Chapter 4 SU(2)

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4 SU(2) Chapter 4 SU(2) 4.1 Representations of SU(2) We will now work out in detail the properties of SU(2) and its representations. We have already seen that the generators may be chosen to be 1 L = σ , with σ = the Pauli matrices. i 2 i i k Then cij = ǫijk are the structure constants, and β = ǫ ǫ =2δ . ij − aib bja ij Thus our generators are not quite canonically normalized, but are all nor- malized equally, and β is positive definite. This is related to the fact, which we have already seen, that the group is compact. In writing down our generators, we have chosen, arbitrarily, one direction to make diagonal. Any rotation can be, by similarity transformation with at rotation, rotated into the z direction, so as we have a choice as to which of the infinite number of equivalent representations to choose, we may choose L3 to be diagonal. If we had several generators which commuted with each other, we could have chosen all of them to be diagonal. In general, we will take a maximal set of commuting generators, called the Cartan subalgebra, and represent them as diagonal. For SU(2), no rotations about any other axis commute with L3, so the Cartan subalgebra is one dimensional. 67 68. Last Latexed: April 25, 2017 at 9:45 Joel A. Shapiro We want to look for finite dimensional irreducible representations, and we have chosen to make Γ(L3) diagonal. Consider a basis vector em with L3em = mem, or Γm′m(L3) = mδm′ m, where so far we are not restricting m other than to say it is real. However, we know that e4πiL3 = 1I, so e4πim = 1, and m = n/2 for some integer n, for us to have a true representation of the SU(2) group. But even without assuming this, we will find it anyway, from requiring the representation to be finite dimensional. From L1 and L2 we can form the two operators L1 iL2 L± = ± . √2 These are not actually part of the Lie algebra, because that is defined over the reals, but any representation of the algebra is automatically a representation of the complexification, i.e. v L , v C. { a a} a ∈ L± are called raising and lowering operators respectively because P 1 i i 1 [L3, L±]= [L3, L1] [L3, L2]= L2 L1 = L±. √2 ± √2 √2 ± √2 ± Thus if L3em = mem, L (L e )=(L L L ) e =(m 1)L e , 3 ± m ± 3 ± ± m ± ± m so L±em is a new basis vector of the representation, unless it vanishes. Applying L+ an arbitrary number of times generates an arbitrary number of vectors unless at some point it gives 0. All of these vectors are linearly independent, so we would generate an infinite-dimensional space unless there p exists some state ej L+em with L3ej = jej on which L+ej = 0. ej is called the highest weight∝ state. 1 Let us form a normalized vector proportional to ej called j, j , and write the inner product in quantum mechanical form | i j, j j, j =1. h | i Now we generate a sequence of orthonormal states j, m = N Lj−m j, j , | i j,m − | i 1If there are several eigenvectors with eigenvalue m, add a label α to the states generated by L+, so the highest weight ones will be j, j, α , but the states with different α will turn out to be in different irreducible representations,| i as shown below. 618: Last Latexed: April 25, 2017 at 9:45 69 where Nj,m is a real normalization constant not quite the same as Georgi’s. The state j, m is an eigenstate of L with eigenvalue m, | i 3 L j, m = m j, m 3 | i | i 2 because each application of L− lowers the eigenvalue of L3 by one . The normalization factors can be found by observing that Nj,m j, m = L− j, m +1 | i | i Nj,m+1 −1 Nm+1 in Georgi or L− j, m +1 = Nm+1 j, m . | {z } On| the otheri hand, | i L j, m = N L Lk j, j with k = j m + | i j,m + − | i − k−1 = N Lk−1−r [L , L ] Lr j, j + Lk L j, j . j,m − + − − | i − + | i r=0 ! X 1 r But [L+, L−] = 2 [L1 + iL2, L1 iL2] = i [L2, L1] = L3 and L3L− j, j = (j r)Lr j, j as L is the lowering− operator. So as L j, j = 0, | i − − | i − + | i k−1 L j, m = N (j r)Lk−1 j, j + | i j,m − − | i r=0 X k(k 1) = kj − N Lk−1 j, j − 2 j,m − | i k 1 = k j − N N −1 j, m +1 − 2 j,m j,m+1 | i 1 = (j m)(j + m + 1)N −1 j, m +1 . 