University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-9-2019 Electrophysiological, Neural, and Perceptual Aspects of Pitch Karl D. Lerud University of Connecticut - Storrs,
[email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Lerud, Karl D., "Electrophysiological, Neural, and Perceptual Aspects of Pitch" (2019). Doctoral Dissertations. 2271. https://opencommons.uconn.edu/dissertations/2271 Electrophysiological, Neural, and Perceptual Aspects of Pitch Karl D. Lerud, PhD University of Connecticut, 2019 Pitch is a perceptual rather than physical phenomenon, important for spoken language use, musical communication, and other aspects of everyday life. Auditory stimuli can be designed to probe the relationship between perception and physiological responses to pitch-evoking stimuli. One technique for measuring physiological responses to pitch-evoking stimuli is the frequency following response (FFR). The FFR is an electroencephalographic (EEG) response to periodic auditory stimuli. The FFR contains nonlinearities not present in the stimuli, including correlates of the amplitude envelope of the stimulus; however, these nonlinearities remain undercharacterized. The FFR is a composite response reflecting multiple neural and peripheral generators, and their contributions to the scalp-recorded FFR vary in ill-understood ways depending on the electrode montage, stimulus, and imaging technique. The FFR is typically assumed to be generated in the auditory brainstem; there is also evidence both for and against a cortical contribution to the FFR. Here a methodology is used to examine the FFR correlates of pitch and the generators of the FFR to stimuli with different pitches. Stimuli were designed to tease apart biological correlates of pitch and amplitude envelope.