Representation Theory

Total Page:16

File Type:pdf, Size:1020Kb

Representation Theory Representation Theory Jock McOrist Lecture notes, perpetually in progress MATM035 Department of Mathematics University of Surrey Guildford GU2 7XH, United Kingdom Copyright c 2018 by Jock McOrist. All rights reserved. E-mail address: [email protected] Abstract Symmetries are a powerful method for easily understanding properties of otherwise complicated mathematical and physical objects. Group theory is a branch of mathematics developed to un- derstand symmetries, however it often leads to complicated abstract quantities. Representation theory turns such abstract algebraic concepts into linear transformations of vector spaces; the linearity making the system much easier to solve. In doing, representation theory can unveil deep symmetry properties of physical systems as well as leading to powerful and compact solutions to otherwise difficult and intractable problems. There will be on average 3 lectures per week. There are two unassessed courseworks and one class test. These will be marked and returned to you. The coursework and tests are important feedback for you, telling you how you are doing in the course, what your strengths and weaknesses are, and what type of questions to expect in the exam. All important information will be disseminated in the usual channels via SurreyLearn. There is a syllabus on SurreyLearn, and I encourage to look at it. It describes the course content, what you are expected to know, and all of the assessments. The lecture notes are structured to closely follow what we do in class, but I cannot emphasise enough the value of attending lectures. It is where all important information is disseminated. I will give explanations complementary to that written in the notes, and where appropriate fill in omitted steps in deriving formulae. There are also many worked examples throughout the notes. There are exercises at the end of the chapter which you should work through as a minimum. Some of these exercises may be used as unassessed coursework, marked and returned to you for feedback. Key concepts are boldfaced when they are introduced. Many ideas and examples in representation theory are developed in the exercises. They are also an important platform to practice proving results. There will be solutions to some (but not necessarily all) questions, and I will release them throughout the semester once you have had a serious attempt at the questions. There are also many wonderful textbooks out there which I encourage you to read through. I first learnt representation theory from Georgi's book `Lie Algebras in Particle Physics' and some of the material here are based on his explanations. Although the course is largely self-contained, we will draw heavily on your knowledge of group theory and linear algebra. In particular you need to be familiar eigensystems, diagonalisation of matrices, properties of inner products, traces and vector spaces. Finally, my email [email protected] is always on and door (05AA04) is always open, so if you have any questions or comments then I will try to respond as quickly as possible. i Contents 1. Introduction . .1 1.1. Why representation theory? . .1 2. Symmetries and finite groups . .4 2.1. Some preliminary definitions . .4 2.2. Some examples of groups . .5 2.2.1. Abelian groups . .5 2.2.2. Non-abelian groups . .6 2.3. Subgroups and cosets . .8 2.4. Conjugacy classes . 10 2.5. Automorphisms . 10 2.6. Exercises . 12 3. Representation theory basics . 14 3.1. What is representation theory? . 15 3.2. Some examples . 16 3.3. Reducible and irreducible representations . 19 3.4. Useful theorems . 20 3.5. Characters . 23 3.6. Tensor Products . 24 3.7. Exercises . 26 4. Lie groups and Lie algebras . 29 4.1. Lie groups . 29 4.2. Examples of Lie groups . 31 4.3. Multiplication and Lie algebras . 34 4.4. Adjoint representation . 38 4.5. An inner product and compact algebras . 38 4.6. Subalgebras, simple and semi-simple algebras . 39 4.7. Exercises . 41 5. The key example: su(2)................................... 44 5.1. From the group SU(2) to the algebra su(2) . 44 5.2. Highest weight construction of representations of su(2) . 45 5.3. Examples . 47 5.4. Exercises . 49 6. Roots and weights . 51 6.1. Weights . 51 6.2. The adjoint representation . 52 6.3. Roots . 54 6.4. Raising and lowering operators . 55 6.5. Heaps and heaps of su(2)s . 56 6.6. Example: su(3).................................... 57 6.7. Exercises . 61 7. Simple roots . 63 ii 7.1. Positive weights . 63 7.2. Simple roots . 64 7.3. Constructing the algebra . 69 7.4. Exercises . 72 8. Dynkin Diagrams . 74 8.1. Dynkin Diagrams . 74 8.2. Example: g2 ...................................... 75 8.3. Cartan Matrix . 76 8.4. Constructing the g2 algebra . 83 8.5. Example: c3 ...................................... 85 8.6. Fundamental weights . 85 8.7. Example: more representations su(3) . 87 8.8. Complex conjugation . 89 8.9. Exercises . 