2 − m+1 | i † Now L+ = L−, so j, m +1 L j, m = j, m L j, m +1 ∗ h | + | i h | − | i = = 1 (j m)(j + m + 1)N −1 = N 2 − m+1 m+1 2 The state j, m, α so generated will be proportional to the original em because | i [L−,L+] = L3 and em is an eigenstate of L3. Thus all the states generated have the same α. − 70. Last Latexed: April 25, 2017 at 9:45 Joel A. Shapiro or 1 Nm+1 = (j m)(j + m + 1) √2 − 1 p Nm = (j m + 1)(j + m). √2 − p Now the set of states j, m m = j, j 1, j 2,... must terminate somewhere | i − − if the representation is to be finite dimensional, so for some m < j, Nm =0, so j + m = 0, or m = j. But j m is an integer, so 2j is an integer, and hence 2m is an integer− as well. − We have formed a representation with orthonormal basis j, m , m = j, j 1, j 2, , j , which is 2j + 1 dimensional, with 2j an{| integer.i We − − ··· − } 3 found the representation of L3 and L±, from which L1 and L2 follow . There is exactly one irreducible representation of SU(2) for each dimen- 1 3 sion and for each j = 0, 2 , 1, 2 ,.... Each representation has just one eigen- state of L3 with each eigenvalue m [ j, j +1,...,j]. The representation is given by ∈ − − L j, m = m j, m 3 | i | i 1 L+ j, m = (j m)(j + m + 1) j, m+1 | i √2 − | i 1 p L− j, m = (j + m)(j m + 1) j, m 1 | i √2 − | − i p the representation of the group elements is, of course, given by the exponen- tial of the representation of the generators. The 2j + 1 dimensional repre- sentation is usually denoted j (g) Dm1,m2 1 The j = 2 representation is just the group elements themselves. Therefore it is called the defining representation. 3 Notice that if we started with 2 orthogonal states em,α and em,β, all the states we generated from em,α would be orthogonal to all those from em,β, and the first set by itself would be an irreducible representation. 618: Last Latexed: April 25, 2017 at 9:45 71 4.2 Reduction of Direct Products If Γ1 and Γ2 are two representations of a Lie group, and Γ is their direct product, then 1 2 Γ(ix),(jy)(g)=Γij(g)Γxy(g). Recalling that4 Γ(L )= i d Γ(g(v )) , a dva a v=0 − =1 g 1 2 1 2 1 2 Γ(ix),(jy)(L)=Γij(L)Γxy(1I) + Γij(1I)Γxy(L)= δxyΓij(L)+ δijΓxy(L). Now for SU(2), consider the direct product states with bases j , j ; m , m = j , m j , m . | 1 2 1 2i | 1 1i⊗| 2 2i This representation can in principle be decomposed into a set of irreducible representations j, m . To see which, we count the dimensionality of the | i eigenspaces of L3, L j , j ; m , m = (L j , m ) j , m + j , m (L j , m ) 3 | 1 2 1 2i 3 | 1 1i ⊗| 2 2i | 1 1i ⊗ 3 | 2 2i = (m + m ) j , m ; j , m . 1 2 | 1 1 2 2i Fortunately our states are already eigenstates of L3. The largest eigenvalue is j1 + j2, which can occur in only one way. So the representation j = j1 + j2 occurs exactly once in the direct product. This representation accounts for one of the basis vectors for each m (= eigenvalue of L ) with m j + j . 3 | | ≤ 1 2 Now consider m = m + m = j + j 1. There are two ways to build 1 2 1 2 − it up, with m1 = j1 1, m2 = j2, or with m1 = j1, m2 = j2 1, as long as each j is at least 1 .− The next higher m, m = j + j 2, can− be built three 2 1 2 − different ways. The growth stops with m = j1 +j2 k, which can be written in k + 1 ways, with m = j r, m = j k + r, r−= 0,...,k. What stops 1 1 − 2 2 − it is that we must require m j , and m j , so k 2 min(j , j ). 1 ≥ − 1 2 ≥ − 2 ≤ 1 2 After that, the m corresponding to the smaller j (say jmin = k/2)) takes on all 2j + 1 values, until we get to m < j j , where the possible min −| max − min| values of m for the smaller j are limited.
