Marine Mammal Ecology and Conservation / 00-Boyd Prelims Page 3 7:41Pm OUP CORRECTED PROOF – Finals, 5/7/2010, Spi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Standard No7 V5.Indd
University of St Andrews The StAndard Staff Magazine, Issue 7, March 2006 I’m with the Band Development’s Dynamic Duo Mail Room’s First Class Service The Future of our Finances Scotland’s fi rst university Produced by: The StAndard Editorial Board Joint Chairs: Stephen Magee is Vice-Principal (External Relations) Contents and Director of Admissions. To be announced in next issue Page 1: Welcome Pages 2-15: PEOPLE Joe Carson is a Lecturer in the Department of French, Disabilities Officer in the School of Modern Languages, Warden of University Hall and the Senior Pages 16-20: TOWN Warden of the University. Pages 21-22: OPINION Jim Douglas is Assistant Facilities Manager in the Estates Department and line manager for cleaning supervisors, janitors, mailroom staff and the out of Pages 23-32: GOWN hours service. Page 33-37: NEWS John Haldane is Professor of Philosophy and Director of the Centre for Ethics, Philosophy and Public Affairs. Chris Lusk is Director of Student Support Services covering disability, counselling, welfare, student development, orientation and equal opportunities. Jim Naismith teaches students in Chemistry and Biology and carries out research in the Centre for Biomolecular Sciences. The StAndard is funded by the University Niall Scott is Director of the Press Office. and edited by the Press Office under the direction of an independent Editorial Board comprising staff from every corner of the institution. The Editorial Board welcomes all suggestions, letters, articles, news and photography from staff, students and members of the wider Dawn Waddell is Secretary for the School of Art St Andrews community. -
Chapter 20: Protecting Marine Mammals and Endangered Marine Species
Preliminary Report CHAPTER 20: PROTECTING MARINE MAMMALS AND ENDANGERED MARINE SPECIES Protection for marine mammals and endangered or threatened species from direct impacts has increased since the enactment of the Marine Mammal Protection Act in 1972 and the Endangered Species Act in 1973. However, lack of scientific data, confusion about permitting requirements, and failure to adopt a more ecosystem-based management approach have created inconsistent and inefficient protection efforts, particularly from indirect and cumulative impacts. Consolidating and coordinating federal jurisdictional authorities, clarifying permitting and review requirements for activities that may impact marine mammals and endangered or threatened species, increasing scientific research and public education, and actively pursuing international measures to protect these species are all improvements that will promote better stewardship of marine mammals, endangered or threatened species, and the marine ecosystem. ASSESSING THE THREATS TO MARINE POPULATIONS Because of their intelligence, visibility and frequent interactions with humans, marine mammals hold a special place in the minds of most people. Little wonder, then, that mammals are afforded a higher level of protection than fish or other marine organisms. They are, however, affected and harmed by a wide range of human activities. The biggest threat to marine mammals worldwide today is their accidental capture or entanglement in fishing gear (known as “bycatch”), killing hundreds of thousands of animals a year.1 Dolphins, porpoises and small whales often drown when tangled in a net or a fishing line because they are not able to surface for air. Even large whales can become entangled and tow nets or other gear for long periods, leading to the mammal’s injury, exhaustion, or death. -
Management Consultations for the Western Hudson Bay (Wh) Polar Bear Population (01-02 December 2005)
MANAGEMENT CONSULTATIONS FOR THE WESTERN HUDSON BAY (WH) POLAR BEAR POPULATION (01-02 DECEMBER 2005) Martha Dowsley1 Mitch Taylor2 1Department of Geography, 705 Burnside Hall, McGill University, 805 Sherbrooke St. West, Montreal, QC H3A 2K6 2Wildlife Research Section, Department of Environment, Government of Nunavut, P.O. Box 209, Igloolik, NU X0A 0L0 2006 Final Wildlife Report, No. 3 Dowsley, M. and M. K. Taylor. 