92 9. A tour of compact simple Lie algebras and their physical applications . 93 ∼ 9.1. su(N) = aN−1 ..................................... 93 ∼ 9.2. The so(2N) = dN algebra . 95 ∼ 9.3. so(2N + 1) = bN ................................... 97 ∼ 9.4. sp(2N) = cN ...................................... 98 9.5. Exotic Lie algebras: e6, e7, e8, f4, and g2 ...................... 99 9.6. Exercises . 101 iii 1. Introduction 1 1. Introduction 1.1. Why representation theory? To understand the importance and relevance of representation theory in mathematics and phys- ics, we first must ask the question: why group theory? The answer to this comes from trying to understanding real world phenomena through math- ematics, also known as physics. It often amounts to solving difficult, if not intractable equations. For example, most equations of motion that arise in classical dynamics, as you may have seen in Lagrangian and Hamiltonian Dynamics (MAT3008), are complicated non-linear partial dif- ferential equations. The properties of these equations are often elusive, even numerically. There is no known formalism for systematically solving the equations, and analytic solutions are rare. Similar conclusions arise in modern mathematical physics: studies of quantum dynamics (small scale phenomena) and large scale phenomena (general relativity) involve equations that are ridiculously hard to solve. So if life is so tough, how can we make progress? A remarkably successful approach comes from the study of symmetries. Symmetries can be an incredible labour saving device { they are often shortcuts to understanding physical systems even before understand exactly what the systems are! For example, even before knowing how to define a model of the hydrogen atom, using spherical symmetry (and some other symmetries), we are able to determine the orbits of electrons and their spectra. Group theory is the study of such symmetries. In studying the real world, the information we often extract from symmetries is not group theory itself, but rather a representation of the group. For example, a hydrogen atom is spherically symmetric, meaning that it looks the same as you change the angles θ; φ that ap- pear in spherical polar coordinates (r; θ; φ). Experimentally, we do not observe this symmetry directly, despite cartoons you may have seen representing the hydrogen atom as spherical ball. Instead this symmetry is seen experimentally in studying the atom in various excited states, as shown in 1.1. What scientists have noticed is that the excited states are observed in different representations of the group SO(3). Representations are the physically important thing to study. Mathematically speaking, a representation of a group is a way of expressing a group in terms of linear transformation of a vector space. That is, we turn abstract group elements, whose properties are often rather opaque, into matrices, something far more intuitive. We will see what this means in later chapters, but suffice it to say for now, the problem is now vastly simpler. So we study representations of groups because they are simpler than groups themselves and because this is what turns up in the real world. The representation theory of groups divides up according to the type of group being studied: • Finite groups: these are groups with a finite number of elements. The representation 1. Introduction 2 Figure 1.1: A numerical picture of the hydrogen atom in various excited states. The plots are really three-dimensional, and what is illustrated are two-dimensional slices. The excited states are labelled by the three integers at the top, and each uniquely corresponds to a representation of a Lie group, including that of SO(3). (Technically speaking, these are numerical solutions of Schrodinger's wave equation. The plots are probability densities arising from the resulting wavefunction.) theory is important to crystallography, some areas of quantum mechanics and geometry. • Compact groups: groups that are continuous but of bounded domain. Representation theory of compact groups is important as many of the results of finite group representation theory generalise in a nice way. • Lie groups: these are the most prominent category of continuous groups. Many results of compact groups apply to Lie groups. The representation theory of Lie groups is important in many areas of physics and chemisty, as well as mathematics. • Linear algebraic groups: these are Lie groups but not over the fields R or C but over 1. Introduction 3 a finite field. The representation theory of these groups is far less well-understood, and quite difficult involving sophisticated tools in algebraic geometry. • Non-compact groups: non-compact groups are too broad and opaque in structure to construct any systematic form of representation theory. Several special cases have been studied on an ad hoc basis. Clearly, group representation theory is a huge subject, and an incredibly active area of research within mathematics. We cannot possibly hope to cover the entire of the subject.