Recommended publications
  • Irreducible Representations of Complex Semisimple Lie Algebras
    Irreducible Representations of Complex Semisimple Lie Algebras Rush Brown September 8, 2016 Abstract In this paper we give the background and proof of a useful theorem classifying irreducible representations of semisimple algebras by their highest weight, as well as restricting what that highest weight can be. Contents 1 Introduction 1 2 Lie Algebras 2 3 Solvable and Semisimple Lie Algebras 3 4 Preservation of the Jordan Form 5 5 The Killing Form 6 6 Cartan Subalgebras 7 7 Representations of sl2 10 8 Roots and Weights 11 9 Representations of Semisimple Lie Algebras 14 1 Introduction In this paper I build up to a useful theorem characterizing the irreducible representations of semisim- ple Lie algebras, namely that finite-dimensional irreducible representations are defined up to iso- morphism by their highest weight ! and that !(Hα) is an integer for any root α of R. This is the main theorem Fulton and Harris use for showing that the Weyl construction for sln gives all (finite-dimensional) irreducible representations. 1 In the first half of the paper we'll see some of the general theory of semisimple Lie algebras| building up to the existence of Cartan subalgebras|for which we will use a mix of Fulton and Harris and Serre ([1] and [2]), with minor changes where I thought the proofs needed less or more clarification (especially in the proof of the existence of Cartan subalgebras). Most of them are, however, copied nearly verbatim from the source. In the second half of the paper we will describe the roots of a semisimple Lie algebra with respect to some Cartan subalgebra, the weights of irreducible representations, and finally prove the promised result.
    [Show full text]
  • LIE GROUPS and ALGEBRAS NOTES Contents 1. Definitions 2
    LIE GROUPS AND ALGEBRAS NOTES STANISLAV ATANASOV Contents 1. Definitions 2 1.1. Root systems, Weyl groups and Weyl chambers3 1.2. Cartan matrices and Dynkin diagrams4 1.3. Weights 5 1.4. Lie group and Lie algebra correspondence5 2. Basic results about Lie algebras7 2.1. General 7 2.2. Root system 7 2.3. Classification of semisimple Lie algebras8 3. Highest weight modules9 3.1. Universal enveloping algebra9 3.2. Weights and maximal vectors9 4. Compact Lie groups 10 4.1. Peter-Weyl theorem 10 4.2. Maximal tori 11 4.3. Symmetric spaces 11 4.4. Compact Lie algebras 12 4.5. Weyl's theorem 12 5. Semisimple Lie groups 13 5.1. Semisimple Lie algebras 13 5.2. Parabolic subalgebras. 14 5.3. Semisimple Lie groups 14 6. Reductive Lie groups 16 6.1. Reductive Lie algebras 16 6.2. Definition of reductive Lie group 16 6.3. Decompositions 18 6.4. The structure of M = ZK (a0) 18 6.5. Parabolic Subgroups 19 7. Functional analysis on Lie groups 21 7.1. Decomposition of the Haar measure 21 7.2. Reductive groups and parabolic subgroups 21 7.3. Weyl integration formula 22 8. Linear algebraic groups and their representation theory 23 8.1. Linear algebraic groups 23 8.2. Reductive and semisimple groups 24 8.3. Parabolic and Borel subgroups 25 8.4. Decompositions 27 Date: October, 2018. These notes compile results from multiple sources, mostly [1,2]. All mistakes are mine. 1 2 STANISLAV ATANASOV 1. Definitions Let g be a Lie algebra over algebraically closed field F of characteristic 0.