2006. Management consultations for the Western Hudson Bay (WH) polar bear population (01-02 December 2005). Government of Nunavut, Department of Environment, Final Wildlife Report: 3, Iqaluit, 55 pp. Management Consultations for the Western Hudson Bay (WH) Polar Bear Population (01-02 December 2005) Participants included: Arviat, Whale Cove, Rankin Inlet, Chesterfield Inlet, and Baker Lake HTOs Kivalliq Wildlife Board Nunavut Tungavik Incorporated Department of Environment, Government of Nunavut Martha Dowsley, McGill University and Mitchell Taylor, Department of Environment, GN 4 May 2007 Background: A recent population analysis by the Canadian Wildlife Service (CWS) for the WH population has demonstrated that the population has declined from about 1100 in 1994 to about 950 in 2004. This decline occurred at removal rates that had previously allowed the population to increase. The scientific data are entirely consistent with the hypothesis that survival and birth rates have been reduced by climate change, which caused the historical removal rates to cause decline in numbers. However, in December 2004 Nunavut increased the TA for WH polar bears by 9/year (from 47 to 56) based on Inuit perceptions that the population had increased. The final Canadian Wildlife Service Analysis indicates that population numbers and productivity have declined to so that a maximum of 24 bears per year can be taken from the population at 2 males per female without exceeding risk management guidelines (i.e., less than a 10% chance of an unacceptable decline). -
West Indian Manatee (Trichechus Manatus) Habitat Characterization Using Side-Scan Sonar
Andrews University Digital Commons @ Andrews University Master's Theses Graduate Research 2017 West Indian Manatee (Trichechus Manatus) Habitat Characterization Using Side-Scan Sonar Mindy J. McLarty Andrews University, [email protected] Follow this and additional works at: https://digitalcommons.andrews.edu/theses Part of the Biology Commons Recommended Citation McLarty, Mindy J., "West Indian Manatee (Trichechus Manatus) Habitat Characterization Using Side-Scan Sonar" (2017). Master's Theses. 98. https://digitalcommons.andrews.edu/theses/98 This Thesis is brought to you for free and open access by the Graduate Research at Digital Commons @ Andrews University. It has been accepted for inclusion in Master's Theses by an authorized administrator of Digital Commons @ Andrews University. For more information, please contact [email protected]. ABSTRACT WEST INDIAN MANATEE (TRICHECHUS MANATUS) HABITAT CHARACTERIZATION USING SIDE-SCAN SONAR by Mindy J. McLarty Chair: Daniel Gonzalez-Socoloske ABSTRACT OF GRADUATE STUDENT RESEARCH Thesis Andrews University School of Arts and Sciences Title: WEST INDIAN MANATEE (TRICHECHUS MANATUS) HABITAT CHARACTERIZATION USING SIDE-SCAN SONAR Name of researcher: Mindy J. McLarty Name and degree of faculty chair: Daniel Gonzalez-Socoloske, Ph.D. Date completed: April 2017 In this study, the reliability of low cost side-scan sonar to accurately identify soft substrates such as grass and mud was tested. Benthic substrates can be hard to classify from the surface, necessitating an alternative survey approach. A total area of 11.5 km2 was surveyed with the sonar in a large, brackish mangrove lagoon system. Individual points were ground-truthed for comparison with the sonar recordings to provide a measure of accuracy. -
Issue 1, Dec 2019 Distribution and Abundance in India
OCEAN DIGEST Quarterly Newsletter of the Ocean Society of India Volume 6 | Issue 1 | Dec 2019 | ISSN 2394-1928 Ocean Digest Quarterly Newsletter of the Ocean Society of India Marine Mammals — Indian Scenario Chandrasekar Krishnamoorthy Centre for Marine Living Resources & Ecology Ministry of Earth Sciences, Kochi arine mammals, the most amazing marine organisms on earth, are often referred to as “sentinels” of ocean Porpoising - Striped dolphin health.M These include approximately 127 species belonging to three major taxonomic orders, namely Cetacea (whales, dolphins, and porpoises), Sirenia (manatees and dugong) and Carnivora (sea otters, polar bears and pinnipeds) (Jefferson et al., 2008). These organisms are known to inhabit oceans and seas, as well as estuaries, and are distributed from the polar to the tropical regions. These organisms are the top predators in many ocean food webs except the sirenians, which are herbivores. However, cetaceans become the dominant group of marine mammals, as well as widest geographic range. Marine mammals have been deemed “invaluable components” of the naval force as their natural senses are superior to technology in rough weather and noisy areas. India, with a rich diversity of marine mammals has a history of documenting these animals for the last 200 years. Leaping - Spinner dolphin However, until the year 2003, information on these organisms in our seas was restricted to incidental capture by fishing gears and stranding records (Vivekanandan and Jeyachandran, 2012). Published reports indicate that only a few scientific studies have addressed the distribution of marine mammals in the Indian EEZ, and there exist huge lacunae on the baseline information such as abundance and density for many species due to limited resources and lack of systematic surveys. -
THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost. -
2016-2017 Court Minutes
Minutes 2016-2017 No 1 1 UNIVERSITY COURT OF ST ANDREWS AT ST ANDREWS on the 14th day of OCTOBER 2016 AT A MEETING OF THE COURT OF THE UNIVERSITY OF ST ANDREWS Present: Ms Catherine Stihler, Rector (President) ; Dame Anne Pringle, Senior Governor; Professor Sally Mapstone, Principal; Professor Garry Taylor, Deputy Principal & Master of the United College; Mr Adrian Greer, Chancellor’s Assessor; Ms Charlotte Andrew, President, Students' Association; Mr Jack Carr, Director of Representation, Students' Association; Mr Dylan Bruce, Rector’s Assessor; Mr Nigel Christie and Mr Kenneth Cochran, General Council Assessors; Professor Frances Andrews, Dr Chris Hooley, Professor James Naismith and Dr Philip Roscoe, Senate Assessors; Mr David Stutchfield, Non-Academic Staff Assessor; Councillor Bryan Poole, Provost of Fife’s Assessor; Mr Timothy Allan, Ms Pamela Chesters, Mr Ken Dalton, Professor Stuart Monro, Mr Nigel Morecroft, Dr Mary Popple and Professor Sir David Wallace, Non-Executive Members. In attendance: Professor Verity Brown, Vice-Principal (Enterprise & Engagement); Mr Alastair Merrill, Vice-Principal (Governance & Planning); Professor Lorna Milne, Vice- Principal (Proctor); Dr Anne Mullen, Vice-Principal (International); Mr Derek Watson, Quaestor & Factor; Professor Derek Woollins, Vice-Principal (Research); Mr Andy Goor, Finance Director; Dr Gillian MacIntosh, Executive Officer to the University Court. I. SESSION ON BREXIT Prior to the formal Court meeting, members held a strategic discussion session to discuss the potential implications of Brexit on the University and the UK HE sector in general (report on file, Court 16/22). II. OPENING BUSINESS 1. WELCOME The Rector welcomed Professor Sally Mapstone, Mr Adrian Greer, Ms Pamela Chesters, Mr Dylan Bruce, Ms Charlotte Andrew and Mr Jack Carr, who were each attending their first formal meeting of Court as a new members. -
Energetic Tradeoffs Control the Size Distribution of Aquatic Mammals William Gearty
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 4-17-2018 Energetic tradeoffs control the size distribution of aquatic mammals William Gearty Craig R. McClain Jonathan Payne Follow this and additional works at: https://digitalcommons.unl.edu/bioscifacpub Part of the Biology Commons, Evolution Commons, and the Terrestrial and Aquatic Ecology Commons This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Energetic tradeoffs control the size distribution of aquatic mammals William Geartya,1, Craig R. McClainb, and Jonathan L. Paynea aDepartment of Geological Sciences, Stanford University, Stanford, CA 94305; and bLouisiana Universities Marine Consortium, Chauvin, LA 70344 Edited by Nicholas D. Pyenson, Smithsonian Institution, Washington, DC, and accepted by Editorial Board Member David Jablonski February 23, 2018 (received for review August 8, 2017) Four extant lineages of mammals have invaded and diversified in the entering the water will increase in average size, these theories differ in water: Sirenia, Cetacea, Pinnipedia, and Lutrinae. Most of these aquatic their predictions for how such a size change is achieved. More spe- clades are larger bodied, on average, than their closest land-dwelling cifically, they differ in their predictions both about the rate of evo- relatives, but the extent to which potential ecological, biomechanical, lution toward the new, larger average size as well as the variance of and physiological controls contributed to this pattern remains untested the aquatic size distribution relative to its terrestrial sister group (22). -
SEA3 - Marine Mammals