Recommended publications
  • Irreducible Representations of Complex Semisimple Lie Algebras
    Irreducible Representations of Complex Semisimple Lie Algebras Rush Brown September 8, 2016 Abstract In this paper we give the background and proof of a useful theorem classifying irreducible representations of semisimple algebras by their highest weight, as well as restricting what that highest weight can be. Contents 1 Introduction 1 2 Lie Algebras 2 3 Solvable and Semisimple Lie Algebras 3 4 Preservation of the Jordan Form 5 5 The Killing Form 6 6 Cartan Subalgebras 7 7 Representations of sl2 10 8 Roots and Weights 11 9 Representations of Semisimple Lie Algebras 14 1 Introduction In this paper I build up to a useful theorem characterizing the irreducible representations of semisim- ple Lie algebras, namely that finite-dimensional irreducible representations are defined up to iso- morphism by their highest weight ! and that !(Hα) is an integer for any root α of R. This is the main theorem Fulton and Harris use for showing that the Weyl construction for sln gives all (finite-dimensional) irreducible representations. 1 In the first half of the paper we'll see some of the general theory of semisimple Lie algebras| building up to the existence of Cartan subalgebras|for which we will use a mix of Fulton and Harris and Serre ([1] and [2]), with minor changes where I thought the proofs needed less or more clarification (especially in the proof of the existence of Cartan subalgebras). Most of them are, however, copied nearly verbatim from the source. In the second half of the paper we will describe the roots of a semisimple Lie algebra with respect to some Cartan subalgebra, the weights of irreducible representations, and finally prove the promised result.
    [Show full text]
  • DIFFERENTIAL GEOMETRY FINAL PROJECT 1. Introduction for This
    DIFFERENTIAL GEOMETRY FINAL PROJECT KOUNDINYA VAJJHA 1. Introduction For this project, we outline the basic structure theory of Lie groups relating them to the concept of Lie algebras. Roughly, a Lie algebra encodes the \infinitesimal” structure of a Lie group, but is simpler, being a vector space rather than a nonlinear manifold. At the local level at least, the Fundamental Theorems of Lie allow one to reconstruct the group from the algebra. 2. The Category of Local (Lie) Groups The correspondence between Lie groups and Lie algebras will be local in nature, the only portion of the Lie group that will be of importance is that portion of the group close to the group identity 1. To formalize this locality, we introduce local groups: Definition 2.1 (Local group). A local topological group is a topological space G, with an identity element 1 2 G, a partially defined but continuous multiplication operation · :Ω ! G for some domain Ω ⊂ G × G, a partially defined but continuous inversion operation ()−1 :Λ ! G with Λ ⊂ G, obeying the following axioms: • Ω is an open neighbourhood of G × f1g Sf1g × G and Λ is an open neighbourhood of 1. • (Local associativity) If it happens that for elements g; h; k 2 G g · (h · k) and (g · h) · k are both well-defined, then they are equal. • (Identity) For all g 2 G, g · 1 = 1 · g = g. • (Local inverse) If g 2 G and g−1 is well-defined in G, then g · g−1 = g−1 · g = 1. A local group is said to be symmetric if Λ = G, that is, every element g 2 G has an inverse in G.A local Lie group is a local group in which the underlying topological space is a smooth manifold and where the associated maps are smooth maps on their domain of definition.