    [Show full text]
  • Lattic Isomorphisms of Lie Algebras
    LATTICE ISOMORPHISMS OF LIE ALGEBRAS D. W. BARNES (received 16 March 1964) 1. Introduction Let L be a finite dimensional Lie algebra over the field F. We denote by -S?(Z.) the lattice of all subalgebras of L. By a lattice isomorphism (which we abbreviate to .SP-isomorphism) of L onto a Lie algebra M over the same field F, we mean an isomorphism of £P(L) onto J&(M). It is possible for non-isomorphic Lie algebras to be J?-isomorphic, for example, the algebra of real vectors with product the vector product is .Sf-isomorphic to any 2-dimensional Lie algebra over the field of real numbers. Even when the field F is algebraically closed of characteristic 0, the non-nilpotent Lie algebra L = <a, bt, • • •, br} with product defined by ab{ = b,, b(bf = 0 (i, j — 1, 2, • • •, r) is j2?-isomorphic to the abelian algebra of the same di- mension1. In this paper, we assume throughout that F is algebraically closed of characteristic 0 and are principally concerned with semi-simple algebras. We show that semi-simplicity is preserved under .Sf-isomorphism, and that ^-isomorphic semi-simple Lie algebras are isomorphic. We write mappings exponentially, thus the image of A under the map <p v will be denoted by A . If alt • • •, an are elements of the Lie algebra L, we denote by <a,, • • •, an> the subspace of L spanned by au • • • ,an, and denote by <<«!, • • •, «„» the subalgebra generated by a,, •••,«„. For a single element a, <#> = «a>>. The product of two elements a, 6 el.
    [Show full text]
  • LIE ALGEBRAS in CLASSICAL and QUANTUM MECHANICS By
    LIE ALGEBRAS IN CLASSICAL AND QUANTUM MECHANICS by Matthew Cody Nitschke Bachelor of Science, University of North Dakota, 2003 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial ful¯llment of the requirements for the degree of Master of Science Grand Forks, North Dakota May 2005 This thesis, submitted by Matthew Cody Nitschke in partial ful¯llment of the require- ments for the Degree of Master of Science from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved. (Chairperson) This thesis meets the standards for appearance, conforms to the style and format require- ments of the Graduate School of the University of North Dakota, and is hereby approved. Dean of the Graduate School Date ii PERMISSION Title Lie Algebras in Classical and Quantum Mechanics Department Physics Degree Master of Science In presenting this thesis in partial ful¯llment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the chairperson of the department or the dean of the Graduate School. It is understood that any copying or publication or other use of this thesis or part thereof for ¯nancial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my thesis.
    [Show full text]
  • Automorphisms of Modular Lie Algebr S
    Non Joumal of Algebra and Geometty ISSN 1060.9881 Vol. I, No.4, pp. 339-345, 1992 @ 1992 Nova Sdence Publishers, Inc. Automorphisms of Modular Lie Algebr�s Daniel E. Frohardt Robert L. Griess Jr. Dept. Math Dept. Math Wayne State University University of Michigan Faculty / Administration Building & Angell Hall Detroit, MI 48202 Ann Arbor, MI 48104 USA USA Abstract: We give a short argument ,that certain modular Lie algebras have sur­ prisingly large automorphism groups. 1. Introduction and statement of results A classical Lie algebra is one that has a Chevalley basis associated with an irre­ ducible root system. If L is a classical Lie algebra over a field K of characteristic 0 the'D.,L�has the following properties: (1) The automorphism group of L contains the ChevaUey group associated with the root system as a normal subgroup with torsion quotient grouPi (2) Lis simple. It has been known for some time that these properties do not always hold when K has positive characteristic, even when (2) is relaxed to condition (2') Lis quasi-simple, (that is, L/Z{L) is simple, where Z'{L) is the center of L), but the proofs have involved explicit computations with elements of the &lgebras. See [Stein] (whose introduction surveys the early results in this area ), [Hog]. Our first reSult is an easy demonstration of the instances of failure for (1) or (2') by use of graph automorphisms for certain Dynkin diagrams; see (2.4), (3.2) and Table 1. Only characteristics 2 and 3 are involved here., We also determine the automorphism groups of algebras of the form L/Z, where Z is a centr&l ideal of Land Lis one of the above classical quasisimple Lie algebras failing to satisfy (1) or (2'); see (3.8) and (3.9).
