eleven ore top of ore horizons. The ore-mineral content ranges samples, weighing 20 to 200 kg, were processed 50 to 60%, and pyrrhotite amount is <15%. The ore using gravity and flotation-gravity techniques. As a grades 1.1 to 1.3% Ni, and the ratio Cu/S = 0.35- result, the gravity concentrates were obtained from 0.7. the ores and flotation products. In the gravity Chalcopyrite ore occurs at the top and on concentrates, more than 20,000 PGM grains were the flanks of the orebodies. The concentration of found and identified, using light microscopy and sulphides ranges 50 to 60%, and pyrrhotite amount EPMA. The textural and chemical characteristics of is <1%; the Ni content ranges 1.3 to 3.4%, and the PGM were documented, as well as the PGM ratio Cu/S = 0.8-0.9. distribution in different size fractions. Also, the The ore types are distinctly distinguished balance of Pt, Pd and Au distribution in ores and by the PGE content which directly depends on the process products and the PGM mass portions in chalcopyrite quantity, but not on the total sulphide various ore types were calculated.
    [Show full text]
  • LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, and COBALT ARSENIDE and SULFIDE ORE FORMATION Nicholas Allin
    Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2019 EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION Nicholas Allin Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch Part of the Geotechnical Engineering Commons EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION by Nicholas C. Allin A thesis submitted in partial fulfillment of the requirements for the degree of Masters in Geoscience: Geology Option Montana Technological University 2019 ii Abstract Experiments were conducted to determine the relative rates of reduction of aqueous sulfate and aqueous arsenite (As(OH)3,aq) using foils of copper, nickel, or cobalt as the reductant, at temperatures of 150ºC to 300ºC. At the highest temperature of 300°C, very limited sulfate reduction was observed with cobalt foil, but sulfate was reduced to sulfide by copper foil (precipitation of Cu2S (chalcocite)) and partly reduced by nickel foil (precipitation of NiS2 (vaesite) + NiSO4·xH2O). In the 300ºC arsenite reduction experiments, Cu3As (domeykite), Ni5As2, or CoAs (langisite) formed. In experiments where both sulfate and arsenite were present, some produced minerals were sulfarsenides, which contained both sulfide and arsenide, i.e. cobaltite (CoAsS). These experiments also produced large (~10 µm along longest axis) euhedral crystals of metal-sulfide that were either imbedded or grown upon a matrix of fine-grained metal-arsenides, or, in the case of cobalt, metal-sulfarsenide. Some experimental results did not show clear mineral formation, but instead demonstrated metal-arsenic alloying at the foil edges.
    [Show full text]
  • Key to Rocks & Minerals Collections
    STATE OF MICHIGAN MINERALS DEPARTMENT OF NATURAL RESOURCES GEOLOGICAL SURVEY DIVISION A mineral is a rock substance occurring in nature that has a definite chemical composition, crystal form, and KEY TO ROCKS & MINERALS COLLECTIONS other distinct physical properties. A few of the minerals, such as gold and silver, occur as "free" elements, but by most minerals are chemical combinations of two or Harry O. Sorensen several elements just as plants and animals are Reprinted 1968 chemical combinations. Nearly all of the 90 or more Lansing, Michigan known elements are found in the earth's crust, but only 8 are present in proportions greater than one percent. In order of abundance the 8 most important elements Contents are: INTRODUCTION............................................................... 1 Percent composition Element Symbol MINERALS........................................................................ 1 of the earth’s crust ROCKS ............................................................................. 1 Oxygen O 46.46 IGNEOUS ROCKS ........................................................ 2 Silicon Si 27.61 SEDIMENTARY ROCKS............................................... 2 Aluminum Al 8.07 METAMORPHIC ROCKS.............................................. 2 Iron Fe 5.06 IDENTIFICATION ............................................................. 2 Calcium Ca 3.64 COLOR AND STREAK.................................................. 2 Sodium Na 2.75 LUSTER......................................................................... 2 Potassium