    [Show full text]
  • LIE GROUPS and ALGEBRAS NOTES Contents 1. Definitions 2
    LIE GROUPS AND ALGEBRAS NOTES STANISLAV ATANASOV Contents 1. Definitions 2 1.1. Root systems, Weyl groups and Weyl chambers3 1.2. Cartan matrices and Dynkin diagrams4 1.3. Weights 5 1.4. Lie group and Lie algebra correspondence5 2. Basic results about Lie algebras7 2.1. General 7 2.2. Root system 7 2.3. Classification of semisimple Lie algebras8 3. Highest weight modules9 3.1. Universal enveloping algebra9 3.2. Weights and maximal vectors9 4. Compact Lie groups 10 4.1. Peter-Weyl theorem 10 4.2. Maximal tori 11 4.3. Symmetric spaces 11 4.4. Compact Lie algebras 12 4.5. Weyl's theorem 12 5. Semisimple Lie groups 13 5.1. Semisimple Lie algebras 13 5.2. Parabolic subalgebras. 14 5.3. Semisimple Lie groups 14 6. Reductive Lie groups 16 6.1. Reductive Lie algebras 16 6.2. Definition of reductive Lie group 16 6.3. Decompositions 18 6.4. The structure of M = ZK (a0) 18 6.5. Parabolic Subgroups 19 7. Functional analysis on Lie groups 21 7.1. Decomposition of the Haar measure 21 7.2. Reductive groups and parabolic subgroups 21 7.3. Weyl integration formula 22 8. Linear algebraic groups and their representation theory 23 8.1. Linear algebraic groups 23 8.2. Reductive and semisimple groups 24 8.3. Parabolic and Borel subgroups 25 8.4. Decompositions 27 Date: October, 2018. These notes compile results from multiple sources, mostly [1,2]. All mistakes are mine. 1 2 STANISLAV ATANASOV 1. Definitions Let g be a Lie algebra over algebraically closed field F of characteristic 0.
    [Show full text]
  • 10 Group Theory and Standard Model
    Physics 129b Lecture 18 Caltech, 03/05/20 10 Group Theory and Standard Model Group theory played a big role in the development of the Standard model, which explains the origin of all fundamental particles we see in nature. In order to understand how that works, we need to learn about a new Lie group: SU(3). 10.1 SU(3) and more about Lie groups SU(3) is the group of special (det U = 1) unitary (UU y = I) matrices of dimension three. What are the generators of SU(3)? If we want three dimensional matrices X such that U = eiθX is unitary (eigenvalues of absolute value 1), then X need to be Hermitian (real eigenvalue). Moreover, if U has determinant 1, X has to be traceless. Therefore, the generators of SU(3) are the set of traceless Hermitian matrices of dimension 3. Let's count how many independent parameters we need to characterize this set of matrices (what is the dimension of the Lie algebra). 3 × 3 complex matrices contains 18 real parameters. If it is to be Hermitian, then the number of parameters reduces by a half to 9. If we further impose traceless-ness, then the number of parameter reduces to 8. Therefore, the generator of SU(3) forms an 8 dimensional vector space. We can choose a basis for this eight dimensional vector space as 00 1 01 00 −i 01 01 0 01 00 0 11 λ1 = @1 0 0A ; λ2 = @i 0 0A ; λ3 = @0 −1 0A ; λ4 = @0 0 0A (1) 0 0 0 0 0 0 0 0 0 1 0 0 00 0 −i1 00 0 01 00 0 0 1 01 0 0 1 1 λ5 = @0 0 0 A ; λ6 = @0 0 1A ; λ7 = @0 0 −iA ; λ8 = p @0 1 0 A (2) i 0 0 0 1 0 0 i 0 3 0 0 −2 They are called the Gell-Mann matrices.