    [Show full text]
  • Lie Algebras
    Lie Algebras Shlomo Sternberg March 8, 2004 2 Chapter 5 Conjugacy of Cartan subalgebras It is a standard theorem in linear algebra that any unitary matrix can be di- agonalized (by conjugation by unitary matrices). On the other hand, it is easy to check that the subgroup T ⊂ U(n) consisting of all unitary matrices is a maximal commutative subgroup: any matrix which commutes with all diagonal unitary matrices must itself be diagonal; indeed if A is a diagonal matrix with distinct entries along the diagonal, an matrix which commutes with A must be diagonal. Notice that T is a product of circles, i.e. a torus. This theorem has an immediate generalization to compact Lie groups: Let G be a compact Lie group, and let T and T 0 be two maximal tori. (So T and T 0 are connected commutative subgroups (hence necessarily tori) and each is not strictly contained in a larger connected commutative subgroup). Then there exists an element a ∈ G such that aT 0a−1 = T . To prove this, choose one parameter subgroups of T and T 0 which are dense in each. That is, choose x and x0 in the Lie algebra g of G such that the curve t 7→ exp tx is dense in T and the curve t 7→ exp tx0 is dense in T 0. If we could find a ∈ G such that the 0 −1 0 a(exp tx )a = exp t Ada x commute with all the exp sx, then a(exp tx0)a−1 would commute with all ele- ments of T , hence belong to T , and by continuity, aT 0a−1 ⊂ T and hence = T .
    [Show full text]
  • Arxiv:1712.05415V2 [Hep-Th] 6 Apr 2018 Contents
    The Conformal Characters Antoine Bourgeta and Jan Troostb aDepartment of Physics, Universidad de Oviedo, Calle Federico Garc´ıaLorca, 8, 33007 Oviedo, Spain bD´epartement de Physique, Ecole´ Normale Sup´erieure, CNRS, PSL Research University, Sorbonne Universit´es, Paris, France E-mail: [email protected], [email protected] Abstract: We revisit the study of the multiplets of the conformal algebra in any di- mension. The theory of highest weight representations is reviewed in the context of the Bernstein-Gelfand-Gelfand category of modules. The Kazhdan-Lusztig polynomials code the relation between the Verma modules and the irreducible modules in the category and are the key to the characters of the conformal multiplets (whether finite dimensional, infi- nite dimensional, unitary or non-unitary). We discuss the representation theory and review in full generality which representations are unitarizable. The mathematical theory that al- lows for both the general treatment of characters and the full analysis of unitarity is made accessible. A good understanding of the mathematics of conformal multiplets renders the treatment of all highest weight representations in any dimension uniform, and provides an overarching comprehension of case-by-case results. Unitary highest weight representations and their characters are classified and computed in terms of data associated to cosets of the Weyl group of the conformal algebra. An executive summary is provided, as well as look-up tables up to and including rank four. arXiv:1712.05415v2 [hep-th]
    [Show full text]
  • Mass, Zero Mass And... Nophysics
    MITP/16-055 Mass, zero mass and ... nophysics R. Saar1 and S. Groote1,2 1 Loodus- ja T¨appisteaduste valdkond, F¨u¨usika Instituut, Tartu Ulikool,¨ W. Ostwaldi 1, 50411 Tartu, Estonia 2 PRISMA Cluster of Excellence, Institut f¨ur Physik, Johannes-Gutenberg-Universit¨at, Staudinger Weg 7, 55099 Mainz, Germany Abstract In this paper we demonstrate that massless particles cannot be considered as the limiting case of massive particles. Instead, the usual symmetry structure based on semisimple groups like U(1), SU(2) and SU(3) has to be replaced by less usual solvable groups like the minimal nonabelian group sol2. Starting from the proper orthochronous Lorentz group Lor1,3 we extend Wigner’s little group by an additional generator, obtaining the maximal solvable or Borel subgroup Bor1,3 which is equiva- lent to the Kronecker sum of two copies of sol2, telling something about