    [Show full text]
  • PHASE CHANGES in Cu 2 S AS a FUNCTION of TEMPERATURE 1. PREVIOUS WORK
    National Bureau of Standards Special Publication 364, Solid State Chemistry, Proceedings of 5th Materials Research Symposium, issued July 1972. PHASE CHANGES IN cu2s AS A FUNCTION OF TEMPERATURE William R. Cook, Jr. Gould Inc., Gould Laboratories Cleveland, Ohio 44108 and Case Western Reserve University Cleveland, Ohio 44106 The high-'copper phase boundary of Cu2s deviates from stoichiometry above 300 °C, first becoming copper deficient, then above - 1075 °C becoming copper rich. The maximum copper content occurs at the monotectic temperature of 1104 °C. The strong effect of oxygen on the hexagonal-cubic transition in Cu2S was confirmed; the transition was also found to be sensi­ tive to the type of pretreatment of the material. The high temperature tetragonal "Cu1 96s" phase is stable between Cu1.95S and Cu2s, at temperatures of - 90° to - 140 °C. The tr~nsi­ tion to the tetragonal phase is extremely sluggish. The true composition of djurleite has been shown to be approximately Cu1.93S. The phases near the chalcocite-digenite region of the diagram may be grouped into those with hexagonal close packing of sulfur atoms and those with cubic close packing of sulfurs. This is important in understanding rates of transformation among the various phases that occur in this area of the diagram. Key words: Chalcocite; cu2s; digenite; djurleite; nonstoichiometry; phase relations. 1. PREVIOUS WORK Fairly thorough explorations of the Cu-s phase diagram between cu2s and cu1• ,shave been made by a number of previous workers [1-8] 1 The resulting diagram may be seen in figure 1 taken largely from Roseboom [7] and Riu [8].
    [Show full text]
  • Gomposition and Occurrence of Electrum Atthe
    L37 The Canadian M inerala g i st Vol.33,pp. 137-151(1995) GOMPOSITIONAND OCCURRENCEOF ELECTRUM ATTHE MORNINGSTAR DEPOSIT, SAN BERNARDINOCOUNTY, GALIFORNIA: EVIDENCEFOR REMOBILIZATION OF GOLD AND SILVER RONALD WYNN SIIEETS*, JAMES R. CRAIG em ROBERT J. BODNAR Depanmen of Geolngical Sciences, Virginin Polytechnic h stitate and Stale (Jniversity, 4A44 Dening Hall, Blacl<sburg, Virginin 24060, U.S-A,. Arsrnacr Elecfum, acanthiteand uytenbogaardtite have been examined from six depthswithin the tabular quartzt calcite sockwork and breccia-filled veins in the fault-zone-hostedMorning Star depositof the northeasternMojave Desert, Califomia. Six distinct types of electrum have been identified on the basis of minerat association,grain moryhology and composition. Two types, (1) p1'rite-hostedand (2) quartz-hostedelectrum, occur with acanthite after argentite and base-metalsulfide minerals in unoxidized portions of the orebody; the remaining forr types, (3) goethite-hostedelectrum, (4) electnrm cores, (5) electrumrims and (6) wire electrum,are associatedwith assemblagesof supergeneminerals in its oxidizedportions. Pyrite- hosted quartz-hostedand goethite-hostedelectrum range in compositionfrom 6l ta 75 utt.7oAu and have uniform textures and no zoning. In lower portions ofthe oxidized ore zone, electrum seemsto replacegoethite and occursas small grains on surfacesof the goethite.Textural evidencefavors supergeneremobilization of Au and Ag, which were depositedas electrum on or replacinggoethite. This type of electrumis identical in appearanceand compositionto prinary electrum,In the upper portions of the oxidized zone,secondary electum occursas a gold-rich rim on a core of elechum and as wire-like grains,both with acanthiteand uytenbogaardtite.Such secondaryelectrum contains from 78 to 93 wt./o Au. Textural relations and asso- ciated minerals suggestthat the primary electrum was hydrothermally depositedand partially remobilized by supergene processes.