    [Show full text]
  • Lattic Isomorphisms of Lie Algebras
    LATTICE ISOMORPHISMS OF LIE ALGEBRAS D. W. BARNES (received 16 March 1964) 1. Introduction Let L be a finite dimensional Lie algebra over the field F. We denote by -S?(Z.) the lattice of all subalgebras of L. By a lattice isomorphism (which we abbreviate to .SP-isomorphism) of L onto a Lie algebra M over the same field F, we mean an isomorphism of £P(L) onto J&(M). It is possible for non-isomorphic Lie algebras to be J?-isomorphic, for example, the algebra of real vectors with product the vector product is .Sf-isomorphic to any 2-dimensional Lie algebra over the field of real numbers. Even when the field F is algebraically closed of characteristic 0, the non-nilpotent Lie algebra L = <a, bt, • • •, br} with product defined by ab{ = b,, b(bf = 0 (i, j — 1, 2, • • •, r) is j2?-isomorphic to the abelian algebra of the same di- mension1. In this paper, we assume throughout that F is algebraically closed of characteristic 0 and are principally concerned with semi-simple algebras. We show that semi-simplicity is preserved under .Sf-isomorphism, and that ^-isomorphic semi-simple Lie algebras are isomorphic. We write mappings exponentially, thus the image of A under the map <p v will be denoted by A . If alt • • •, an are elements of the Lie algebra L, we denote by <a,, • • •, an> the subspace of L spanned by au • • • ,an, and denote by <<«!, • • •, «„» the subalgebra generated by a,, •••,«„. For a single element a, <#> = «a>>. The product of two elements a, 6 el.
    [Show full text]
  • LIE ALGEBRAS in CLASSICAL and QUANTUM MECHANICS By
    LIE ALGEBRAS IN CLASSICAL AND QUANTUM MECHANICS by Matthew Cody Nitschke Bachelor of Science, University of North Dakota, 2003 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial ful¯llment of the requirements for the degree of Master of Science Grand Forks, North Dakota May 2005 This thesis, submitted by Matthew Cody Nitschke in partial ful¯llment of the require- ments for the Degree of Master of Science from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved. (Chairperson) This thesis meets the standards for appearance, conforms to the style and format require- ments of the Graduate School of the University of North Dakota, and is hereby approved. Dean of the Graduate School Date ii PERMISSION Title Lie Algebras in Classical and Quantum Mechanics Department Physics Degree Master of Science In presenting this thesis in partial ful¯llment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the chairperson of the department or the dean of the Graduate School. It is understood that any copying or publication or other use of this thesis or part thereof for ¯nancial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis.
    [Show full text]
  • Representation Theory
    M392C NOTES: REPRESENTATION THEORY ARUN DEBRAY MAY 14, 2017 These notes were taken in UT Austin's M392C (Representation Theory) class in Spring 2017, taught by Sam Gunningham. I live-TEXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Kartik Chitturi, Adrian Clough, Tom Gannon, Nathan Guermond, Sam Gunningham, Jay Hathaway, and Surya Raghavendran for correcting a few errors. Contents 1. Lie groups and smooth actions: 1/18/172 2. Representation theory of compact groups: 1/20/174 3. Operations on representations: 1/23/176 4. Complete reducibility: 1/25/178 5. Some examples: 1/27/17 10 6. Matrix coefficients and characters: 1/30/17 12 7. The Peter-Weyl theorem: 2/1/17 13 8. Character tables: 2/3/17 15 9. The character theory of SU(2): 2/6/17 17 10. Representation theory of Lie groups: 2/8/17 19 11. Lie algebras: 2/10/17 20 12. The adjoint representations: 2/13/17 22 13. Representations of Lie algebras: 2/15/17 24 14. The representation theory of sl2(C): 2/17/17 25 15. Solvable and nilpotent Lie algebras: 2/20/17 27 16. Semisimple Lie algebras: 2/22/17 29 17. Invariant bilinear forms on Lie algebras: 2/24/17 31 18. Classical Lie groups and Lie algebras: 2/27/17 32 19. Roots and root spaces: 3/1/17 34 20. Properties of roots: 3/3/17 36 21. Root systems: 3/6/17 37 22. Dynkin diagrams: 3/8/17 39 23.