the helicity of particle and antiparticle states. arXiv:1606.06966v2 [physics.gen-ph] 12 Sep 2017 1 Introduction In his paper “Sur la dynamique de l’electron” from July 1905, Henri Poincar´eformulates the Principle of Relativity, introduces the concepts of Lorentz transformation and Lorentz group, and postulates the covariance of laws of Nature under Lorentz transformations [1]. In 1939, Eug´ene Wigner analysed the unitary representations of the inhomogeneous Lorentz group [2, 3]. However, there are also nonunitary representations. As Wigner pointed out, the irreducible representations of the Lorentz group are important because they define the types of particles. The Lorentz symmetry is expressed by introducing the commutative diagram for the covariant wave functions ψC , C C ψ : E p ψ (p) 1,3 ∋ −→ U(Λ) Λ T (Λ) (1) ↓ ↓ ↓ U(Λ)ψC : Λx Λp T (Λ)ψC(p) ∋ −→ implying (U(Λ)ψC )(Λp) = T (Λ)ψC(p).
    [Show full text]
  • On Automorphisms of Lie Algebras of Classical Type. U
    ON AUTOMORPHISMS OF LIE ALGEBRAS OF CLASSICALTYPE. U BY GEORGE B. SELIGMAN In an earlier paper ([22](1), hereafter referred to as (A)), we have in- vestigated the automorphisms of Lie algebras of classical type, in the sense of [18]. In Theorem 5 of (A), it was concluded that over an algebraically closed field of characteristic different from 2 and 3, the automorphisms of a simple Lie algebra 8 of classical type different from An(n^2), £„(w^4), £6, are all invariant automorphisms, that is, are in the group of automorphisms gener- ated by all automorphisms of the form exp(ad ef), where ea runs through all root vectors relative to all standard Cartan subalgebras of 8. (For definitions not explained here, see (A) unless otherwise noted.) The results for the re- maining simple algebras of classical type were stated in Theorem 6 of (A) without proofs being given. We supply here a proof of this theorem for all cases except that of £6, which we shall treat in another paper. In addition, we shall study more closely the automorphisms of Lie algebras of classical type in terms of what appear to be linear representations of minimal dimen- sion. In the latter connection, the group 3(8) of invariant automorphisms may be identified in the cases A —D and for sufficiently large characteristics with the quotient, modulo the scalars it contains, of a certain linear group S, an invariant subgroup in a classical linear group 23 such that $8/3 is simple, where $ is the center of 23 and consists of scalar transformations.
    [Show full text]
  • 15. Cartan Subalgebras the Next Project Is to Show That the Cartan Subalgebra H of a Semisimple Lie Algebra L Is Unique up to an Automorphism of L
    56 MATH 223A NOTES 2011 LIE ALGEBRAS 15. Cartan subalgebras The next project is to show that the Cartan subalgebra H of a semisimple Lie algebra L is unique up to an automorphism of L. However, it turns out to be easier to generalize the notion of Cartan subalgebra to a not necessarily semisimple Lie algebra and then show that this more general notion is unique up to an inner automorphism of L. There are two equivalent definitions for a Cartan subalgebra H of a general Lie algebra L: (1) H is a self-normalizing nilpotent subalgebra, i.e., a nilpotent subalgebra of L so that H = N (H) := x L [xH] H L { ∈ | ⊆ } For L semisimple, this is equivalent to the theorem that H = L0. (2) H is a minimal Engel subalgebra (defined below). Humphreys points out that the ground field F can be of arbitrary characteristic. But, when F is finite, we need to assume that F has more than 2 dim L elements. n 15.1. Engel subalgebras. For any endomorphism x of V ∼= F let V (x) := ker(xn)=ker(xm) m n. 0 ∀ ≥ Note that x acts nilpotently on V0(x) and x acts as an automorphism on V/V0(x). Lemma 15.1.1. Suppose that z,x gl(V ) and V = F n. ∈ ∼ (1) The set of all c F so that z + cx is nilpotent is either finite with n elements or all of F . ∈ ≤ (2) The set of all c F so that z + cx is not an automorphism of V is either finite with n elements∈ or all of F .