    [Show full text]
  • Supergene Mineralisation of the Boyongan Porphyry Copper-Gold Deposit, Surigao Del Norte, Philippines
    Supergene Mineralisation of the Boyongan Porphyry Copper-Gold Deposit, Surigao del Norte, Philippines by Allan Maglaya Ignacio B.Sc. Geology, National Institute of Geological Sciences University of the Philippines Thesis submitted in partial fulfilment of the requirements of the Masters of Economic Geology Degree Centre for Ore Deposit Research, University of Tasmania December, 2005 DECLARATION OF ORIGINALITY This thesis contains no material which has been accepted for a degree of diploma by the University of Tasmania or any other institution, except by way of background information and duly acknowledged in the thesis, and contains no previous material previously pub- lished or written by another person except where due acknowledgement is given. Allan Maglaya Ignacio 01 December 2005 _________________________ STATEMENT OF AUTHORITY OF ACCESS This thesis may not to be made available for loan or copying for 1.5 years following the date this statement was signed. Following that time, the thesis may be available for loan and lim- ited copying in accordance with Copyright Act 1968. Allan Maglaya Ignacio 01 December 2005 _________________________ TABLE OF CONTENTS Page (s) LIST OF FIGURES …………………………………………………….. i - iii LIST OF APPENDICES ………………………………………………… iv ACKNOWLEDGMENTS ………………………………………………. v ABSTRACT ……………………………………………………………... vi - vii 1.0 INTRODUCTION ………………………………………………………. 1 - 8 1.1 Introduction …………………………………………………………. 1 1.2 Aims and Objectives ……………………………………………….. 1 1.3 Methods Employed …………………………………………………. 2 1.4 Location and Accessibility …………………………………………. 3 1.5 Climate ……………………………………………………………... 5 1.6 Previous Work ……………………………………………………… 5 2.0 GEOLOGICAL SETTING ………………………………………………. 9 - 37 2.1 Introduction ………………………………………………………. 9 2.2 Regional Tectonics …………….…………………………………. 9 2.3 Regional and Local Stratigraphy ………………………………... 11 2.3.1 Basement (Cretaceous-Paleogene) ………………………. 11 2.3.2 Bacuag Formation (Oliogocene-Miocene) .……………..
    [Show full text]
  • Oxidation of Sulfide Minerals. V. Galena, Sphalerite and Chalcogite
    Canadian Mineralogist Vol. 18,pp. 365-372(1980) OXIDATIONOF SULFIDEMINERALS. V. GALENA,SPHALERITE AND CHALCOGITE H.F. STEGBR eup L.E. DESJARDINS Mineral SciencesLaboratories, Canada Centre lor Mineral and Energy Technology, Department ol Energy, Mines and Resources,Ottawa, Ontaio KIA OGI AssrRecr long-term stability of sulfide-bearing ores and concentrates.Part of this study was concerned Samples of galena, sphalerite and cbalcocite were with the nature of the products and kinetics of oxidized at 52oC and, 68Vo of relative humidity the oxidation of the commonly encountered periods to five weeks, and the prqd- in air for up sulfide minerals. The oxidation of pyrite, chal- for metal and sulfur-bearing ucts were analyzed pyrrhotite at 52oC and, 687o of. species. Galena is. oxidized to PbSOa, sphalerite copyrite and (RH) has already been in- to ZnSO. * FezO, if iron-bearing, and chalcocite relative humidity to CuO and CuS. The oxidation of galena and vestigated (Steger & Desjardins 1978). This re- sphalerite proceeds according to a linear rate potr summarizes the results of the study 9f tle law: that of chalcocite leads to the formation of a bxidation of galena, sphalerite and chalcocite coherent product layer impenetrable to Oz and HrO under the same conditions. vapor. The air oxidation of galena at relatively low without Keywords: air oxidation, oxidation products, sul- temperatures has been investigated fide minerals, galena, sphalerite, chalcocite. reaching a consensuson the nature of the oxida- tion product. Hagihara (1952), using a re- Sourvrlrnp flection electron-diffraction technique, and Kirkwood & Nutting (1965), using a trans- Nous avons 6tudi6 I'oxydation dans I'air d'6chan- mission electron-diffraction technique, found tillons de galdne, de sphal6rite et de chalcocite i this product to be PbSOo,whereas Leia et al.