    [Show full text]
  • Special Unitary Group - Wikipedia
    Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Special unitary group In mathematics, the special unitary group of degree n, denoted SU( n), is the Lie group of n×n unitary matrices with determinant 1. (More general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case.) The group operation is matrix multiplication. The special unitary group is a subgroup of the unitary group U( n), consisting of all n×n unitary matrices. As a compact classical group, U( n) is the group that preserves the standard inner product on Cn.[nb 1] It is itself a subgroup of the general linear group, SU( n) ⊂ U( n) ⊂ GL( n, C). The SU( n) groups find wide application in the Standard Model of particle physics, especially SU(2) in the electroweak interaction and SU(3) in quantum chromodynamics.[1] The simplest case, SU(1) , is the trivial group, having only a single element. The group SU(2) is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. Since unit quaternions can be used to represent rotations in 3-dimensional space (up to sign), there is a surjective homomorphism from SU(2) to the rotation group SO(3) whose kernel is {+ I, − I}. [nb 2] SU(2) is also identical to one of the symmetry groups of spinors, Spin(3), that enables a spinor presentation of rotations. Contents Properties Lie algebra Fundamental representation Adjoint representation The group SU(2) Diffeomorphism with S 3 Isomorphism with unit quaternions Lie Algebra The group SU(3) Topology Representation theory Lie algebra Lie algebra structure Generalized special unitary group Example Important subgroups See also 1 of 10 2/22/2018, 8:54 PM Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Remarks Notes References Properties The special unitary group SU( n) is a real Lie group (though not a complex Lie group).
    [Show full text]
  • Group Theory - QMII 2017
    Group Theory - QMII 2017 Reminder Last time we said that a group element of a matrix lie group can be written as an exponent: a U = eiαaX ; a = 1; :::; N: We called Xa the generators, we have N of them, they span a basis for the Lie algebra, and they can be found by taking the derivative with respect to αa at α = 0. The generators are closed under the Lie product (∼ [·; ·]), and related by the structure constants [Xa;Xb] = ifabcXc: (1) We end with the Jacobi identity [Xa; [Xb;Xc]] + [Xb; [Xc;Xa]] + [Xc; [Xa;Xb]] = 0: (2) 1 Representations of Lie Algebra 1.1 The adjoint rep. part- I One of the most important representations is the adjoint. There are two equivalent ways to defined it. Here we follow the definition by Georgi. By plugging Eq. (1) into the Jacobi identity Eq. (2) we get the following: fbcdfade + fabdfcde + fcadfbde = 0 (3) Proof: 0 = [Xa; [Xb;Xc]] + [Xb; [Xc;Xa]] + [Xc; [Xa;Xb]] = ifbcd [Xa;Xd] + ifcad [Xb;Xd] + ifabd [Xc;Xd] = − (fbcdfade + fcadfbde + fabdfcde) Xe (4) 1 Now we can define a set of matrices Ta s.t. [Ta]bc = −ifabc: (5) Then by using the relation of the structure constants Eq. (3) we get [Ta;Tb] = ifabcTc: (6) Proof: [Ta;Tb]ce = [Ta]cd[Tb]de − [Tb]cd[Ta]de = −facdfbde + fbcdfade = fcadfbde + fbcdfade = −fabdfcde = fabdfdce = ifabd[Td]ce (7) which means that: [Ta;Tb] = ifabdTd: (8) Therefore the structure constants themselves generate a representation. This representation is called the adjoint representation. The adjoint of su(2) We already found that the structure constants of su(2) are given by the Levi-Civita tensor.