    [Show full text]
  • On Automorphisms of Lie Algebras of Classical Type 431
    ON AUTOMORPHISMS OF LIE ALGEBRAS OF CLASSICALTYPE BY GEORGE B. SELIGMAN In two recent papers(1) ([12] and [13], the latter hereafter referred to as (C)), W. H. Mills and the author have developed a structure theory for cer- tain Lie algebras over arbitrary fields of characteristic different from 2 and 3. This class of algebras is defined by axioms in (C), and its members will be referred to as Lie algebras of classical type. They are closely related to semi- simple Lie algebras over algebraically closed fields of characteristic zero, not only in that such algebras are of classical type, but also in that nearly every Lie algebra of classical type may be obtained from such an algebra of char- acteristic zero by reducing its integral structure constants modulo a prime and performing a suitable extension of the prime field [2; 3; 4; 15]. There are several reasons for seeking information about the automor- phisms of these Lie algebras. In case the base field § is finite, recent investiga- tions by Chevalley [2] have revealed new simple finite groups closely related to the automorphism groups of the "exceptional" simple Lie algebras of classical type over jj. It would be of interest to obtain more precise informa- tion as to the relations between these groups. If one is to make an analysis of all normal simple Lie algebras over arbitrary fields of characteristic differ- ent from 2 or 3 which become simple Lie algebras of classical type when one passes to the algebraic closure (e.g., normal simple algebras with nondegener- ate Killing forms), the techniques used in the past require a knowledge of the automorphisms in the algebraically closed case [9; 10; 11; 17].
    [Show full text]
  • Mackey Analogy As Deformation of $\Mathcal {D} $-Modules
    MACKEY ANALOGY AS DEFORMATION OF D-MODULES SHILIN YU Abstract. Given a real reductive group Lie group GR, the Mackey analogy is a bijection between the set of irreducible tempered representations of GR and the set of irreducible unitary represen- tations of its Cartan motion group. We show that this bijection arises naturally from families of twisted D-modules over the flag variety of GR. Contents 1. Introduction 1 2. The Mackey-Higson-Afgoustidis bijection 4 2.1. Afgoustidis’s Mackey-Higson bijection 4 3. Review of Harish-Chandra sheaves 5 3.1. Basics of D-modules 5 3.2. Standard Harish-Chandra sheaves 7 3.3. Geometric classification of irreducible Harish-Chandramodules 9 3.4. K-orbits on the flag variety 9 3.5. Minimal K-types 11 4. Deformation of Harish-Chandra modules 14 4.1. Contraction of Harish-Chandra pair 14 4.2. Algebraic family of Harish-Chandra sheaves 16 4.3. Coherent sheaves on Grothendieck-Springer resolutions 19 4.4. Examples 28 References 29 arXiv:1707.00240v1 [math.RT] 2 Jul 2017 1. Introduction The aim of this paper is to give a natural conceptual explanation of an analogy between tempered representations of reductive Lie groups and that of their degenerations, which was first conjectured by Mackey ([Mac75]). We show that this analogy can be understood from the perspective of families of representations. We obtain such families by considering deformation of D-modules, which play a fundamental role in the connection between representation theory with algebraic geometry ([BB93]). The case of SL(2, R) has been examined in the paper [TYY16] of the same author with others.
    [Show full text]