Background information on marine mammals relevant to Strategic Environmental Assessments 2 and 3 P.S. Hammond, J.C.D. Gordon, K. Grellier, A.J. Hall, S.P. Northridge, D. Thompson & J. Harwood Sea Mammal Research Unit, Gatty Marine Laboratory University of St Andrews, St Andrews, Fife KY16 8LB SEA3 - Marine Mammals CONTENTS NON-TECHNICAL SUMMARY...............................................................................................1 Distribution and abundance.....................................................................................................1 Ecological importance ............................................................................................................2 Sensitivity to disturbance, contamination and disease..............................................................3 Noise ..................................................................................................................................3 Contaminants......................................................................................................................4 Oil spills .............................................................................................................................4 Oil dispersants ....................................................................................................................4 Disease ...............................................................................................................................4 Bycatch and other non-oil related management issues.............................................................5 -
Constraints on the Timescale of Animal Evolutionary History
Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J. -
Polar Bears Have Not Been Harmed by Sea Ice Declines in Summer – the Evidence August 18, 2013 Dr
Polar bears have not been harmed by sea ice declines in summer – the evidence August 18, 2013 Dr. S. J. Crockford Http://www.polarbearscience.com Polar bears have not been harmed by sea ice declines in summer – the evidence The polar bear biologists and professional activists of the IUCN Polar Bear Specialist Group (PBSG) continue to insist that since 1979 increasingly smaller amounts of Arctic sea ice left at the end of summer (the the September ice minimum) have already caused harm to polar bears. They contend that global warming due to CO2 from fossil fuels (“climate warming” in their lexicon) is the cause of this decline in summer ice. In a recent (2012) paper published in the journal Global Change Biology (“Effects of climate warming on polar bears: a review of the evidence”), long-time Canadian PBSG members Ian Stirling and Andrew Derocher (both of University of Alberta) summarized their position this way: “Climate warming is causing unidirectional changes to annual patterns of sea ice distribution, structure, and freeze-up. We summarize evidence that documents how loss of sea ice, the primary habitat of polar bears (Ursus maritimus), negatively affects their long-term survival” I’ve spent the last year examining their evidence of on-going harm, but in addition, I’ve looked at the evidence (much of it not mentioned in the Stirling and Derocher paper1) that polar bears have either not been harmed by less sea ice in summer or have thrived in spite of it. This is a summary of my findings. I have provided links to my original essays on individual topics, (available online at www.polarbearscience.com), which are fully referenced and illustrated. -
Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes
Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes by Ryan Matthew Bebej A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2011 Doctoral Committee: Professor Philip D. Gingerich, Co-Chair Professor Philip Myers, Co-Chair Professor Daniel C. Fisher Professor Paul W. Webb © Ryan Matthew Bebej 2011 To my wonderful wife Melissa, for her infinite love and support ii Acknowledgments First, I would like to thank each of my committee members. I will be forever grateful to my primary mentor, Philip D. Gingerich, for providing me the opportunity of a lifetime, studying the very organisms that sparked my interest in evolution and paleontology in the first place. His encouragement, patience, instruction, and advice have been instrumental in my development as a scholar, and his dedication to his craft has instilled in me the importance of doing careful and solid research. I am extremely grateful to Philip Myers, who graciously consented to be my co-advisor and co-chair early in my career and guided me through some of the most stressful aspects of life as a Ph.D. student (e.g., preliminary examinations). I also thank Paul W. Webb, for his novel thoughts about living in and moving through water, and Daniel C. Fisher, for his insights into functional morphology, 3D modeling, and mammalian paleobiology. My research was almost entirely predicated on cetacean fossils collected through a collaboration of the University of Michigan and the Geological Survey of Pakistan before my arrival in Ann Arbor.