    [Show full text]
  • Groups and Representations the Material Here Is Partly in Appendix a and B of the Book
    Groups and representations The material here is partly in Appendix A and B of the book. 1 Introduction The concept of symmetry, and especially gauge symmetry, is central to this course. Now what is a symmetry: you have something, e.g. a vase, and you do something to it, e.g. turn it by 29 degrees, and it still looks the same then we call the operation performed, i.e. the rotation, a symmetryoperation on the object. But if we first rotate it by 29 degrees and then by 13 degrees and it still looks the same then also the combined operation of a rotation by 42 degrees is a symmetry operation as well. The mathematics that is involved here is that of groups and their representations. The symmetry operations form the group and the objects the operations work on are in representations of the group. 2 Groups A group is a set of elements g where there exist an operation ∗ that combines two group elements and the results is a third: ∃∗ : 8g1; g2 2 G : g1 ∗ g2 = g3 2 G (1) This operation must be associative: 8g1; g2; g3 2 G :(g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) (2) and there exists an element unity: 91 2 G : 8g 2 G : g ∗ 1 = 1 ∗ g = g (3) and for every element in G there exists an inverse: 8g 2 G : 9g−1 2 G : g ∗ g−1 = g−1 ∗ g = 1 (4) This is the general definition of a group. Now if all elements of a group commute, i.e.
    [Show full text]
  • Automorphisms of Modular Lie Algebr S
    Non Joumal of Algebra and Geometty ISSN 1060.9881 Vol. I, No.4, pp. 339-345, 1992 @ 1992 Nova Sdence Publishers, Inc. Automorphisms of Modular Lie Algebr�s Daniel E. Frohardt Robert L. Griess Jr. Dept. Math Dept. Math Wayne State University University of Michigan Faculty / Administration Building & Angell Hall Detroit, MI 48202 Ann Arbor, MI 48104 USA USA Abstract: We give a short argument ,that certain modular Lie algebras have sur­ prisingly large automorphism groups. 1. Introduction and statement of results A classical Lie algebra is one that has a Chevalley basis associated with an irre­ ducible root system. If L is a classical Lie algebra over a field K of characteristic 0 the'D.,L�has the following properties: (1) The automorphism group of L contains the ChevaUey group associated with the root system as a normal subgroup with torsion quotient grouPi (2) Lis simple. It has been known for some time that these properties do not always hold when K has positive characteristic, even when (2) is relaxed to condition (2') Lis quasi-simple, (that is, L/Z{L) is simple, where Z'{L) is the center of L), but the proofs have involved explicit computations with elements of the &lgebras. See [Stein] (whose introduction surveys the early results in this area ), [Hog]. Our first reSult is an easy demonstration of the instances of failure for (1) or (2') by use of graph automorphisms for certain Dynkin diagrams; see (2.4), (3.2) and Table 1. Only characteristics 2 and 3 are involved here., We also determine the automorphism groups of algebras of the form L/Z, where Z is a centr&l ideal of Land Lis one of the above classical quasisimple Lie algebras failing to satisfy (1) or (2'); see (3.8) and (3.9).
    [Show full text]
  • Characterization of SU(N)
    University of Rochester Group Theory for Physicists Professor Sarada Rajeev Characterization of SU(N) David Mayrhofer PHY 391 Independent Study Paper December 13th, 2019 1 Introduction At this point in the course, we have discussed SO(N) in detail. We have de- termined the Lie algebra associated with this group, various properties of the various reducible and irreducible representations, and dealt with the specific cases of SO(2) and SO(3). Now, we work to do the same for SU(N). We de- termine how to use tensors to create different representations for SU(N), what difficulties arise when moving from SO(N) to SU(N), and then delve into a few specific examples of useful representations. 2 Review of Orthogonal and Unitary Matrices 2.1 Orthogonal Matrices When initially working with orthogonal matrices, we defined a matrix O as orthogonal by the following relation OT O = 1 (1) This was done to ensure that the length of vectors would be preserved after a transformation. This can be seen by v ! v0 = Ov =) (v0)2 = (v0)T v0 = vT OT Ov = v2 (2) In this scenario, matrices then must transform as A ! A0 = OAOT , as then we will have (Av)2 ! (A0v0)2 = (OAOT Ov)2 = (OAOT Ov)T (OAOT Ov) (3) = vT OT OAT OT OAOT Ov = vT AT Av = (Av)2 Therefore, when moving to unitary matrices, we want to ensure similar condi- tions are met. 2.2 Unitary Matrices When working with quantum systems, we not longer can restrict ourselves to purely real numbers. Quite frequently, it is necessarily to extend the field we are with with to the complex numbers.
    [Show full text]