    [Show full text]
  • CU PERU 2 Proof 22/02/2016 13:13 Page 1
    IM COVER MARCH 2016_proof 23/02/2016 15:13 Page 1 www.im-mining.com MARCH 2016 Informed and in-depth editorial on the world mining industry BAUMA PREVIEW COMMINUTION & FRAGMENTATION GERMAN TECHNOLOGY WATER MANAGEMENT PERU COPPER MINING II OPERATION FOCUS: Kaltim Prima Coal CU PERU 2_proof 22/02/2016 13:13 Page 1 PERU COPPER Cu Peru 2 John Chadwick continues his detailed examination of Peru’s copper projects and its growing world stature. The first part was published last month ccording to Ministerio de Energía y Minas some 278,000 t of copper and 6,000 t of The expansion of Cerro Verde primarily involved (MINEM) in November 2015, national molybdenum beginning in 2016. First building a new 240,000 t/d copper concentrator, bringing the total capacity of the Aproduction of copper reached 1.5 Mt, a concentrate from this massive expansion project concentrator facilities to 360,000 t/d and new historical record for Peru. Marcos Villegas – it is now the largest milling and flotation providing incremental annual production of of MINEM said that “with this level of concentrator complex in the world – was some 278,000 t of copper and 6,000 t of molybdenum beginning in 2016. It is now the production, Peru would be close to reclaiming produced on time on September 17, 2015. largest milling and flotation concentrator second place as a copper producer in the world, Commissioning was completed at the end of complex in the world. Building a 240,000 t/y a place that is currently in dispute with China.
    [Show full text]
  • (Hypogene) Sulphate Minerals in Ore Deposits2
    ECONOMIC GEOLOGY WITH WHICH IS INCORPORATED THE AMERICAN GEOLOGIST VOL. XIV DECEMBER, I9I 9 No. 8 PRIMARY (HYPOGENE) SULPHATE MINERALS IN ORE DEPOSITS2 B. S. BUTLER. CONTENTS. PAOE. Introduction ......................................................... Sulphate Minerals .................................................... Character of Ore Solutions as Indicated by Volcanic Emanations ....... 590 Conditions of Format'ion of Sulphur Trioxide ......................... 593 Formation of Sulphuric Acid in Nature ............................... 594 Formation of Primary Sulphate Minerals ............................. 596 Summary ............................................................ 6o8 Acknowledgment .................................. -................... 609 INTRODUCTION. In studyingore depositsthe writer has severaltimes been con.- fronted with the problemof accountingfor the formation of sulphateminerals that are apparentlyprimary. These minerals occur at placeswhere no evidencecan be found of their forma- tion by surface oxidation. Either they were formed directly 'by igneousemanations or, if they were formed by surfaceagencies, those agenciesmust have effectedthe depositionof other asso- ciatedminerals that would ordinarily •beregarded as of hypogene origin. An attemptwill be madeto analyzethis problemby start- ing with the belief, 'basedon deductionsfrom field observations, that the sulphatesin certaindeposits have •een formed directlyby x Published by permission of the Director, United State Geological Survey. 58x 5.82 B. S. BUTLER.
    [Show full text]
  • MENDELSOHN (F.), Editor. the Geology of the Northern Rhodesian Copper- Belt
    996 BOOK REVIEWS instance 'pits', ' anisotropy', ' cellular texture', ' native iron', are fol- lowed by a 'text-card' with a more detailed description of the sections concerned in English and German. The price is DM 0.75 per photo-card, DM 0.45 per text-card. These prices are reduced by 10% for University departments and academic staff, by 15% for students. The great value of this unique publication is self-evident and does not need further appraisal. Ore-microscopists will welcome the card index as a high-quality source of reference, and university staff will find it a great help in teaching. Economic geologists and nfineralogists will appreciate the straightforward and clear approach, which provides an excellent introduction for research workers less well acquainted with the subject matter. Ore dressing workers and metallurgists will be able to Use the card index for the solution of their problems without having to go into details of ore mineralogy. The authors should be warmly con- gratulated on this first part of a very fine piece of work. A. F. H. MENDELSOHN (F.), editor. The Geology of the Northern Rhodesian Copper- belt. London (Macdonald & Co. Ltd.), 1961, xvi+523 pp., 185 figs. Price 8r Twenty-three authors have contributed to this comprehensive volume. Part 1 provides a general account of the physiography, stratigraphy, structure, metamorphism, and ore deposits of the Copperbelt together with a history of mineral exploration and an account of the methods employed. Part 2 gives detailed descriptions of the individual deposits. In addition to synthesizing the considerable volume of published work on the subject the authors draw extensively on material from unpublished company reports.
    [Show full text]
  • THE Possibly Hypogene KARSTIC IRON ORE DEPOSIT of WARDA
    COBISS: 1.01 The PossiblY HYpogene Karstic Iron Ore Deposit of Warda near Ajloun (Northern Jordan), its MineralogY, GeochemistrY and Historic Mine Hipogeni kraški izvor železovih sedimentov V Wardi pri Ajlounu (Severna Jordanija): mineralogija, geokemija in zgodovinski rudnik Ahmad AL-Malabeh1, Stephan Kempe2, Horst-Volker Henschel3 Heiko Hofmann4 & Heinz Jürgen Tobschall5 Abstract UDC 553.3(569.5) Izvleček UDK 553.3(569.5) Ahmad Al-Malabeh, Stephan Kempe, Horst-Volker Henschel, Ahmad Al-Malabeh, Stephan Kempe, Horst-Volker Henschel, Heiko Hofmann & Heinz Jürgen Tobschall: The possibly hypo- Heiko Hofmann & Heinz Jürgen Tobschall: Hipogeni kraški gene karstic iron ore deposit of Warda near Ajloun (Northern izvor železovih sedimentov v Wardi pri Ajlounu (Severna Jor- Jordan), its mineralogy, geochemistry and historic mine danija): mineralogija, geokemija in zgodovinski rudnik In this study the iron ore deposit of the historic Warda mine V študiji obravnavamo železovo rudišče Warda (okrožje (District of Ajloun, Northern Jordan) and its speleological im- Ajloun v Severni Jordaniji) in njegov speleološki pomen. portance is discussed. The number of known dissolutional caves Število kraških jam v Jordaniji je majhno, kljub dejstvu, da je in Jordan is very low, in spite of the fact, that large sections of kamninska podlaga velikega dela dežele kredni apnenec. Edina the country are underlain by Cretaceous limestone. The only znana velika jama je hipogeni blodnjak (maze cave) Al-Daher, large cave yet discovered is Al-Daher Cave, a hypogene maze (Kempe et al. 2006). Rudo v Wardi je v času križarskih vojn ko- cave (Kempe et al. 2006). The Warda Iron Deposit was mined pal eden od Saladinovih častnikov.
    [Show full text]
  • Silver-Rich Central Idaho
    Silver-rich Disseminated Sulfides From a Tungsten-bearing Quartz Lode Big Creek District Central Idaho GEOLOGICAL SURVEY PROFESSIONAL PAPER 594-C Silver-rich Disseminated Sulfides From a Tungsten-bearing Quartz Lode Big Creek District Central Idaho By B. F. LEONARD, CYNTHIA W. MEAD, and NANCY CONKLIN SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 594-C Study of a low-grade tungsten deposit whose associated suljide minerals, extracted as waste, are rich in silver and contain some gold UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Page Page Abstract __________________________________________ _ C1 Mineralogy and paragenetic sequence-Continued Introduction ______________________________________ _ 1 Alteration products ____________________________ _ C15 Location and operation _____________________________ _ 4 Paragenetic sequence ___________________________ _ 16 Geology __________________________________________ _ 4 Geologic thermometry __________________________ _ 18 Ore deposit _______________________________________ _ 5 Classification and origin of hypogene mineralization ____ _ 19 Mineralogy and paragenetic sequence ________________ _ 6 Oxidation and enrichment ___ ------------------------ 20 Typical ore ___________________________________ _ 6 Economic considerations ____________________________ _ 21 Gangue indicated by mill products _______________ _ 7 Acknowledgments ___________________ .:. ______________ _ 23 Tungsten minerals _______ ,______________________ _ 8 References ________________________________________ _ 23 Sulfides and related minerals ____________________ _ 8 ILLUSTRATIONS [Plates follow page C24f - PLATE 1. Drawing and X-ray micrographs of acanthite and copper sulfides on galena. 2. Drawing and X-ray micrographs of electrum in pyrite. 3.
    [Show full text]